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The elicitation of the background error covariance matrix (becm) is a major difficulty
of Bayesian assimilation used in atmospheric and oceanic sciences based on Kalman filter
in the form of 3Dvar or 4Dvar. In a preliminary companion paper, the definition of a becm
and link to earlier information were seen poorly practicable. Here, more decisive arguments
are obtained by reviewing mathematical studies, many in optimal control, a field dual to
filtering.

When the system is discretized, and in the simplest steady and linear case, controlla-
bility and detectability conditions are generally fulfilled implying convergence in theory,
not necessarily in practice as the limit may be very large. The non steady or nonlinear case
may be stabilized by covariance inflation. However, mathematical works about inflation
disprove the common belief that the converged result would be the becm of the system.

Considering the complete infinite dimensional system is even more disappointing. The
becm is replaced by a trace class operator solution, in the steady linear case, to an infinite-
dimensional Riccati equation. This equation has never been studied corresponding to the
specific features of geophysical assimilation of data. These correspond to limit cases where
the existence of solutions is no longer guaranteed. There is no ground, accordingly, for
presuming filter convergence in terms of the true infinite-dimensional system. Counter-
examples are proposed. This conclusion jeopardizes the physical meaning of any finite-
dimensional becm that could be computed based on discretization.

Keywords: Assimilation of data, meteorology, Bayesian statistics

1. Introduction
The concept of background error covariance matrix (becm) is pivotal in the Bayesian
framework of data assimilation used in atmospheric and oceanic sciences, hereafter termed
jointly as geophysical sciences, to readjust numerical models to real observations. The ma-
trix is theoretically related to earlier information by 3Dvar or 4Dvar iterations based on
Kalman filter. However, the huge system of equations defies any complete numerical res-
olution and the simplified versions eventually diverge. Meteorologists commonly analyse
this catastrophic filter divergence in view of the simplifications and approximations. A pre-
liminary companion article discussed the definition of the becm showing the link to earlier
information is poorly practicable. In addition to the well known numerical difficulties, the
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2 J.-P. Issartel, X. Busch, M. Sharan

becm is so sensitive to environmental conditions and sensor arrangement that any change
makes it unusable.

Emerging opinion suggests catastrophic filter divergence is a rigorous property of the
filter regardless of the simplifications (Kelly et al., 2015). This is the opinion supported here
based on an extensive review of the mathematical literature. A large part is from optimal
control as this field is equivalent by duality to filtering. The concepts of controllability,
observability rooted in optimal control, are widely used in the theoretical works about
Kalman filter. This is reminded and explained in appendices.

This article successively addresses finite and infinite dimensional systems, the first cor-
responding in practice to a discretized model of the second. The reason for this division
is as follows. The becm is defined for finite-dimensional systems most often arising from
discretization. Thus, the convergence of the discrete filter must be verified. However, and
this is regularly neglected, it is also necessary to verify the significance of any discrete
result with respect to a true property of the non dicretized system.

After a section 2 of statements and definitions, section 3 is devoted to finite-dimensional
systems. The simplest ones are linear and steady: evolution and measurement operators are
linear and repeated same at each time step. The steady linear systems are generally con-
trollable and detectable: the filter converges and so does the becm. In practice, owing to
the relatively small number of observations compared to a reasonable discretization, the
theoretical becm is probably very large and numerically out of reach. Divergence occurs
whenever a system is not controllable or not detectable. Convergence cannot be presumed.
Covariance inflation is commonly used in geosciences to stabilize the filter, especially for
time-varying or nonlinear systems. Surprisingly, this procedure is also well described in
mathematical studies about Kalman filter. Its stabilizing efficiency was first understood by
Xiong et al. (2009) and Dymirkovsky (2012). However, mathematical works disprove the
belief, advocated in geosciences, that the converged result is the becm of the system.

Infinite-dimensional systems are considered in section 4. The becm must be replaced by
a background error covariance operator (beco) of trace class, i.e. having a finite trace. The
mathematics involved is much more complex than in finite-dimension, and the results are
not so comprehensive. Owing to this limitation, the study of infinite-dimensional systems
is restricted here for the steady linear case. This allows to reach significant conclusions by
focussing at the Riccati equation fulfilled by the beco corresponding to the filter when time
goes to infinity. This equation has been much studied in optimal control, unfortunately not
corresponding to the specific features of geophysical assimilation of data. The trace class
requirement is always ignored. The existence of solutions is proven generally under the
condition that the evolution operator be power stable. It is shown here that this assumption
is not acceptable in geophysics. The literature suggests that divergence is common among
systems that are not power stable; counter-examples are obtained. There is no ground,
accordingly, for presuming filter convergence in terms of the true infinite-dimensional sys-
tem. This conclusion jeopardizes the physical meaning of any finite-dimensional becm that
could be computed based on discretization.

2. Preliminaries and statement of the problem

(a) Description of the system

A system is described using a state function s belonging to a Hilbert space S of func-
tions with sufficient regularity. The evolution and observation of the system at successive
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time steps t1, t2, ..., tk,... is described by the following noisy equations:

sk+1 = Eksk + ek (2.1a)

~µk = Hksk + ~rk (2.1b)

in which the label k refers to time tk, sk denotes the state at tk, Ek is the evolution operator
between tk and tk+1, ek the dynamical error in the evolution model, ~µk ∈ Rnk is the
observation vector consisting of a finite number nk of measurements,Hk is the observation
operator, ~rk the error in the observation model. In a 3Dvar approach, sk ∈ S describes the
instantaneous state of the system at tk and ~µk corresponds to observations at this time
exactly. In a 4Dvar approach, sk ∈ S describes the evolution of the system during the time
interval [tk−1, tk] and ~µk corresponds to observations during this interval.

