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For improving or updating the knowledge of atmospheric or oceanic state, observa-
tional data are assimilated into numerical evolution models. This is performed, most of the
time, following a Bayesian framework to compromise, like Kalman filter, between obser-
vation errors and model errors. This article is a preliminary discussion about the structure
of the theory, in particular the pivotal definition of a background error covariance matrix.
The well known difficulties associated with the practical implementation and the so called
catastrophic filter divergence are addressed in a companion paper.

Geophysical Bayesian assimilation may be seen as a Tikhonov regularization, the back-
ground error covariance matrix corresponding to the regularizing term. Tikhonov regular-
ization was originally developped to stabilize overdetermined inverse problems against
measurement errors. However, Geophysical assimilation is always strongly underdeter-
mined. This changes totally the role of the regularizing term: instead of stabilizing the
estimation, it determines its main features. The derivation of the matrix becomes, accord-
ingly, essential. It is shown here that the traditional definition of the background error
covariance matrix and its presumed dependence on earlier information raises practical dif-
ficulties. These difficulties are not compatible with the simplifications generally assumed.
They are also not compatible with a practical implementation of Bayesian assimilation.

Keywords: Assimilation of data, meteorology, Bayesian statistics

1. Introduction
Data assimilation is one of the key tools of modern meteorology and oceanography, here-
after termed jointly as geosciences. Data assimilation designates any technique used to
combine the observations with a model in view of improving or updating knowledge of the
real state of the system. Here, the word "state" designates the field, through given region
and time interval, of one or several parameters such as wind speed, temperature, mois-
ture. In past decades, Bayesian theory has been well established, in the form of 3D-VAR,
4D-VAR and other Kalman Filter (KF) variations.

Operational meteorology and oceanography have seen an extraordinary development
with the relatively recent ability to exploit daily an enormous amount of data from sophis-
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ticated sensors to infer the state of the earth and accurately predict weather for several days
and often weeks. A non-specialist would certainly imagine data assimilation has reached
maturity. He might suppose that further achievements could now only be sought marginally
by increasing the computational power and refining the numerical methods.

That it is not so is seen from many works (e.g. Bannister (2008 a & b), Li et al. (2009 a
& b), Singh et al. (2011), Pinnington et al. (2016), Waller et al. (2016), Howes et al. (2017))
about the background error covariance matrix (becm), pivotal in the Bayesian framework.
The becm is still a commonly discussed issue for its (i) subjective elicitation, (ii) huge size
requiring simplifications or (iii) generation from a huge system of equations supposedly
relating the matrix to earlier information. So far, all schemes proposed eventually diverge,
which is interpreted as a numerical artifact due to inappropriate simplifications. The debate
is accordingly focussed on simplifications and stabilizing procedures. It is proposed to
highlight these issues and identify the origin of the difficulties in this and a companion
article, hereafter referred to as part 1 and part 2 respectively.

This article examines the theoretical framework and the definition of a becm. Sections 2
to 5 prepare the discussion held more conclusively in section 6. Section 2 introduces nota-
tions with a short reminder about least squares, a basic but insufficient technique. Section 3
addresses Tikhonov regularization to highlight (i) the specific features of data assimilation
as an underdetermined compared to overdetermined inverse problem (ii) the prevailing im-
portance of the regularizing term, corresponding to background errors. Section 4 exposes
how the cost function is associated with Baye’s rule for conditional probabilities. Section 5
describes how the determination of the becm is currently addressed, between adhoc choices
and the tentative derivation from earlier information using Kalman filter. The well known
conceptual and practical difficulties are reminded. Section 6 discusses the relevance of the
earlier information as an input to becm definition. It starts with an important question: why
does the Bayesian framework receive that much support in meteorology inspite of the fail-
ure of all simplified numerical implementations? The reasons found are essentially implicit
or tacit.

2. Data assimilation or ill-posed inverse problem

(a) Statement of the problem

A system is described using a finite-dimensional ambient space D and a state function
s : D → Rl, l being a positive integer. The state s belongs to a Hilbert space S of functions
with sufficient regularity; a Hilbert space is just a vector space associated with a scalar
product and complete for the resulting norm or distance. In meteorological applications,
the ambient space has the formD = Ω×T in which Ω denotes the atmosphere or a part of
it and T a time interval. The state s describes fields through D of such physical parameters
as pressure, temperature, wind, moisture, emissions of trace species into the atmosphere.

The state s of the system is known only through a finite number of observations
µ1, µ2, ..., µn also jointly denoted as ~µ in vector form. The relationship between the mea-
surements and the state is described in terms of a measurement operator H : S → Rn
and measurement errors. In practice, H may be nonlinear but will generally be linearized
during the assimilation procedure.

~µ = Hs+ ~r (2.1)
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The measurement or observation errors may be decomposed as:

~r = ~rr + ~rd (2.2)

into a representativity error ~rr associated with the limited representativity of the mea-
surement model and an instrumental error ~rd associated with the limited accuracy of the
detectors.

The inverse problem of determining s from observations ~µ is well-posed if the in-
formation in ~µ is non redundant and allows to fully identify s from equation 2.1 up to
measurement errors. In this case, S has dimension the number n of measurements and H
has full rank n. The inverse problem is ill-posed otherwise. Ill-posedness essentially con-
sists of two opposite situations. The inverse-problem is overdetermined if the information
contained in ~µ is in excess for identifying s: the dimension of S must be finite, less than n.
The inverse problem is underdetermined if the complete identification of s is not feasible:
the dimension of S is larger than n, possibly infinite. In atmosphere and ocean sciences,
such underdetermined inverse problem is called data assimilation.

Overdeterminacy is of course associated with redundancy in the measurements. Re-
dundancy may exist as well in the underdetermined inverse problem: this possibility is
essentially theoretical and of little practical interest. Thus, for the sake of simplicity, the
underdetermined problems considered hereafter are taken as non-redundant.

(b) Least squares

Considering the uncertainty in equation 2.1 associated with the error term, a natural
idea for estimating s is to minimise some distance d(~µ,Hs) between the observed and pre-
dicted measurements. If the distance is Euclidean, associated with a matrix G, symmetric,
positive definite, this amounts to minimise the cost function:

J (s) = (~µ−Hs)ᵀG(~µ−Hs) (2.3)

If G is taken as the n × n identity matrix In, then J (s) =
∑n
i=1(µi − (Hs)i)2 which

explains the name of least squares associated with the technique. However, choosing G as
In implies that all measurements are paid the same attention. This is inappropriate if the
accuracy in the various measurements is very different. Therefore, if the covariance matrix
R = ~r~rᵀ of the measurement errors is known, it is recommended to choose G = R−1

(Gauss-Markov theorem).

3. Tikhonov regularization

Least squares computations often return an estimate with irregular and non-physical pat-
terns. These are generally regarded as numerical instabilities associated with an ill-conditioning
of the inverse problem. Tikhonov regularization was originally introduced as a remedy to
this ill-conditioning. An important aim of the present section is to show that this interpre-
tation of estimate irregularities should be limited to the overdetermined inverse problem.
The clarification is important in the context of Bayesian assimilation of data currently used
in geophysics to retrieve the state of the earth from a few measurements. This assimilation
is characterized by a Tikhonov type cost function derived from error statistics (see section
4), but the inverse problem is usually strongly underdetermined.
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(a) Tikhonov cost function

Tikhonov regularization corresponds to the following modification of the least squares
cost function (equation 2.3):

Jλ(s) = λ2(s,Ls) + (~µ−Hs)ᵀG(~µ−Hs) (3.1)

in which the regularizing term λ2(s,Ls) is a scalar product derived from the scalar product
( , ) of S as a Hilbert space using a linear operator L : S → S and a positive modulating
parameter λ. If S is infinite-dimensional, L should be so chosen that H be continuous for
the regularizing scalar product. Under this condition, it will be possible to define an adjoint
operatorH∗L.

Hereafter, S will be rather supposed to be finite-dimensional. This simplifies the anal-
ysis of the inverse problem. One should nevertheless keep in mind that real systems are
commonly infinite-dimensional and discretized results should remain consistent when the
resolution is increased arbitrarily. Thus, if S = RN is finite-dimensional, a linear or lin-
earizedH is necessarily continuous and may be described by a n×N matrix

Hs = Hs with H =

 hᵀ1
...
hᵀn

 so that µi = hᵀi s+ ri (3.2)

in which hi is the adjoint state determining, based on the trivial scalar product of Rn and
up to an error, the value of the ith measurement. The regularizing scalar product in S may
as well be described with a symmetric, positive definite matrix:

Hs = Hs , (s,Ls′) = sᵀLs′ (3.3)

The cost function (equation 3.1) is written as:

Jλ(s) = λ2 sᵀLs+ (~µ−Hs)ᵀG(~µ−Hs) (3.4)

Tikhonov regularization has been studied mostly for the overdetermined problems to avoid
numerical instabilities. However, in case of underdetermined problem, the unphysical pat-
terns of the least square estimate are not essentially related to numerical instabilities. This
is explained hereafter.

(b) Exact expressions for the estimation

Two equivalent descriptions may be obtained for the states minimizing the least-square
cost function J = J0 (equation 2.3) and Tikhonov cost function Jλ (equation 3.1). The
first one is of huge interest for the overestimated case. The second is more useful to the
underestimated case.

The first description involves the singular value decomposition of the measurement
operator H. This is explained in appendix A based on the work by Hansen (1992). Let r
denote the rank of H. For i = 1, 2, ..., r there exist left singular vectors mi ∈ Rn, right
singular vectors si ∈ S = RN and singular values in decreasing order σ1 ≥ σ2 ≥ ... ≥
σr ≥ 0 such that:

s0 =

r∑
i=1

~µᵀG~mi

σi
si , sλ =

r∑
i=1

σi(~µ
ᵀG~mi)

σ2
i + λ2

si (3.5)
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An alternative description, equation 3.6, is obtained (appendix B) using the adjoint
measurement operator H∗L : Rn → S such that ~αᵀH(s) = (H∗L~α)ᵀLs for all ~α ∈ Rn,
s ∈ S. The definition ofH∗L involves the scalar product with matrix L in S, but a classical
convenience leads to utilise in the measurement space the usual scalar product with identity
matrix instead of G. In order to rewrite expression B.2 in finite-dimensional matrix form,
H andH∗L are described by the n×N matrix H and N × n matrix H∗L respectively:

s0 = H∗L(HH∗L)−1~µ , sλ = H∗L(HH∗L + λ2G−1)−1~µ, with H∗L = L−1Hᵀ (3.6)

For λ > 0, Jλ is strictly convex, its minimum sλ is unique with equivalent expressions 3.5
and 3.6. By continuity for vanishing λ, these expressions are also equivalent regarding s0
with the following two restrictions.

First, in the underdetermined case, J = J0 is convex but not strictly convex and thus,
s0 is just one among infinitely many other minimizing states.

Second, the n × n matrix HH∗L has its rank bounded by the rank of H less than N . In
the overdetermined case (n > N ) the matrix is not invertible. HH∗L is invertible only in the
non-redundant underdetermined case.

To conclude this section, observe that s0 and sλ, regardless of the regularisation pa-
rameter λ, belong to the same estimation vector space, the range ofH∗L denoted as:

Se = RangeH∗L (3.7)

This is seen immediately from expressions 3.6. This is seen as well from expressions 3.5
after deducing from the definition of the singular value decomposition σi = ~mᵀ

i GHsi and
then si = 1

σi
H∗L(~mi). The result 3.7 has different consequences for the overdetermined

and underdetermined inverse problems.

(c) Infinitesimal regularization

Among all states minimizing J , s0 (equation 3.5, 3.6) additionally minimizes ‖s0‖ =√
sᵀ0Ls0. Indeed, the functional defined in the measurement space Rn by ~α → ~αᵀG~α is

strictly convex. Therefore, J (s0 + s′) = J (s0) leads to (Hs′)ᵀGHs′ = 0 and Hs′ = 0

implying that s′ is orthogonal to Se. Since s0 ∈ Se, one deduces ‖s0 + s′‖2 = ‖s0‖2 +

‖s′‖2.
This suggests s0 might be regarded as a regularized estimation minimizing a Tikhonov

functional Jλ for λ infinitely small. Such interpretation is further supported by the facts,
seen in section 3b that s0 = lim

λ→0
sλ and s0 is in the same estimation space Se as all sλ.

(d) Overdetermined inverse problem

The inverse problem is overdetermined when the rank r of the n × N operator H
coincides with the dimensionN of the state space S = RN . Notice that (1) the left singular
vectors s1, s2, ..., sN form a basis of S and (2) the linear function ~µ→ s0 (equation 3.5) is
one to one. The estimation space extends to the whole space: Se = S. Thus, s0 is the only
solution to the problem of minimizing J (equation 2.3). As such, s0 depends on G, not
on L. This might seem in contradiction with the expression 3.5 of s0 because the singular
value decomposition depends on both G and L.

The expression of s0 highlights two difficulties associated with the least squares tech-
nique. First, the coefficients of the modes with small eigenvalues are sensitive to the mea-
surement errors. Second, the number of modes coincides with the dimension N of the
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state space S that can be very large in applications. This large number increases the risk
of having relatively small singular values. For instance, Hansen et al. (2006) describe the
difficulty of restoring a clear N -pixel digital image (the state) from the raw image ob-
tained using n detectors (the measurements) both blurred and noisy. Even if the blurring
process is perfectly known and theoretically invertible, the non regularized inversion is un-
exploitable. The minimisation of J using noisy observations is expected to deliver a poor
estimate affected by non physical features and irregularities.