(b) Filtering in finite dimension

If the operators Ek, Hk are linear and the state space is finite dimensional, S = RN ,
the equations 2.1 may be rewritten in matrix form as:

sk+1 = Eksk + Mkεk (2.2a)

~µk = Hksk + Nkεk (2.2b)

in which Ek (sizeN×N ), Hk (size nk×N ) are the dynamical and measurement matrices,
εk is a Gaussian noise with the identity of dimension N + nk as covariance matrix, Mk

(size N × (N + nk) ), Nk (size nk × (N + nk)) are related to the covariance matrices Qk

(size N ×N ), Rk (size nk × nk) as:

Mk =
[√

Qk | 0
]
, Nk =

[
0 |
√

Rk
]

(2.3)

The independent dynamical and measurement noises have covariance matrices described
as:

Qk = MkMᵀ
k, Rk = NkNᵀ

k, with MkNᵀ
k = 0 (2.4)

Let sbk denote the background state at tk, i.e. the state estimated before the observations ~µk
are taken into account. In terms of successive background states, filter equations are:

sbk+1 = Ek
[
sbk + PkHᵀ

k(HkPkHᵀ
k + Rk)−1∆~µk

]
(2.5a)

Pk+1 = Ek(P−1
k + Hᵀ

kR−1
k Hk)−1Eᵀ

k + Qk (2.5bi)

= Ek
(
Pk − PkHᵀ

k(HkPkHᵀ
k + Rk)−1HkPk

)
Eᵀ
k + Qk (2.5bii)

in which Pk is the becm describing the statistics of the departure of background from true
state sbk − sk.

When the operators Ek,Hk are nonlinear, it is still possible to linearize them around sbk
and put the system in the form 2.2. This strategy defines the extended Kalman filter.
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3. Convergence and stability of discrete Kalman filter: a short review
Owing to their importance in many technological fields, Kalman filter and discrete time
Riccati equation have drawn a considerable attention from mathematicians since the found-
ing work by Kalman (1960). A number of important results, regarding convergence and
stability, were already known by Jazwinski (1970), in particular the pivotal role of observ-
ability and controllability. Accurate definitions of these concepts are reminded in appendix
C in a basic form corresponding to steady linear systems. An updated comprehensive and
explanatory review of existing results may be found in the master’s thesis by T. Karvonen
(2014) about both linear and non-linear extended Kalman filter. This section reminds some
results relevant for accepting the divergence and numerical instability of the scheme 2.5 as
a theoretical insurmountable constraint in the context of complex geophysical systems.

Observability and controllability are properties of the sequences (Ek,Hk), (Ek,Mk)
respectively. The weaker notions of detectability and stabilizability (appendix C) are often
sufficient. In case of time varying systems, when Ek, Mk, Hk, Nk are not constant, these
properties must be uniform, as defined by Anderson & Moore (1979), to produce results in
terms of convergence or stability of the filter with respect to initial conditions.

If the positive matrices Qk are definite, controllability is obtained in one step as the
system is steered from sk to sk+1 by just inverting Qk. A non invertible Qk would imply
the existence of some degree of freedom free from dynamical model errors. Therefore, the
geophysical systems investigated here are most probably controllable and this controlla-
bility will be often uniform corresponding to roughly steady dynamical errors. There is a
problem, on the contrary with observability, because the number N of degrees of freedom
in the states is huge compared to the number of independent measurements at each time
step, i.e. the rank of Hk.

(a) Linear time-invariant systems and filter convergence

The ergodic assumption that background errors have the same statistics at each time
step is essential to link the becm P with the successive observations. It is optimally fulfilled
in steady systems. They are described as:

sk+1 = Esk + Mεk (3.1a)

~µk = Hsk + Nεk (3.1b)

in which the dynamical and measurement noises are independent with covariance matrices:

Q = MMᵀ, R = NNᵀ, with MNᵀ = 0 (3.2)

The system is associated with the steady Riccati equation of unknown matrix P (compare
equation 2.5bii):

P = E
(
P− PHᵀ(HPHᵀ + R)−1HP

)
Eᵀ + Q (3.3)

The following result was first proven by Kalman & Bucy (1961) for continuous time fil-
ter. The discrete time version may be found in (Anderson & Moore, 1979, section 4.4;
Lancaster & Rodman, 1995, theorem 17.5.3; Lewis et al., 2008, theorem 2.3).

Theorem 3.1. Suppose the steady system 3.1 is controllable. Then, it is detectable if and
only if the steady Riccati equation 3.3 has a unique positive solution P∞. In addition, this
solution is positive definite and is the limiting value lim

k→∞
Pk = P∞ of Kalman filter becm

for every choice of non-negative symmetric P0.
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By Hautus-Popov-Belevitch test (appendix A), controllability is a generic property of
the eigenvectors of Eᵀ, Mᵀ, detectability is a generic property of the eigenvectors of E, H.
Thus, with unlikely exceptions, theorem 3.1 guarantees that P∞ exists. It is interesting to
notice that, under the same conditions, the computation of P∞ by Kalman filter iterations is
numerically stable; other stable algorithms exist with similar or lesser computational cost
(Assimakis et al., 1997).

Uncontrollable systems exist however and among them, some are unstabilizable corre-
sponding to the strongest form of uncontrollability. In this case, Kučera (1972) shows that
equation 3.3 may not have a unique positive definite solution: either zero or at least two.
Take care that Kučera works from the point of view of optimal control dual to filtering
(appendix C, section b), unstabilizability and undetectability are inverted. Fletcher (2017),
in his tutorial book about data assimilation, devotes two chapters to optimal control and
clearly relates equation 3.3 to that field. It is surprising that he does not invite to verify
the stabilizability of a system and does not propose unstabilizability as a possible cause of
filter divergence.

(b) Linear time-varying systems and filter stability

Let’s consider linear time-varying systems of the form 2.2. In view of the linearity,
the matrices Ek, Mk, Hk, Nk are independent of the state. However, they may vary with
the time so that the filtering distribution with Pk is not expected to converge. It is still
reasonable to wish Kalman filter will forget the initial inputs. A sufficient condition is
given by the following result (Jazwinski, 1970, theorem 7.5; Kamen & Su, 1999, theorem
C.4):

Theorem 3.2. If the system 2.2 is uniformly stabilizable and uniformly detectable, the
corresponding Kalman filter is stable with respect to the initial conditions.

Stability with respect to the initial conditions does not mean convergence. It just means
that the influence of initial input state and becm is progressively forgotten so that after
many time steps, output state and output becm depend only on the observations.

(c) Nonlinear systems

With rare exceptions, the situations addressed in geosciences involve nonlinearities. If
the system 2.2 is obtained from a non-linear system 2.1, the matrices Ek, Mk, Hk, Nk are
updated based on the estimated state. This dependence on the states successively estimated
does not even allow the stability of Pk with respect to initial conditions, at least from a
strict mathematical point of view.

From a physical point of view, one may still wish that at each moment tk, the back-
ground state sbk departs little from the true state strk , so that Ek, Mk, Hk, Nk depart little
from their values at strk . The conditions of theorem 3.2 from section c would be approxi-
mately fulfilled. Hopefully, stability with respect to initial conditions would approximately
apply.