In the regularized estimate sλ (equation 3.5), the unstable modes, corresponding to
singular values smaller than λ, are filtered out. The regularization of Tikhonov enables to
obtain a smoother estimate. Hansen (1992) has clearly shown the interest of regularization
for the overdetermined problem and proposed his criterion of the L-curve for optimally
choosing the regularizing parameter λ.

The validity of the above discussion does not extend to the underdetermined inverse
problem.

(e) Underdetermined inverse problem

A first consequence of underdeterminacy is that s0 (equation 3.6) is not the only state
minimizing the least square cost function J (equation 2.3). Infinitely many other states
minimize J and s0 is just a particular solution in terms of the adjoint operator H∗L. If
the scalar product in S is changed, so are H∗L and the estimation space Se = Range H∗L
(equation 3.7). Unlike in overdetermined case, Se is a proper linear subspace of S.

On the other hand, when the cost function is regularized as Jλ, its minimum sλ is
unique and well defined. One might accordingly consider that Tikhonov regularization has
two advantages: (1) damping the unstable modes and (2) avoiding the underdeterminacy.
The situation is not that simple.

The number n of modes is less than N = dimS. In practice, especially in atmospheric
or oceanic sciences, S has infinite dimension and even after discretization, n, the number
of independent measurements, is negligible compared to N . The difficulties associated,
in the overdetermined case (section d), with a large number of modes, are avoided. The
computation of s0 from equation 3.6 is simple. The matrix HH∗L = HL−1Hᵀ is com-
puted relatively easily. Its matrix coefficients may be regarded as (HH∗L)ij = hᵀi L−1hj
of the states hi (equation 3.2). Underdetermined problems correspond to complex systems
observed using rare detectors distributed in view of avoiding redundancy. If the monitor-
ing network is well designed, the diagonal coefficients are large compared to off-diagonal
ones, the matrix is well conditioned. Tikhonov regularization, from this point of view, is
not required.

This does not mean that the estimate is smooth and regular. However, irregularities
in the underdetermined problem have specific causes that are not under the control of
Tikhonov regularization. The states hi adjoint to the measurements are generally singular
or strongly peaked corresponding to respective detector location. As linear combinations
of these, s0 and sλ display the similar singularities or peaks irrespective of any regulariza-
tion. These non-physical features can be removed only by choosing the estimation space
Se i.e. the scalar product utilized in S . It is accordingly of interest to discuss the particular
choice advocated by atmospheric data assimilation based on Bayesian arguments.
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4. Bayes’ rule and Kalman filter
The previous section stressed the importance, for the underdetermined inverse problem,
of the scalar product utilized in the state space S. This raises a question: how to choose
it? The present section describes how this question is addressed in the Bayesian frame-
work of geosciences. The framework is statistical in nature. The inverse problem is solved
by compromising between the reliability of the measurements and the reliability of a fore-
casted background state. The cost function associated with the compromise is a regularised
Tikhonov function. The section contains no new result. It is a purely mathematical presen-
tation of statistical assumptions and logical consequences from which the Bayesian frame-
work is drawn. This is the ground for the later discussion about the concrete choice of the
regularizing product in this framework.

(a) Conditional probabilities

Let Ω be a sample set with probability measure P , i.e. P (Ω) = 1. Let A and B be
two events from Ω, i.e. two measurable subsets with respective probabilities P (A), P (B).
The conditional probability of A given that B is true is defined as P (A|B) = P (A∩B)

P (B) ,
in which the symbol ∩ denotes the intersection. Baye’s rule is the following well known
identity derived immediately from this definition:

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

The events are defined to be statistically independent if P (A|B) = P (A) or, equivalently,
P (B|A) = P (B).

There is also a version of this theorem for probability densities. Let a and b be two
random variables with probability densities p1(a), p2(b). The probability of intersection
is replaced by a joint probability density pJ(a, b). The conditional density of a when the
other variable is b is defined as p(a | b) = pJ (a,b)

p2(b)
. Baye’s rule immediately generalizes as

a consequence of this definition:

p(a | b) =
p(b | a)p1(a)

p2(b)
(4.2)

The variables are statistically independent when p(a | b) = p1(a) for all b.

(b) State and measurement vector as random variables

The Bayesian assimilation of data is based on the idea that the state s and the obser-
vation vector ~µ are random variables. A forecast state sb, called the background, is always
assumed. The departure s−sb from the true state is called the background error and the de-
parture of observed from expected measurements, ∆~µ = ~µ−Hsb, is called the innovation.
Putting s as a and ~µ as b, expression 4.2 becomes:

p(s | ~µ) =
p(~µ | s)p1(s)

p2(~µ)
(4.3)

The terms in this expression are interpreted as follows:

• p1(s) is the probability density of the state prior to the observations
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8 J.-P. Issartel, X. Busch, M. Sharan

• p(s | ~µ) is the probability density of the state posterior to the observations ~µ

• p(~µ | s) is the probability density of the observations when the state is s, which is in
fact understood as the probability density of the observation error ~µ−Hs (equations
2.1, 2.2)

• p2(~µ) is the probability ~µ had to be observed prior to its effective observation; in
equation 4.3, this term acts mainly as a normalising coefficient so that its knowledge
is generally considered unessential (see coefficient co in equation 4.5).

The following assumptions or remarks are added to proceed from this juncture. They are
generally formulated based on a discretisation of the state, which amounts to suppose that
N = dimS is finite.

First, the density p1(s) of the state is taken as Gaussian with the background state sb

as mean; s− sb is the background error. The N ×N covariance matrix P of this density is
called the background error covariance matrix (becm).

Second, the random variable ~µ decomposes as ~µ = Hs + ~r (equation 2.1) in which
~r = ~rr + ~rd (equation 2.2) is a measurement error due to imperfect detectors (~rd) and
model (~rr). It is generally assumed that s and ~r are independent Gaussian variables. Then,
the conditional density of ~µ when the state s reduces to a density p(~µ | s) = p(~r) with a
n× n covariance matrix R independent of s.

p1(s) =
e−

1
2 (s−s

b)ᵀP−1(s−sb)

(2π det P)
N
2

, p(~µ | s) =
e−

1
2 (~µ−Hs)

ᵀR−1(~µ−Hs)

(2π det R)
n
2

(4.4)

Equation 4.3 may now be written:

p(s | ~µ) = c0 e
− 1

2F(s)

with F(s) = (s− sb)ᵀP−1(s− sb) + (~µ−Hs)ᵀR−1(~µ−Hs) (4.5)

in which co = p2(~µ)−1(2π det P)−
N
2 (2π det R)−

n
2 is a constant since ~µ is fixed corre-

sponding to the observations. Notice that F can be reformulated using the background
error s− sb and innovation ∆~µ = ~µ−H(sb),

F(s) = (s− sb)ᵀP−1(s− sb) + (∆~µ−H(s− sb))ᵀR−1(∆~µ−H(s− sb))

with ∆~µ = ~µ−Hsb
(4.6)

which allows to recognize it as a Tikhonov type functional.

Remark: The assumption that s and ~r are statistically independent is questionable. Sup-
pose, to simplify, the measurement model is linear. Then, if the state s is changed to 2s, the
observed measurement vector ~µ = Hs+~rr+~rd is changed to ~µ′ = 2Hs+2~rr+~r′d, i.e. the
representativity error is certainly doubled. The statistics of the instrumental error ~r′d may
vary too, for instance due to detector saturation. Thus, the above assumption is acceptable
if the background error s − sb is not too large. Otherwise, the error statistics around the
unknown real state s could not be estimated based on sb.
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(c) Optimal estimation and posterior distribution

The optimal estimator of s posterior to the observations, also called the analysed state,
is generally intended, given some scalar product 〈 , 〉 in S, as the state sa minimizing the
expectable quadratic distance

∫
〈sa − s, sa − s〉 dp(s | ~µ) to the real unknown state. Ow-

ing to the quadratic nature ofF(s) with respect to s (equation 4.5), the posterior probability
density p(s | ~µ) is Gaussian. This implies the following additional properties of sa (i) it
coincides with the conditional mean after the observations (unbiased estimator), (ii) it is
the state most probable maximizing p(sa | ~µ) and (iii) it is same for any choice of a scalar
product in S.

Since F (equation 4.5) is convex, the state sa minimizing it is solution to the gradient
equation ∂F(sa) = 0, i.e. sa−sb = (P−1+HᵀR−1H)−1HᵀR−1∆~µwhich, after a simple
but tedious computation, is shown equivalent to :

sa = sb + PHᵀ(HPHᵀ + R)−1∆~µ (4.7)

This expression is just a finite-dimensional version of the equation B.2 for sλ, in which
the regularizing scalar product in S is described by P−1. To verify that the conditional
probability density (equation 4.5) is Gaussian, let’s rewrite it with the origin shifted to sa.
Since F(sa + s) = F(sa) + ∂F(sa).s + sᵀ(P−1 + HᵀR−1H)s in which ∂F(sa) = 0,
one obtains:

p(sa + s | ~µ) = c1 e
− 1

2 s
ᵀ(P−1+HᵀR−1H)s (4.8)

in which c1 = c0 e
− 1

2F(sa) is a constant. Since this density (equation 4.8) is Gaussian, its
maximum sa (equation 4.7) is indeed the best estimator of s once ~µ has been observed.
The following is known as the gain matrix transforming the innovation ∆~µ = ~µ −H(sb)
into a state correction.

K = PHᵀ(HPHᵀ + R)−1 (4.9)

From expression 4.8, the analysis error covariance matrix P′ is read as:

P′ = (P−1 + HᵀR−1H)−1 (4.10a)

= P− PHT(HPHᵀ + R)−1HP (4.10b)

The equivalence of 4.10a and 4.10b corresponds to Woodbury formula (lemma D1). The
form 4.10a better shows that P′ is positive; it is privileged in geosciences. The form 4.10b
shows that P′ corresponds to smaller errors; it is privileged in the mathematical literature.

In the geophysical literature, the update of the state directly from expression 4.7 is
termed optimal interpolation. However, this update is generally achieved by minimizing
the cost function F . This is equivalent. The minimization process is termed variational
assimilation.

(d) Statistical interpretation of Tikhonov cost function

The functional F(s) (equation 4.5) is of regularized Tikhonov type (equation 3.1) with
two terms. The measurement errors are weighted according to their covariance matrix. The
regularizing term, essential as explained in section 2e, corresponds to the scalar product in
S chosen as ‖s‖2P = sᵀP−1s. The cost function may be regarded as a balance between the
information associated with the background forecast and the information obtained from
the measurements. A relatively small becm P indicates a high reliability of the forecast sb

whereas a relatively small R indicates a requirement for fitting the state to the observations.
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10 J.-P. Issartel, X. Busch, M. Sharan

The description 3.7 of the estimation space may now be seen as a mere application of a
projection theorem formulated in the field of stochastic optimal estimation (e.g. Anderson
& Moore, 1979, ch. 5). This result may be traced back to Kalman (1960).

The statistical interpretation of Tikhonov cost function leads to the question: how to
determine P and R? The background error covariance matrix P is not observed directly.
There are difficulties as well with the covariance matrix R of the measurement errors ~r =
~rd + ~rr. Calibrating the instrumental error ~rd from the detectors may seem easy. However,
the model error ~rr is also not observed directly and, most often in climatological sciences,
it is prevailing compared to the instrumental error.

(e) System representation

Baye’s rule and analysis equations 4.7, 4.10 can be applied recursively. Consider a
system evolving through successive states sk, k = 0, 1, 2, ..., in a finite-dimensional S =
RN , observed through measurements ~µk ∈ Rnk according to noisy equations:

sk+1 = Eksk + ek (4.11a)

~µk = Hksk + ~rk (4.11b)

Suppose (i) both dynamical and measurement operators Ek,Hk are linear, the errors ek, ~rk
are (ii) Gaussian and independent with covariance matrices Qk, Rk and (iii) sequentially
independent of el, ~rl for k 6= l. Equations 4.11 are then written in the following matrix
form. For later convenience, the noises are described using the convention of control the-
ory:

sk+1 = Eksk + Mkεk (4.12a)

~µk = Hksk + Nkεk (4.12b)

in which Ek (sizeN×N ), Hk (size nk×N ) are the dynamical and measurement matrices,
εk is a Gaussian noise with the identity of dimension N + nk as covariance matrix, Mk

(size N × (N + nk) ), Nk (size nk × (N + nk)) are related to the covariance matrices Qk

(size N ×N ), Rk (size nk × nk) as:

Mk =
[√

Qk | 0
]
, Nk =

[
0 |
√

Rk
]

(4.13)

The independent dynamical and measurement noises have covariance matrices described
as:

Qk = MkMᵀ
k, Rk = NkNᵀ

k, with MkNᵀ
k = 0 (4.14)

(f ) Kalman filter

If the distribution of s0 prior to observations is Gaussian, with mean sb0 and becm P0,
a recursive analysis may be initiated. This analysis (equations 4.7, 4.10) is conveniently
formulated in terms of successive background states sb0, s

b
1, s

b
2, ... with:

sbk+1 = Eksak (4.15)

in matrix form: sbk+1 = Eksak. This corresponds to the evolution of sak expected in mean
from equation 4.11a or 4.12a. The noise in this equation and the noise in sak with becm P′k,
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posterior at tk, combine to provide the noise in sbk+1 with becm Pk+1, prior at tk+1:

sbk+1 = Ek
[
sbk + PkHᵀ

k(HkPkHᵀ
k + Rk)−1∆~µk

]
(4.16a)

Pk+1 = Ek(P−1k + Hᵀ
kR−1k Hk)−1Eᵀ

k + Qk (4.16bi)

= Ek
(
Pk − PkHᵀ

k(HkPkHᵀ
k + Rk)−1HkPk

)
Eᵀ
k + Qk (4.16bii)

The innovation and gain matrix, such that sbk+1 = Eksbk + Kk+1∆~µk, are now:

∆~µk = ~µk −Hks
b
k, Kk+1 = EkPkHᵀ

k(HkPkHᵀ
k + Rk)−1 (4.3)

The recursive scheme 4.16 is that of Kalman filter. The equation 4.16b for the becm
is a discrete time Riccati equation; the two forms are derived from counterparts in equa-
tion 4.10. Notice that this equation is independent from equation 4.16a so that the suc-
cessive becms are independent of the observations. The invertibility of Rk implies that of
HkPkHᵀ

k + Rk.