This hope may be addressed by two theorems of Reif et al. (1999, theorems 3.1 and
4.1) slightly improved by Rhudy et al. (2012). These are still the core of the mathemat-
ical knowledge about the stability of the extended Kalman filter. Theorem 3.1 of Reif et
al. states that the estimation error sbk − strk remains bounded provided very conservative
bounds apply to the non-linearities and to matrices Ek, Mk, Hk, Nk including Pk. The
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boundedness of Pk is subjected, according to their theorem 4.1, to non-linear observability
and controllability conditions. Theorem 4.1 was originally proven for nul dynamical noise
but this restriction can be removed provided the initial error sb0 − str0 be sufficiently small
(Karvonen, 2014).

The conservative bounds of these theorems can hardly be determined. Fortunately, nu-
merical experiments show they can be considerably relaxed in practice while maintain-
ing sbk − strk bounded (Dymirkovsky, 2012). These experiments also show the stabiliz-
ing efficiency of artificially increasing the covariance matrices Qk, Rk here in the form
of Mk =

[√
Qk | 0

]
,Nk =

[
0 |
√

Rk
]

(equation 2.3). The technique is similar to the
inflation used in geosciences. It was investigated early by the mathematicians and some
theoretical results are available.

(d) Covariance tuning and filter stabilization

The liberty taken by the mathematicians of replacing the true covariance matrices orig-
inates in two points as (i) Kalman filter is used sometimes as an observer for noise-free
deterministic systems (Reif et al., 1996) and (ii) the linearised extended Kalman filter, any-
way, is not an optimal filter, the analysed outputs sak, P′k are at most approximations of the
true conditional mean and posterior becm. The stabilizing effect of appropriately chosen
instrumental matrices Q+

k , R+
k was observed numerically and utilized before being under-

stood. Corresponding to this usage, the aforementioned stability theorems by Reif et al.
(section c) distinguish the true and modified covariance matrices.

The stabilizing effect of enlarged covariance matrices was first understood by Xiong
et al. (2009) and Dymirkovsky (2012). Both used a technique introduced by Boutayeb
and Aubry (1999) to represent the analysis error sak − strk as a continuous function of
filter inputs. An appropriate enlargement or inflation Q+

k = Qk + ∆Qk, immediately
transferred to Pk+1 (equation 2.5b), allows some matrix Ξk+1 = Pk+1 − βk, where βk is
some symmetric positive matrix, to remain positive thus increasing the domain of initial
conditions for which the estimation error remains bounded. The extra positive matrix ∆Qk

is conveniently taken as diagonal. These results are proven for the unscented Kalman filter.
The unscented Kalman filter is an ensemble based non-linear filter introduced by Julier

et al. (1995), widely used in navigation control. The filter relies on the unscented transform
of background error statistics that is a representation by a set of states called sigma points.
Non-linear observability and controllability conditions are naturally required.

Many researchers using Bayesian approach for geophysical problems understand the
stabilizing efficiency of covariance inflation as revealing a tendency of the undersampled
ensemble Kalman filter to underestimate the diagonal terms of the becm. Inflation would
offset this underestimation thus avoiding filter divergence. This view leads to argue about a
true value of the inflation parameters that might be estimated from the observations (Li et
al., 2009). Anderson (2007) followed by Miyoshi (2011) consider inflation as an additional
state parameter to be filtered with some probability distribution, and this point of view is
illustrated by numerical experiments in which the filter does compensate the intentional
underestimation of a true covariance matrix.

Such interpretation is not supported by the mathematical studies stated above. These
clearly distinguish the true covariance matrices Qk, Rk from their enlarged counterparts
Q+
k , R+

k . However, these studies do not distinguish the true and computed becm. This
notational negligence arises from the fact that, as the linearised filter is suboptimal, even
without inflation, the output Pk is not the true becm. In fact, the addition of ∆Qk stabilizes
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the filter at the price of a degraded accuracy (Xiong, 2006). Tuning inflation is a matter
of balance between stability and accuracy. The causes of covariance underestimation de-
scribed by the meteorologists are well documented. It is just said here that inflation may
not be seen as a correction for that.

(e) Numerical instability of Kalman filter

A reasonable discretization of the atmospheric or oceanic environment should involve
a number N of degrees of freedom very large compared to the number of measurements
nk available at any time step tk. The number of time steps required to possibly reach
observability is too large compared to computational requirements. In practice, the system
is unobservable.

To illustrate this, suppose the N ×N matrices Ek, Qk and Hᵀ
kR−1

k Hk involved in the
second equation 2.5 are diagonal. If in addition P0 is diagonal, so is Pk at all times. These
matrices may be described in terms of their diagonal coefficients, respectively a(k)i, q(k)i, g(k)i, p(k)i,
i = 1, 2, ..., N . Equation 2.5 for Pk+1 becomes:

p(k+1)i = a2
(k)ip(k)i + q(k)i if g(k)i = 0

p(k+1)i = a2
(k)i

p(k)i

1 + p(k)ig(k)i
+ q(k)i if g(k)i 6= 0

(3.4)

For each k ≥ 0 there are at least N − nk coefficients g(k)i = 0 corresponding to the rank
nk of Hᵀ

kR−1
k Hk. Since N is large compared to n = max∞k=0 nk, for most labels i, non-

zero coefficients g(k)i are rare, the first one g(p)i > 0 occurring for a time ν typically of
magnitude N/n. The first equation 3.4 then brings:

p(ν+1)i = p(0)i

ν∏
l=0

a2
(l)i +

ν∑
k=0

q(k)i

ν∏
l=k+1

a2
(l)i if q(k)i = 0, 0 ≤ k ≤ ν (3.5)

Since the matrices Ek are not in general contractive, among the many labels i subject to
equation 3.5, it is reasonable to find some such that a(k)i > 1 for 0 ≤ k ≤ ν. The related
coefficients p(k)i of the background error covariance matrix will have an increase more
than exponential until time p ≈ N/n.

Of course, the matrices involved in the real problems are not simultaneously diagonal-
izable. The example nevertheless confirms that one should not be surprised of numerical
instabilities when computing the becm from a filter with insufficient ratio N/n. This may
be expected regardless of filter simplifications.