(g) Extended Kalman filter

Most systems considered in geosciences are non-linear: they are described by such
system as 4.11, but either the dynamical models Ek or the measurement models Hk are
non-linear. Non-linear assimilation is considerably more difficult and less mature than lin-
ear assimilation. A common strategy consists of linearising around the successive back-
ground states sbk to rewrite the system in the form 4.12 and iterate based on equations 4.16.
This non-linear generalization is called extended Kalman filter. Several differences must
be stressed between the linear and non-linear cases.

First, when the dynamical and measurement models are linear, the model matrices Ek,
Hk and the covariance matrices Qk = MkMᵀ

k , Rk = NkNᵀ
k depend only on step k. In

the non-linear case, they additionally depend on the estimated state sbk. The becm update
equation 4.16b is no longer independent from the state update equation 4.16a.

Second, it is very unlikely that the noises ek, ~rk of non-linear equations 4.11 be Gaus-
sian, even more unlikely that, in the linearised equations 4.12, Mkεk = ek + Eksk−Eksk,
Nk~ρk = ~rk+Hksk−Hksk be Gaussian and independent. Thus, the estimator sbk+1 = Eksak
obtained from equation 4.16a to maximize the approximate posterior probability density,
is suboptimal (does not minimize the expectable quadratic distance to the real state) and
biased (does not coincide with the conditional mean). Similarly, Pk+1 obtained from equa-
tion 4.16b, cannot be regarded as the updated becm.

5. Background statistics in geosciences
Operational meteorology and oceanography extensively utilize numerical models to re-
produce the dynamics of the real earth. Owing to the limited representativity, the state
simulated must be regularly readjusted with observations. This readjustment is an inverse
problem. The state is generally a space or space-time field of one or more parameters such
as pressure, temperature, wind and moisture, current and salinity, pollutant concentration.
The space state is in principle infinite-dimensional and a proper discretization requires
more than hundred elements in each horizontal direction, more than ten in the vertical
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direction. The discretized dimension of at least 105 is larger by several orders of magni-
tudes than the number of measurements available. The inverse problem of fitting a model
is definitely underdetermined.

The Bayesian framework is most commonly utilized to combine the information from
the model with the information from the observation. A comprehensive description of the
theory may be found in (Fletcher, 2017). The Bayesian framework addresses the under-
determined inverse problem as a statistical compromise between a forecasted background
state and the observations. The compromise is based on Baye’s rule described in sections
4a-c. The pivotal point in Bayesian theory of inverse problems is the choice, considered a
subjective matter of expert’s opinion, of the background error statistics called the Bayesian
priors. This choice is done, based on Gaussian assumption, in the form of a background
error covariance matrix (becm) P. This leads to a Tikhonov type cost-function with the
consequences examined in section 3.

The objective or subjective nature of probabilities is a philosophical debate among
statisticians. A detailed account is provided in the book of Lad (1996). The definition of
a subjective probability density, conform to this debate, is found in the work of Tarantola
(1987) that had a great influence in the development of data assimilation for geosciences:
By "subjective" is meant that it represents the knowledge of an individual, obtained using
rigorous scientific (objective) methods, but that this knowledge may vary from individual to
individual because each may possess different data sets. Geoscientists are predisposed to
welcome this subjective point of view: subjectivity is deeply rooted in our quasi-instinctive
approach to the chaotic weather phenomena. The development of meteorology as a modern
science in the 19th century is relatively recent. Even then and until now, as nicely explained
by Daley (1991), a part of subjectivity has been preserved in the work of meteorological
analysts to build synoptic charts and interpret the available observations.

The present section describes how subjective Bayesian inference has been implemented
in geosciences, with theoretical and practical difficulties. The simplest adhoc elicitation of
the Bayesian priors according to expert’s opinion is still widely used. A more rigorous
derivation, corresponding to Tarantola’s requirement, is based on a sequential processing
of earlier information using Kalman filter like techniques, namely 3DVar and 4DVar. In
practice, owing to the enormous size of the becm, these techniques are always implemented
in a very simplified form such as the ensemble Kalman filter.

For determining the Bayesian priors, i.e. P, the question is now: how to formulate a
sensible opinion in terms of a statistical law? The solution proposed by meteorologists and
oceanologists is based on their particular need for data assimilation. This section describes
the procedure associated with the claim that expert’s opinion, in the form of a becm, may
be derived from earlier measurements. It is important to stress, however, that this procedure
remains purely theoretical because the practical computations are insurmountable. Adhoc
assumptions (section 5b) or techniques (section 5d) are introduced to obtain the satisfactory
results.

(a) Difficulties with the elicitation of the background error covariance matrix

The weakness with the Bayesian framework most discussed at least for the last two
decades is the elicitation of the Bayesian statistical priors in the form of a becm, prop-
erly defined for finite-dimensional discretized problems. The main three difficulties are as
follows (e.g. Bannister, 2008a):

(i) The true state needed to measure background error is unknown.
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(ii) Only one error state is available between one true and one background states whereas
a large population is needed to deduce statistics.

(iii) Meteorological systems are continuous in nature, a reasonable discretization neces-
sarily involves a huge number N of elements. The size of the becm, N × N , is so
enormous that it cannot even be stored on computing machines available currently.

Difficulties i and ii are fundamental. The algorithm 4.16 is the theoretical core of the tech-
niques that have been proposed to overcome them (Bannister, 2008b) and compute the
becm from earlier information when available. The algorithm encounters however the dif-
ficulty iii that is practical but yet insurmountable. In spite of considerable efforts made
in defining appropriate numerical schemes, the reliable computation of the becm is still
discussed and yet out of reach.

(b) Adhoc choice of the background error covariance matrix

The underlying assumption of the Bayesian theory is that the becm is a matter of ex-
pert’s opinion based on scientific principles, past studies, earlier measurements i.e. any
earlier information. It may happen that no earlier information is available in which case an
adhoc choice must be made to form the becm. When earlier information is available, a pro-
cedure is described to construct the becm (section 5 f). However it is not computationally
feasible so that, even in this case, becm is formed from adhoc simplifications. The simple
and most common adhoc choice of a matrix diagonal or proportional to identity (e.g. Wu
et al., 2008; Bocquet et al., 2011) amounts to ignore background error correlations. It is
therefore strongly debated (e.g. Singh et al., 2011; Pinnington et al., 2016). Another com-
mon choice uses a correlation length from empirical expressions to account for the degree
of correlation between the discrete elements of the model (Evensen, 2007, chap. 12). The
parameters are adjusted in such a way that the results be satisfactory.