4. Divergence of the infinite-dimensional Kalman filter
The mathematical review in previous section 3 is related to finite-dimensional discretized
systems. It highlights the importance, for filter convergence, of observability and controlla-
bility conditions. They are fulfilled in general, but not always, for the steady linear systems
and convergence is confirmed by theorem 3.1. When the conditions are not fulfilled, diver-
gence occurs. It is accordingly not possible to presume convergence as many geoscientits
tacitly do when considering divergence as a numerical artifact (see Part 1 for details). In
the time-varying or nonlinear cases, the stability is confirmed theoretically too, but sub-
jected to so strong restrictions that instability is expected in practice. Covariance inflation
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8 J.-P. Issartel, X. Busch, M. Sharan

is validated as a filter stabilizing procedure, but its ability for identifying the true becm is
clearly denied by detailed studies.

These results do not mean, after all, that the becm cannot be determined from earlier in-
formation using Kalman filter in the form of 3Dvar or 4Dvar: they just point out difficulties.
Paragraph 3e suggests the enormous gap between the discretized dimension and relatively
small number of measurements might lead to large background errors, numerically out of
reach. The question arises of what happens when the whole complexity of the system is
taken into account without discretization. This is the task of the present section, focussed
at the steady linear case. It is adressed by reviewing the literature, essentially from optimal
control, about the infinite dimensional Riccati equation. To begin with, it is necessary to
see how the filter adapts for the infinite dimension.

(a) Notations

The Hilbert space S of system states is now supposed infinite-dimensional. This section
examines how the previous developments should be modified. Let’s denote

• (. , .)S and ‖ . ‖S the scalar product and related norm in Hilbert space S;

• S∗ the dual space consisting of the continuous linear forms from S into R;

• s∗ ∈ S∗ the state adjoint to a state s such that s∗(σ) = (s, σ)S for all σ ∈ S;

• X ∗ the adjoint to an operator X ;

• L (S) the space of bounded (i.e. continuous) linear operators on S.

The linear operators between Hilbert spaces that are continuous are exactly those bounded
on the unit sphere and thus, they are rather called the bounded operators.

(b) Operator Riccati equation

When the infinite dimension of a complex system is taken into account, the matrix
description 2.2 is replaced by an operator description. The operators considered hereafter,
are linear and, unless otherwise specified, they are also bounded:

sk+1 = Eksk +Mkεk (4.1a)

~µk = Hksk +Nkεk (4.1b)

In this system, randomness is accounted for by εk now drawn from an infinite-dimensional
Hilbert space. This variable may be taken as Gaussian but its covariance operator V must
be trace class (appendix B) excluding identity utilized in finite-dimension. The expres-
sions for the covariance operatorQk of dynamical noise and the covariance operator Rk of
measurement noise, this one still possible to describe as a nk×nk matrix, are modified as:

Qk = BkVB∗k, Rk = DkVD∗k, with BkVD∗k = 0 (4.2)

Kalman filter 2.5 should be rewritten in operator form with successive becm replaced by
background error covariance operators (beco) Pk that must be trace class (appendix B). If
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the system 4.1 is steady, a converged beco P should be a self-adjoint, non-negative, trace
class solution of the equation:

P = E
(
P − PH∗(HPH∗ + R)−1HP

)
E∗ +Q (4.3)

The point is now to determine whether such solution exists. The following paragraphs
show this cannot be presumed. As far as geophysical systems are concerned, the equation
4.3 does not fulfill the conditions usually retained and examples are easily obtained where
no solution exists.

(c) Example of systems leading to filter divergence

Two examples are given hereafter of systems for which equation 4.3 does not admit
any solution P . These are infinite dimensional steady linear systems corresponding to
classical geophysical assimilation problems. The evolution operators are either bounded
or unbounded.

(i) Bounded evolution operator: source of a trace species

The authors have utilized data assimilation most often to retrieve the source s(x, t) of
an atmospheric tracer based on concentration measurements. Such source is commonly
determined by complex processes and human behaviours. No clear logics can be identified
and the evolution of the source may be modelled as purely random. This corresponds to a
null evolution model in continuous time: ∂s∂t = 0s + ε, to an identical evolution model in
discrete time: sk+1 = Isk + εk. This evolution operator I is bounded, i.e. continuous. It
has 1 as an eigenvalue of infinite multiplicity. The following result indicates that, for this
system, Kalman filter may not converge.

Theorem 4.1. If (i) the measurement operatorH has finite rank n, (ii) the evolution oper-
ator E has an eigenvalue λ, |λ| ≥ 1, of multiplicity dim ker(P −λI) > n and (iii)Q > 0,
there does not exist any symmetric positive operator P solution of equation 4.3.

Proof : Suppose P is a positive solution of equation 4.3. It is easily seen that the operator
Q−|λ|2PC∗(CPC∗+ R)−1CP must be non-positive through ker(P−λI). But this is im-
possible. The rank of |λ|2PC∗(CPC∗+R)−1CP , less than n, does not allow to compensate
for the positiveness of Q over all of ker(P − λI) having too large a dimension.

�

(ii) Unbounded evolution operator: shallow water equations

This section provides a relatively simple example of an evolution operator making the
Riccati equation 4.3 impossible to solve. It corresponds to the very common problem of
shallow water equations. The evolution operator is unbounded, which is a situation poorly
studied in optimal control.

Let’s consider the propagation in the x-direction of an incompressible flow perturbation
in a basin with constant depthH . The perturbation is characterized by a horizontal velocity
u(x, t) and vertical displacement h(x, t). This is modelled using one-dimensional shallow
water equations: [

u

h

]
= Γ

[
u

h

]
with Γ =

[
−γ −g ∂

∂x

−H ∂
∂x 0

]
(4.4)
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10 J.-P. Issartel, X. Busch, M. Sharan

g = 9.81m.s−1 is acceleration due to gravity, γ is a constant viscosity. The evolution
between two assimilation steps at an interval τ is described as:[

uk+1

hk+1

]
= E

[
uk
hk

]
with E = eτΓ (4.5)

where the evolution operator is the time propagator associated with Γ, formally denoted
as eτΓ. The measurement operator C might consist in observing at some detector locations
one or both state variables, u or h. This is consistent with the claim of Bannister (2008):
Background errors at different locations can be correlated and appear in the B-matrix
[the becm] as off-diagonal elements. These cause information to be transferred between
these locations during assimilation. He also writes later in the text: The B-matrix spreads
information to other variables and imposes balance.

For any λ ∈ C, the differential equation Γ

[
u

h

]
= λ

[
u

h

]
or E

[
u

h

]
= eλ

[
u

h

]
is ordinary with respect to x, linear, with constant coefficients. Thus, non-trivial solutions
exist. In other words, the eigenvalues of E correspond to the whole complex field but zero.
The following result indicates that, for this system, Kalman filter may not converge.