(c) Derivation from earlier information: 3DVar and 4DVar

Most often, in geosciences, the data to be analysed are part of a flow. The large amount
of analogous data, often accumulated during years, is called a climatology. The recursive
scheme 4.16 applies and provides a background error covariance matrix for present. The
scheme is generally considered a tool for the expert to draw his opinion from the earlier
information.

The situation at successive times tk, k = 0, 1, ... is described by equations 4.11 or 4.12
defined in section 4f. When a time tk comes to present, the following operations are done,
respectively analysis and forecast:

• analysis: the state at tk, forecasted as sbk, is improved as sak by comparing, for the
measurements in the interval [tk−1, tk], the values expectedHksbk and observed ~µk.

• forecast: the state sak analysed at tk is propagated along [tk, tk+1] using the dynami-
cal model to provide a forecast sbk+1 = Eksak for the next step of assimilation.

Currently, this strategy is implemented with two main variants called 3DVar and 4Dvar.
In 3DVar, sbk(~x), sak(~x) are functions of the geometric coordinates only: the state in the

sense of the inverse problem corresponds to the state of the atmosphere at time tk. The
background state sbk(~x) at tk is derived from sak−1(~x) at tk−1, used as initial condition and
propagated till tk by the dynamical model.
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In 4DVar, sbk(~x, t), sak(~x, t) are additionally functions of t ∈ [tk−1, tk]: the state in the
sense of the inverse problem corresponds to the whole evolution or trajectory of the sys-
tem in the assimilation window. The background state sbk(~x, t) is forecasted for the whole
window [tk−1, tk] using the evolution model there with sak−1(~x, tk−1) as initial condition.

The 4DVar approach is deemed more accurate as it takes into account the dynamics of
the system in the assimilation window. The larger computational cost of 4DVar is due to
the minimization of the cost function in a state space including the time dimension.

The practical implementation of 3DVar and 4Dvar raises difficulties. First, as already
mentioned, the size of the becm is enormous. Second, in the covariance matrix Rk of mea-
surement errors, it is difficult to evaluate the part due to model representativity because of
the problems already described in section 5a for the becm. As a matter of fact, Desroziers
et al. (2005) evaluate Rk coupled to Pk. Third, 3DVar or 4DVar both require a dynam-
ical model error covariance matrix Qk the evaluation of which is again bothered by the
problems in section 5a. The common option of considering the dynamical model as per-
fect, i.e. Qk = 0, called strong-constraint 3 or 4DVar, is clearly not satisfactory (Howes
et al. 2017). In this article, in order to focus on the difficulties with the becm, it is sim-
ply assumed that Rk, Qk are given. The implementation of Kalman filter in operational
weather prediction is possible only under strong simplifications. The most popular of such
simplified implementations is the ensemble Kalman filter.

(d) Ensemble Kalman filter : a simplified approach

Ensemble Kalman filter is a popular technique of simplified approximate resolution of
equations 4.16. This is a Monte Carlo technique, described e.g. by Evensen (2007). An
ensemble of states {sb01, sb02, ..., sb0q} is taken as a sample from the initial probability dis-
tribution with becm P0. By applying the first equation 4.16a state by state, it is transformed
into an ensemble {sb11, sb12, ..., sb1q} from the posterior probability distribution with becm
P1.

More precisely at t0, once true observations ~µ0 have been obtained, model measure-
ments are computed as {H0s

b
01 + ~rd01,H0s

b
02 + ~rd02, ...,H0s

b
0q + ~rd0q} in which ~rd0i,

i = 1, 2, ..., q, are independent draws from the known distribution of the instrumental error.
The representativity error ~rr0i due to the measurement model is implicitly sampled in the
computation of theH0s

b
0i. Similarly, once the analysed states {sa01, sa02, ..., sa0q} have been

computed, the forecast ensemble is deduced using the dynamical model, i.e. sb1i = E0sa0i
which implicitly includes the errors due to the evolution model.

There is a problem however: numerical implementations eventually show catastrophic
filter divergence. Geoscientists interpret this as a numerical artifact liable to correction
procedures. They argue that the limited number of states leads to systematic errors in the
becm: overestimation of the off-diagonal terms and underestimation of the diagonal ones.
The off-diagonal overestimation (Anderson, 2001; Hamill et al., 2001) is equivalent to
spurious correlations between distant regions. This is taken care of by a technique called
localization reducing the extent of the adjoint functions away from the detectors. The di-
agonal underestimation (Whitaker and Hamill, 2002) is taken care of by a technique called
covariance inflation, introduced by Anderson & Anderson (1999). Before assimilating new
observations, the ensemble members are modified by increasing their deviation from en-
semble mean with a given inflation factor (Li, 2009; Miyoshi 2011). The combination of
localization and inflation allows to reach satisfactory results and this is interpreted as a
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validation of the proposed divergence mechanism. These arguments will be examined in
the companion article, part 2.

The conception of more robust numerical schemes is actively debated in the literature.
Indirectly, this amounts to presume that the filter should theoretically not diverge. However,
the kind of non-divergence that is expected is never made explicit. This situation is further
explored in the next section 6 showing that tacit assumptions are associated with the use of
earlier information described above (section 5c).

6. Underlying assumptions in the use of earlier information
The vagueness of the researchers using Bayesian approach in defining the expected non-
divergence of Kalman filter is not surprising. The filter output (sbk,Pk) for growing k is not
characterized so much in terms of convergence than stability. The estimated state sbk is not
expected to converge as it is distributed statistically around a true state strk ; in addition, this
true state may vary depending on k. The becm Pk is also not expected to converge; it may
vary with k as it is sensitive to the variations of the dynamical and measurement models
with weather conditions and detectors arrangement. In the non-linear case, the models
additionally depend on the estimated state.

As detailed below, a careful reading of the literature suggests that the presumed non-
divergence is composed of two distinct mathematical concepts: (i) the true convergence of
Pk to a limit with a statistically consistent evolution of the estimated state and, more subtly,
(ii) the stability with respect to initial conditions.

(a) Convergence of background error statistics, ergodicity

The fact that a true convergence lim
k→∞

Pk = P∞ is expected may be deduced from the

ergodic assumption usually associated with Kalman filter to determine the background er-
ror statistics. The assumption and its role are described e.g. by Bouttier & Courtier (1999):
In general, the only way to estimate statistics is to assume that they are stationary over
a period of time and uniform over a domain so that one can take a number of error re-
alizations and make empirical statistics. These authors are dealing with difficulty i from
section 5a, namely sbk − strk is the only error state underlying in the kth step of Kalman
filter, insufficient to diagnose Pk. As reminded in introduction of the present section 6, in
principle the background statistics and Pk are expected to vary depending on time and on
the true state with its distribution in space. One may however assume that the background
statistics are independent of the time and true state: this is the ergodic assumption with
respect to both time and space. This assumption is reasonable in particular for the steady
linear systems. It allows to consider all successive error states sbk − strk are drawn from the
same statistics with the almost same becm Pk ≈ P for all k. Visibly, Bouttier & Courtier
and many authors after them suppose that the filter provides approximations of P of in-
creasing and converging quality thanks to the step-by-step accumulation of error states, all
related to the same statistics. This conclusion contains another hidden presumption.

(b) Stability with respect to the initial conditions

Geoscientists tacitly presume that the filter is stable with respect to the initial condi-
tions: if two filters, fed with the same sequence of measurements and models, are initiated
with different inputs (s0,P0) and (s′0,P

′
0), the filtering distributions converge to each other
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i.e. lim
k→∞

Pk − P′k = 0. This property is paid a lot more attention than convergence by

the mathematicians studying Kalman filter. It means that the filter forgets the initial inputs
and their subjectivity. If the filter would simply transfer the subjectivity of an initial P0 to
present, it would not be worth the costly preprocessing of a climatology. The expert would
rather provide his present opinion directly.

(c) Dependence on earlier information

In other words, the researchers using Bayesian approach in geosciences tacitly presume
that after some time steps, the becm meets an objective reality depending only on the se-
quence of observations. The objective nature of the becm is accepted by various researchers
(Bannister, 2008a; Waller et al., 2016). These authors all claim that the becm accounts for
the earlier information and varies not or little with time.

The recursive scheme 4.16 is definitely considered an objective method to help ex-
pert’s subjective opinion. Bannister (2008a) describes other strategies for measuring the
becm based on earlier information, which is called the ’calibration step’. This becm is
then input to scheme 4.16. So, the scheme and its presumed convergence are pivotal for
meeting Tarantola’s fundamental requirement (section 5). This is probably the reason why
the catastrophic filter divergence is considered an artifact not undermining the theoreti-
cal importance for weather assimilation of Kalman filter in the form of 3DVar or 4DVar.
In fact, Kelly et al (2015) have suggested that catastrophic filter divergence is a rigorous
property of the filter regardless of any simplification. This is the point of view developed in
the present work, based however on different arguments. First of all, it is useful to further
examine the claim that becm is determined by earlier information.

(d) Relevance of the earlier information: ergodicity

As already explained, the complete filter equations are unpracticable (section 5a). So,
after a theoretical reference to the filering of earlier observations, an adhoc becm is com-
monly chosen as a substitute for the resolution. The justifications never refer to the mea-
surements to be effectively analysed (section 5b), in particular the number and location of
the sensors. However, these elements are essential.

If the becm P is deduced without direct reference to the present measurements, these
can always be so chosen that the estimated correction sa−sb be arbirarily irregular. To see
this, let h1, h2, ..., hn be a family of n independent states in the form of column vectors in
order to compose the measurement matrix according to equation 3.2. The correction (eq.
4.7) is a linear combination of Ph1,Ph2, ...,Phn. Since P is invertible, the hi’s may be so
chosen that the Phi’s are arbirarily irregular.

Notice that and adhoc choice of P proportional to identity (section 5b) is not reason-
able. Most often, the sensors are extremely small compared to the atmospheric or oceanic
domain. At the location ~xi of the ith sensor, hi(~xi) becomes singular, which in discretized
practice means very peaked, and this behaviour would be passed to the correction.

The claim that P is deduced from earlier information is too general and misleading. It
forgets the ergodicity requirement. Bouttier & Courtier (1999) (cf. paragraph 6a) remind
that the becm accounts for the earlier information provided that, based on ergodicity, the
earlier information accounts for the present situation.
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(e) Consequence for Kalman filter

Under the ergodic assumption, the evolution, measurement and covariance error matri-
ces are repeated same at each step. Assume P is obtained as the converged becm of scheme
4.16, i.e.:

P = E(P−1 + HᵀR−1H)−1Eᵀ + Q (6.1)

According to this Riccati equation, P does depend on the evolution and measurement op-
erators. To see the importance of the measurement operator with matrix H, suppose the
measurement errors are arbitrarily large. Equation 6.1 tendentially becomes:

P = EPEᵀ + Q (6.2)

As far as geophysical systems are concerned, this Lyapunov equation has no solution.
Indeed, the matrix Q is positive definite since otherwise, E would be perfect in predicting
the evolution of some state. Then, by the discrete-time lemma of Lyapunov (Anderson &
Moore, 1979, theorem 2.1), a positive solution of equation 6.2 exists if and only if all N
eigenvalues of E satisfy: |λi(E)| < 1 and this solution is P =

∑∞
k=0 EkQ(Eᵀ)k. This is

not acceptable in geosciences: for large times tk, Ek would be a strict contraction finally
evolving all states to 0.

This result simply means that, when measurement errors become too large, background
errors grow indefinitely just as if there were no measurement at all. It also means that,
in equation 6.1, the term HᵀR−1H plays an essential role in the possible existence of a
solution P. Such solution, if it exists, is accordingly expected to be tightly related to the
detailed arrangement of the sensors. A becm valid for a monitoring network may not be
valid for another network or other conditions. This conclusion is not new. In their text,
Bouttier & Courtier (1999) wrote, just before the extract quoted in section 6a: The error
statistics (biases and covariances) are functions of the physical processes governing the
meteorological situation and the observing network.

The tight requirement of ergodicity in Kalman filter, with elements Ek, Mk, Hk, Nk
same for all k, is not consistent with practice. In reality, weather conditions vary, a sensor
is moved to another location, another sensor is temporarily out of order. The evaluation of
a converged becm is not practicable.

7. Conclusions
In recent meteorological developments, the data assimilation methods (3DVar, 4DVar, En-
semble Kalman Filter) have been evolved to successfully improve the model predictions
and estimate the true state of atmosphere. These methods of solving an underdetermined
inverse problem are embedded within a theoretical framework of Bayesian theory. The ob-
servations are utilized to update the knowledge of the state of a system by compromising
between the errors contained in these observations and the errors contained in a background
state usually forecasted by a model. The present study discusses the important issue of the
Bayesian priors in the form of a background error covariance matrix (becm).

The Bayesian cost function has the same structure as a Tikhonov cost function. The
background term stands for the Tikhonov regularizing term. The comparison is subjected
to remarks. Tikhonov regularization has been developped to minimize the numerical insta-
bilities arising from the overdeterminacy of an inverse problem. On the contrary, the geo-
physical inverse problems are strongly underdetermined and this changes totally the role of
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the regularizing term. The unsatisfactory features in the estimated state are not produced
by numerical instabilities. They depend on the regularizing term, i.e. the becm, because
choosing the becm secretely amounts to choosing a basis of functions for estimation.