Theorem 4.2. If (i) the measurement operatorH has finite rank, (ii) the eigenvalues of the
evolution operator E are unbounded and (iii) Q > 0, there does not exist any symmetric
positive operator P solution of equation 4.3.

Proof : A positive solution of equation 4.3 is necessarily definite because Q > 0 and
P > Q. The positive operator PH∗(HPH∗ + R)−1HP ≥ 0 is less than P and its rank is
finite, bounded by that ofH, Thus, a constant α, 0 < α < 1, may be found such that:

P ≥ (1− α)EPE∗ +Q (4.6)

Now suppose ζ ∈ S is eigenvector of E with eigenvalue λ, Eζ = λζ, ‖ ζ ‖S= 1. From
equation 4.6 one deduces:

ζ∗Pζ ≥ |λ|2(1− α)ζ∗Pζ + ζ∗Qζ (4.7)

Since ζ∗Qζ > 0, this implies |λ|2 < 1
1−α in contradiction with the assumption that the

eigenvalues of E are unbounded.

�

(d) Literature about the operator Riccati equation

The resolution of Riccati equation is an active topic of control theory. The focus is on
control rather than filtering, and equation 4.3, instead of being regarded as a filter Riccati
equation, is regarded as the control Riccati equation of the adjoint system (appendix C,
sections b, c). This does not change the relevance of the results but obliges to some trans-
lation: the dual properties of observability and controllability should be interchanged and
as well their degraded versions of detectability and stabilizability.

Unfortunately, the interest of existing works for the present purpose is limited. On the
one hand, most studies are related to finite-dimensional systems such as the discretized
systems discussed in section 3. On the other hand, most often continuous time systems are
addressed of the form ds

dt = Es(t) + Mε(t), ~µ(t) = Hs(t) + Nε(t). A different continuous
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time Riccati equation applies with different observability and controllability conditions.

The literature about the discrete time Riccati equation 4.3 for infinite-dimensional oper-
ators is accordingly limited, produced essentially between 1970 and 2000. Even then, its
exploitation is difficult for geophysical assimilation.

First, the evolution operator E in control studies are always bounded. However, un-
boundedness is common in geophysical problems: see previous section 4ii.

Second, the trace class requirement for prescribed Q and sought P has not drawn the
attention of control theoreticians. RegardingQ, a common assumption is that it is coercive:
αQ is greater than identity for some constant α > 0. Such Q cannot be trace class. Co-
ercivity is sometimes assumed by just requiring that Q be boundedly invertible. The very
interesting theorem 4.2 of Zabczyk (1974) about the uniqueness of a possible solution P
to equation 4.3 and geometric convergence of the successive Pk is deduced assumingQ is
positive definite, denotedQ > 0. However, a careful reading shows that, for this and many
authors, positive-definiteness means coercivity and thus, the theorem does not apply in the
Bayesian context. Regarding P , trace estimations have been investigated only in finite di-
mension (e.g. Komaroff & Shahian, 1992; Hua Dai, 2011); these results are not directly
applicable to decide whether a solution of equation 4.3 is trace class.

Third, there are many infinite-dimensional generalizations of the dual concepts of con-
trollability/stabilizability, observability/detectability (appendix A, section b). Most studies
if not all are rely on power stability/stabilizability. Such stability is excessive for geophys-
ical problems (see remark at the end of appendix A). The theorem 8.3 of Ostveen & Zwart
(1996) states the existence and uniqueness of a physically relevant solution (stabilizing so-
lution) to equation 4.3 when C has finite rank (the number of measurements) and under a
spectral condition generically fulfilled. Unfortunately, it is based on power stability.

The lemma 3.6 of Opmeer & Curtain (2007) indicates that a filter Riccati equation has
a nonnegative selfadjoint solution, not necessarily unique, if and only if the adjoint system
fulfills a finite cost condition. However, this result is obtained for an equation slightly
different from 4.3 (see remark at the end of appendix C, section a). The difference amounts
to modifying the cost function in the adjoint system so that it becomes coercive. As a
consequence, the lemma does not apply in the present context neither.

To conlude this disappointing review, as of now, there is no theoretical support for
presuming the existence and uniqueness of a selfadjoint, nonnegative, trace class solution
to equation 4.3. The point has just remained out of scope.

(e) Literature relating Kalman filter and Riccati equation

In the past decades some works have been devoted to the infinite-dimensional Kalman
filter from the point of view of Riccati equation. These works might suggest that the sta-
bility of the filter is well established.

Infinite-dimensional Kalman filter has been studied very early. In his founding work,
Falb (1967) generalizes the filter for infinite-dimensional spaces. His work deals with con-
tinuous time filtering, but this is not what restricts the support discrete time assimilation
can obtain from it. Falb shows with his theorem 7.10 that the Riccati equation associated
with the filter has indeed a solution. However, this solution is a function of the time. In
terms of discrete-time data assimilation, this amounts to saying that an operator Pk is well
defined at each time step following the operator version of equation 2.5b. It is not even
suggested that Pk might converge to a limit, or that the sequence is bounded.
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In a recent publication, Aalto (2018) shows that the infinite dimensional Kalman filter
is well approximated by a discretized filter. The state estimate and covariance matrix of
estimation errors obtained based on discretization converge, when discretization is refined,
to the values that would be obtained from the infinite dimensional filter. However, Aalto
requires in his theorem 4.1 that the system be power stable which was seen (section 4d) to
be an unacceptable assumption for most geophysical systems.

5. Conclusions
The elicitation of the Bayesian priors in the form of a becm is essential in current data
assimilation. Meteorologists and oceanologists usually argue the becm is derived from
successive observations by filter iterations. This argument is purely theoretical to support
the consistency of the framework. In practice, the numerical models utilized in geosciences
contain so many discrete elements that filter equations cannot be handled. The becm is ei-
ther chosen from empirical assumptions or the equations are strongly simplified eventually
leading to catastrophic filter divergence.

The companion to this article (part 1) started to question the common claim that catas-
trophic filter divergence occurs due to simplifications. This claim amounts to tacitly pre-
sume that the non-simplified filter should converge and to reaffirm the consistency of the
theoretical framework. The definition of a becm and the link with earlier information were
seen poorly practicable. They unrealistically require no variation in the number and ar-
rangement of the detectors or weather conditions without even guaranteeing any regularity
of the estimate. The classical assumption of evenly distributed background errors is not
appropriate. The present article (part 2) discusses the question: is it justified to presume
that the non-simplified filter should converge?