Since the work of Tarantola, the elicitation of backgound statistics has been ambigu-
ously hesitating between subjective choice and objective deduction. The objective exis-
tence of the becm is advocated by an analogy with the Kalman filter to obtain it from
an earlier information. This is associated with the ergodic assumption that background
statistics do not vary in time and are homogeneously distributed through space. Ergod-
icity implies that successive background errors are all drawn from the same statistics so
that the filter will provide a converged becm. The argument is purely theoretical because
in practice, the enormous system of equations must be simplified and catastrophic filter
divergence occurs eventually. Geoscientists generally consider that divergence is caused
by the simplifications which amounts to presuming that the non-simplified filter should
converge.

Here it is shown that the classical definition of a becm and its link with earlier informa-
tion are poorly practicable. The becm is tightly related to the environmental conditions and
arrangement of the observing network. Thus, for obtaining a converged becm, these condi-
tions and arrangement should not vary during many filter iterations, which is not realistic.
This may account for filter divergence regardless of any simplification. In addition, still
owing to the tight dependence on sensor arrangement, the background errors cannot be ho-
mogeneously distributed as is commonly assumed. It is just said here that the link between
becm and earlier information is poorly practicable, not that it is ill-founded to support the
definition of a becm. This link will be further questionned in the companion article, part
2, with a more theoretical examination of the tacit assumption that the non simplified filter
should provide a converged becm.
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A. Singular value decomposition
In order to introduce the singular value decomposition of the measurement operator H :
S → Rn, the state space S = RN is assumed of finite dimension N . The present section is
derived from a work by Hansen (1992, 2001). The framework of Hansen is a bit different
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from that in the present study as (i) he considers a scalar product in S possibly degenerate
with a matrix L of rank less than N , (ii) he does not introduce a matrix G as he utilizes in
the measurement space the usual l2 product with identity matrix, (iii) most importantly, he
deals with overdetermined problems only. The discussion in this appendix is valid for both
overdetermined and underdetermined inverse problems.

Notice that the operator H, operating on the state s, can be seen as a N × n matrix
and as such, it may as well operate from the left hand side on n-dimensional measurement
vectors. A decomposition into left and right singular vectors is introduced accordingly with
reference to the scalar products used in Rn with matrix G and in RN with matrix L. Let r
denote the rank ofH. The singular value decomposition consists of:

• right singular vectors s1, s2, ..., sr in S, with norm sᵀi Lsi = 1, called the modes

• left singular vectors ~m1, ~m2, ..., ~mr in Rn, with norm ~mᵀ
i = G~mi = 1

• singular values σi = ~mᵀ
i GHsi

– σ1 = ~mᵀ
1GHs1 maximizes ~mᵀGHs among all ~m, s of norms ~mᵀG~m = 1,

sᵀLs = 1

– σi = ~mᵀ
i GHsi maximizes ~mᵀGHs among all ~m, s of norms ~mᵀG~m = 1,

sᵀLs = 1 so that ~mᵀG~mj = 0, sᵀLsj = 1, j = 1, 2, ..., i− 1

As a result of this definition, the singular vectors are orthonormal, sᵀi Lsj = ~mᵀ
i G~mj = δij

and the singular values are non-negative in decreasing order: σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0.
The expression 3.5 for sλ minimizing Jλ for given measurements ~µ is seen by first

showing Hsi = σi ~mi, then deducing ∂Jλ(sλ) = 0 which is sufficient since Jλ is strictly
convex for λ > 0. The same reasoning holds for s0 in the overdetermined case as J0
is again strictly convex. In the underdetermined case, ∂J0(s0) = 0 still holds, but the
convexity is not strict and J0 has infinitely many minima equivalent to s0.

B. Adjoint measurement operator
The notations are same as in section 3. However, in order to better show the generality
of the results, the finite dimension is not supposed for S. The regularizing scalar product
accordingly remains with the notation (s,Ls′). The measurement operatorH : S → Rn is
supposed linear and continuous for this scalar product.

Definition B.1. : There exists a linear operator H∗L : Rn → S called adjoint to H such
that

∀~α ∈ Rn, ∀s ∈ S, ~αᵀH(s) = (H∗L~α,Ls) (B.1)

For a sake of symmetry between the scalar products with matrix G in Rn and operator
L in S, the adjoint operator might be defined asH∗GL such that ~αᵀGH(s) = (H∗GL~α,Ls).
The later developments would not be changed much. In fact, the symmetry is not relevant
because both G and L describe deviations of the terms in the cost functions J (equation
2.3) or Jλ (equation 3.1) from standard products and S respectively. The definition B.1
of the adjoint operator referred to the standard product in Rn highlights (equation 3.7) the
independence of the estimation space RangeH∗L from G.

Proof : Since H is continuous, the linear form f~α : s → ~αTHs is continuous for any
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~α ∈ Rn. Riesz representation theorem then ensures the existence of H∗L~α ∈ S such that
f~α = (H∗L~α,L ·). The linearity is obvious.

�

Obviously, H∗L has same rank as H. This rank is N in the overdetermined case. In the
underdetermined case, the rank of H is at most n and exactly n if the measurements are
not redundant.

The following expressions are deduced for s0 and sλ minimizing the least square and
regularized cost functions respectively. The circle ◦ denotes the composition:

s0 = H∗L ◦ (H ◦H∗L)−1~µ, sλ = H∗L ◦ (H ◦H∗L + λ2G−1)−1~µ (B.2)

The expression for s0 is valid only in the non-redundant underdetermined case since only
then H ◦ H∗L is invertible. In this case, however, the minimum of J (equation 2.3) is not
unique: s0 given by equation B.2 is just a particular minimum, the only one in RangeH∗L.
The continuity with the expression for sλ will imply that this s0 coincides with that de-
scribed by equation 3.5.

Proof : Let’s first show that, in the non-redundant underdetermined case, H ◦H∗L : Rn →
Rn is invertible. Indeed, H ◦ H∗L~α may not vanish if ~α 6= ~0 because, in view of equation
B.1, ~αTH◦H∗L~α = (H∗L~α,LH∗L~α). SinceH∗L has rank n,H∗L~α may not vanish implying
(H∗L~α,LH∗L~α) > 0.

Thus, on the one hand,H∗L ◦ (H◦H∗L)−1~µ is well defined in RangeH∗L andH◦H∗L ◦
(H ◦ H∗L)−1~µ = ~µ. On the other hand, the solution to the inverse problem Hs0 = ~µ is
unique in RangeH∗L. This implies the firstidentity B.2.

The expression for sλ is valid for both the overdetermined and underdetermined cases.
Indeed, H ◦ H∗L + λ2G−1 is always invertible because (i) as deduced from the first part
of the proof, H ◦ H∗L is non-negative and (ii) G is positive definite and so is G−1. The
differential of the cost function is: ∂Jλ(s).s′ = 2λ2(s,Ls′) + 2(Hs)ᵀGs′ − 2~µᵀGs′.
Substituting sλ from equation B.2 for s and using equation B.1, one gets after elementary
transformations: ∂Jλ(sλ).s′ = 0 for all s′ ∈ S. Since Jλ is obviously a strictly convex
function, this characterizes sλ.

�
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