An extensive literature is available about Kalman filter and nonlinear extended Kalman
filter for the finite-dimensional systems. The steady linear systems of finite dimension are
generally observable and controllable implying filter convergence, but the result may be nu-
merically out of reach. Unobservable or uncontrollable systems exist: they lead to theoret-
ical divergence. Even in the simplest situations, convergence may not be simply presumed.
In the time-varying or nonlinear cases, convergence is subjected to so strong restrictions
that instability is expected. Covariance inflation is validated by mathematical studies as a
filter stabilizing procedure, but its ability for identifying the true becm is clearly denied.

The infinite-dimensional case was investigated based on the Riccati equation fulfilled
by the background error covariance operator of a steady linear system. This equation has
been studied exclusively in the field of optimal control that is equivalent by duality to filter-
ing. However, the conditions considered in optimal control never meet exactly the detailed
requirements of geophysical assimilation. The trace class requirement is ignored. The ex-
istence of solutions to the Ricati equation is established essentially for power stabilizable
systems. The evolution operators considered in geosciences are not power stabilizable; this
would mean that all initial states are finally dissipatively focussed to finite dimension. So,
the geophysical systems correspond to the limit case where convergence is not guaranteed.
Diverging counter-examples are given. There is no ground, accordingly, for presuming fil-
ter convergence. If a becm has been obtained based on some discretization, there is also no
ground for regarding it as an approximation of a true property.

At this stage, it is unavoidable to question the very definition of the becm. Let’s first
stress the fact that the question is not so big as it looks like. In practice, a correct implemen-
tation of the Bayesian framework is not possible and the methods used in reality are always
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described in terms of simplifications or approximations. It is not possible to determine how
far these simplifications/approximations depart from the theory. After all, meteorological
and oceanic centres have been producing reliable forecasts for the past decades without
ever computing any converged becm.

A given observation may have many causes. The idea seems therefore reasonable that,
based on observations, one might describe the quality of a forecast as a stochastic er-
ror/correction distribution. Such distribution may not be obtained from Bayesian statistics.
Accordingly, there is a need for another theoretical framework. Let’s consider two pos-
sibilities for determining the probabilities of head and tails when throwing a coin. Using
earlier information would mean throwing the coin hundreds of times before predicting that
in next throw, head and tail have the approximately same probability of 50%. In practice,
we reach the same result much faster by just considering the symmetry of the coin. The
first strategy may be compared to the tentative derivation of a becm using Kalman filter.
The relevance of the symmetry-based strategy for geophysical systems is not obvious. It
will be explained in a forthcoming article.
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A. Observability, controllability

This appendix is a reminder of the definitions of observability and controllability for the
steady linear systems. A nice presentation is also proposed by Fletcher (2017) in the con-
text of meteorological assimilation. Owing to significant differences, the finite and infinite-
dimensional cases are treated separately hereafter. The definitions are deep-rooted in opti-
mal control theory. The reader will find in the specialized literature the many adaptations
for non-steady or nonlinear systems (e.g. Engwerda, 1988). Filtering and control theories
are working with the same systems but the points of view are different. The definitions and
theorems below apply to the systems regardless of filter or control point of view. However,
the definition of controllability is more easily understood from the control point of view.
The duality between both theories is further reminded in appendix C.
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(a) Finite-dimensional systems

In finite dimension, the definitions of observability and controllability are classical and
relatively simple. In many applications, they can be slightly relaxed as detectability and
stabilizability. These properties can all be characterized with the Hautus-Popov-Belevitch
test (HPB test; Hautus, 1969). The following system A.1 in matrix form is analogous to
3.1, but the notations are changed. This is to meet the way of thinking of control theory in
which the variable uk is seen as a command instead of εk seen as a noise:

xk+1 = Axk + Buk (A.1a)

~yk = Cxk + Duk (A.1b)

Definition A.1. (observability): The steady system A.1 is said to be observable if its initial
state x0 can be deduced from knowledge of finitely many successive variables uk and
observations ~yk.

The noise uk is mentionned in this definition to mean that it can be eliminated in the
retrieval of the initial state. In other words, observability is a property of the homogeneous
(noise free) part of the system depending only on matrices (A,C). It is characterized by
the following classical theorem:

Theorem A.2. : The following are equivalent:

• the pair (A,C) is observable;

• the observability matrix


C

CA
...

CAn−1

 has full-column rank N ;

• there exists no state x 6= 0 such that Ax = λx and Cx = 0 (HPB test).

Definition A.3. (controllability): The steady system A.1 is said to be controllable if it can
be steered from any initial state x0 to any final state xf in finite time by an appropriate
choice of successive variables uk.

Controllability is a property of matrices (A,B) only. It is characterized by the following
classical theorem:

Theorem A.4. : The following are equivalent:

• the pair (A,B) is controllable;

• the controllability matrix
[
B,AB, ...,An−1B

]
has full-row rank N ;

• there exists no state x 6= 0 such that xᵀA = λxᵀ and xᵀB = 0 (HPB test).

The eigenvalues of A, same from left or right, are called the poles of the system and
these may be (i) observable or unobservable, (ii) controllable or uncontrollable.

A pole λ is called unobservable if some x 6= 0 satisfies Ax = λx and Cx = 0. If the
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state of the system is decomposed in terms of eigenvectors of A, and more generally in
terms of the right characteristic spaces of A, the state components associated with the un-
observable poles remain unknown. The unobservable poles such that |λ| < 1 are said to
be stable because as the discrete time k passes, the norm of the corresponding unobserved
component of the state is reduced in proportion to |λ|k (or kp|λ|k with exponent p de-
pending on the multiplicity of λ as an unobservable pole. Thus, if the input variable uk
remains bounded, so does the stable unobserved state component. This remark has led to
the following definition inferior to observability but of similar practical interest:

Definition A.5. (detectability): The steady system A.1 is said to be detectable if all its
unobservable poles are stable.

Theorem A.6. (HPB test for detectability): The pair (A,C) is detectable if and only if
there exists no state x 6= 0 such that Ax = λx with |λ| ≥ 1 and Cx = 0.

Similarly, a pole λ is called uncontrollable if some x 6= 0 satisfies xᵀA = λxᵀ and
xᵀB = 0; again the pole is stable if |λ| < 1. The components of the system state cor-
responding to the right characteristic spaces for some uncontrollable pole cannot be con-
trolled. However, if the poles are stable, these components decrease with time. This leads
to the following definition, slightly inferior to controllability:

Definition A.7. (stabilizability): The steady system A.1 is said to be stabilizable if all its
uncontrollable poles are stable.

Theorem A.8. (HPB test for stabilizability): The pair (A,B) is stabilizable if and only if
there exists no state x 6= 0 such that xᵀA = λxᵀ with |λ| ≥ 1 and xᵀB = 0.

(b) Infinite-dimensional systems

Let’s now address the case of systems defined with states in a Hilbert space S of infinite
dimension. The spectral theory of infinite-dimensional operators is relatively complex and
the simple Hautus test becomes inoperative. There are many generalizations of the dual
concepts of observability/detectability, controllability/stabilizability. A specific vocabulary
is often used in the infinite-dimensional setting:

• observability/detectability become output stability/stabilizability,

• controllability/stabilizability become stability/stabilizability often clarified as input
stability/stabilizability.

The system 3.1 in operator form is reproduced hereafter. The linear operators A, B, C, D,
defined between various Hilbert spaces, should all be bounded i.e. continuous.

xk+1 = Axk + Buk (A.2a)

~yk = Cxk +Duk (A.2b)

Most studies are based on the following very restrictive generalization, inappropriate for
most geophysical systems (cf. remark at the end of the appendix). The operatorA is power
stabilizable if its spectral radius verifies r(A) < 1. The system A.2 is power output stabi-
lizable (detectable) if a bounded operator F exists so that r(A + BF) < 1, power input
stabilizable if a bounded operator L exists so that r(A+ LC) < 1.

Article to be submitted



Theoretical Issues of Bayesian Assimilation in Meteorology 17

The following definitions are more general but difficult to handle in practice. They can
be found in (Malinen, 2000, stability) and (Opmeer & Curtain, 2007, stability and sta-
bilizability) with in the latter work a little complication due to the formulation of their
cost function (see appendix C section a). The pair (A, C) is output stable (observable) if∑+∞
k=0 ‖ CAkx‖2< +∞ for all x ∈ S. The system A.2 is output stabilizable (detectable)

if a bounded operator F exists so that the pair (A+ BF , C +DF) be output stable.
The pair (A,B) is input stable if (A∗,B∗) is output stable. The system A.2 is input

stabilizable (controllable) if a bounded operator L exists so that (A + LC,B + LD) be
input stable.

Remark: The concept of power input stabilizability is inappropriate for most geophysical
systems. To see this, a few spectral theory is required. Remind that the spectrum σ(A) of
A contains a subset σess(A) called the essential spectrum consisting of the accumulation
points and eigenvalues of infinite multiplicity. The essential spectrum is stable by compact
perturbation (Kato, 1980, theorem 5.35).

Suppose (A, C) is power stabilizable, i.e. r(A+LC) = 1− ε for some bounded L and
ε > 0. Accordingly, σ(A+LC) is bounded by 1− ε and so is its subset σess(A+LC). In
data assimilation, the number of measurements described by C is finite. Thus, the bounded
operator LC having finite rank is compact so that σess(A) = σess(A + LC). Since A
is bounded, so is its spectrum. Thus, σ(A) contains at most a finite number of points λi,
i = 1, 2, ..., , p, such that |λi| ≥ 1− ε

2 since otherwise these would accumulate out of the es-
sential spectrum. These isolated points of the spectrum are necessarily eigenvalues of finite
multiplicity. By Riesz spectral decomposition (Gohberg et al., 1990), the operator may be
written asA = A′+A′′. In this,A′,A′′ are bounded operators, σ(A′) = {λ1, λ2, ..., λp},
σ(A′′) = σ(A) − σ(A′) and A′A′′ = A′′A′ = 0. In particular, Ak = A′k +A′′k. Since
r(A′′) ≤ 1 − ε

2 , for any initial state, A′′kx0 vanishes for sufficiently large k so that the
state becomes modelled as A′kx0 in the finite dimensional vector space corresponding to
the eigenvalues λi. Except in a few dissipative situations, this is not acceptable for describ-
ing the geophysical processes. The situation is even worse if λi > 1 for some i.

B. Infinite-dimensional background statistics
Geophysical data assimilation is currently based exclusively on finite-dimensional discre-
tised models considered an approximation of the infinite-dimensional geophysical reality.
This appendix is aimed at explaining how the concept of a becm, tightly related to the fi-
nite dimension, should be evolved in infinite dimension. It is based on the work of Huang
& Yan (2000) describing both operator and probability theory in infinite dimension. In fi-
nite dimension, a Gaussian probability is defined with a probability density derived from
a covariance matrix. The definition of a Gaussian probability measure γ on S raises two
difficulties when this space is infinite-dimensional.

First, in infinite dimension, there is no notion volume and thus, γ may not be defined
in terms of a density.

Second, there is also no notion of matrix. The becm must replaced by a background
error covariance operator (beco). Logically, the background state and this beco should be
defined as averages from integrals: sb =

∫
S sγ(ds), P =

∫
S(s− sb)(s− sb)∗γ(ds). How-

ever, the integrands s ∈ S and (s−sb)(s−sb)∗ ∈ L (S) take values in infinite-dimensional
spaces so that they cannot be integrated in classical Lebesgue sense.
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The difficulties are resolved with the following definition of a Gaussian probability mea-
sure. The suitability of this definition for both finite and infinite dimensions is supported
by theorem B.2.

Definition B.1. A probability measure on S is called Gaussian if for any s ∈ S, the
random variable (s, ·)S has a Gaussian distribution.

The following result is found as definition 4.8 and theorem 4.11 in (Huang & Yan,
2000):

Theorem B.2. The mean sb ∈ S and covariance operator P ∈ L (S) of a Gaussian
probability measure exist as averages in terms of weak integrals, i.e. for all σ1, σ2 in S:

(sb, σ1)S =

∫
S

(s, σ1)Sγ(ds) and (Pσ1, σ2)S =

∫
S

(s− sb, σ1)S(s− sb, σ2)Sγ(ds)

In addition, P is trace class, i.e. there exists a number trP , called the trace of P , that can
be computed in some, then in any, Hilbert base ei, i = 0, 1, 2, ... of S as:

trP =

+∞∑
i=0

(Pei, ei)S , 0 ≤ trP < +∞

Weak integrals, also known as Pettis integrals, are defined based on Lebesgue integrals.
In particular, the integrals in theorem B.2 are classical Lebesgue integrals with a real-
valued integrand (s, σ1)S or (s− sb, σ1)S(s− sb, σ2)S regardless of the fact that γ(ds) is
an infinite-dimensional measure. The covariance operator is obviously symmetric (i.e. self-
adjoint) and non-negative. Notice that, if S is infinite-dimensional, an operator proportional
to identity is not trace class. This is a further reason to discard the ad-hoc assumption of
evenly distributed background errors.

C. Optimal control
For the sake of completeness, the relevant concepts of optimal control and Riccati equation
(Lancaster & Rodman, chapter 16, 1995) theory are reminded in this section.

(a) Riccati equation for optimal control

In the framework of control theory, a time invariant linear dynamical system with state
x in a Hilbert space S is traditionally written as:

xk+1 = Axk + Buk (C.1a)

~yk = Cxk +Duk (C.1b)

in which A, B, C, D are bounded linear operators between Hilbert spaces. The purpose of
optimal control is how to choose the control sequence u = {uk}+∞k=0 to steer the system
from an initial state x0 to a prescribed state x. Owing to linearity, this is equivalent to
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steering x0−x to 0 so that there is no loss of generality in targetting the state 0. A steering
strategy consists of finding an optimal control minimizing a quadratic cost function:

uopt = arg min
u

J(x0,u) with J(x0,u) =

+∞∑
k=0

‖~yk‖2 (C.2)

in which ~yk is according to the system and simply ‖ ~yk ‖2= ~yᵀk~yk. Using equation C.1b,
the cost function C.2 may be rewritten in terms of a scalar product norm ‖ . , . ‖G of joint
state-control variables with a bounded operator G:

J(x0,u) =

+∞∑
k=0

‖xk, uk‖2G , G =

[
C∗C C∗D
D∗C D∗D

]
(C.3)

In view of equation C.3, the problem of optimal control is sometimes formulated without
equation C.1b. The observations and related noise are indirectly defined by the choice of
the cost function.

The following result is given by Lancaster & Rodman, (theorem 16.6.4; 1995) for the finite-
dimensional systems. These authors call the rank condition on G nondegeneracy which, for
a scalar product matrix, is not the standard meaning that it be invertible.

Theorem C.1. If the system C.1 is finite-dimensional, stabilizable and observable and
rank G = rank A+rank D, then the problem C.2 has a unique solution for any x0 ∈ S, and
this solution is obtained as: uopt

k = F(A+BF)kx0 withF = − (BᵀXB +DᵀD)
−1

(BᵀXA+
DᵀC) in which X ∈ L (S) is symmetric, positive definite and is the maximal hermitian
solution of the Riccati equation:

X = AᵀXA− (AᵀXB + CᵀD) (BᵀXB +DᵀD)
−1

(BᵀXA+DᵀC) + CᵀC (C.4)

This theorem has infinite-dimensional counterparts with, unfortunately, a lot more tech-
nicalities (e.g. Malinen, 2000).

Remark: Many theoretical works (e.g. Opmeer & Curtain, 2007) study the following oper-
ator Riccati equation slightly different from equation C.4:

X = A∗XA− (A∗XB + C∗D)(B∗XB + I +D∗D)−1(B∗XA+D∗C) + C∗C (C.5)

An additional identity operator I appears in the term (B∗XB + I + D∗D)−1. Equation
C.5 arises from the following optimal problem:

uopt = arg min
u

J ′(x0,u) with J ′(x0,u) =

+∞∑
k=0

‖uk‖2 + ‖~yk‖2 (C.6)

with the cost function J (equation C.2) replaced by J ′. This replacement is equivalent to a
modification of the output of the dynamical system C.1; operator G is modified as G′:

xk+1 = Axk + Buk

~yk =

[
0

C

]
sk +

[
I
D

]
uk,

G′ =

[
C∗C C∗D
D∗C I +D∗D

]
(C.7)
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(b) Adjoint dynamical system

The following dynamical system, defined with state space S ′ dual to S, is called adjoint
to system 3.1:

xk+1 = Eᵀxk + Hᵀuk (C.8a)

~yk = Mᵀxk + Nᵀuk (C.8b)

According to theorem C.1, the equation for the operator P ∈ L (S ′) achieving optimal
control in this system is:

P = EPEᵀ − (EPHᵀ + MNᵀ) (HPHᵀ + NNᵀ)
−1

(HPEᵀ + NMᵀ) + MMᵀ (C.9)

Equation C.9 is seen to coincide with equation 3.3 when NMᵀ = 0. The latter constraint
is same as in equation 2.4 describing independent dynamical and measurement noises in
system 3.1. In other words, the becm associated with system 3.1 from the point of view of
filtering, is same as the matrix characterizing optimal control in the adjoint system.

Notice that the adjoint system C.8 is observable/detectable or controllable/stabilizable
exactly when the original system C.1 is controllable/stabilizable or observable/detectable,
respectively. When dealing with infinite-dimensional systems, various definitions are uti-
lized to generalize these notions, always respecting the same duality.

Remark: The link between a system and its adjoint is not submitted to the constraint
NMᵀ = 0. The case NMᵀ 6= 0 may account for correlated dynamical and measurement
noises as studied by Jazwinski (1970, chapter 7, example 7.6). In fact, Jazwinski studies a
time varying system with NkMᵀ

k 6= 0. We hasten to point out that this description of cor-
relations between the dynamical noise Mkεk at tk and the measurement noise Nkεk at tk
is not the most realistic in geophysical practice. Indeed, the dynamical model Ek describes
phenomena after tk whereas the measurement model Hk describes phenomena before tk.
Noise correlations are accordingly sequential in nature, between Mkεk and Nlεl for k > l.

(c) Adjoint dynamical system: infinite dimension

When dealing with such infinite dimensional filtering system as 4.1, the derivation of
an adjoint system is subject to an additional difficulty. It is indeed necessary to introduce a
trace class covariance operator V for describing the statistics of the noise εk. This operator
interferes with the formulation of the filter Riccati equation 4.3 through definitions 4.2.
Such interference is not addressed in the framework of usual optimal control. One shall
simply observe that this equation may as well be seen as the control Riccati equation for
the system:

xk+1 = E∗xk +H∗uk (C.10a)

~yk =
√
VM∗xk +

√
VN ∗uk (C.10b)

Notice that the square root of a bounded positive self-adjoint operator is well defined
(Huang & Yan, 2000, theorem 1.27).
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