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We study the transport properties of mesoscale eddies (i.e. vortices of 100 ∼ 200 km in diameter) over a finite time
duration. While these oceanic structures are well-known to stir and mix surrounding water, they can also carry and
transport water properties in a coherent manner. In this paper, we are interested in dynamic transport properties of
these coherent structures, despite their chaotic environment. Here, we reveal that such vortices can be identified based a
simple decomposition of their Lagrangian trajectories. We identify and extract coherent vortices as material lines along
which particles’ trajectories share similar polar rotations. The proposed method identifies coherent vortices and their
centers in automatic manner. We illustrate our new method by identifying and extracting Lagrangian coherent vortices
in different two-dimensional flows.

I. INTRODUCTION

Lagrangian coherent structures (LCSs) are exceptional ma-
terial surfaces that shape finite-time observed tracer patterns
in fluid flows1. In the geophysical fluid dynamics community,
these LCSs are mainly structured into three physical shapes;
mesoscale and submesoscale filaments, jets and eddies. These
latter oceanic structures are ubiquitous in the ocean and usu-
ally exhibit different properties to their surrounding waters.
They are known to stir and mix surroundings fluid as well as
by their ability to trap and carry fluid properties in a coherent
manner. For example, long-lived eddies such as Agulhas ed-
dies are known to transport water properties associated with
the Indian ocean far into the South Atlantic2. In this work, we
focus on those that remain coherent despite the chaotic nature
of their environment. These mesoscale eddies are also known
by their important role in climate change, which arises from
their influence on the circulation by transporting temperature
and salinity, extracting potential energy from the mean flow
and exchanging momentum with it. They are also known to
help maintaining the extra-tropical climate by contributing to
the meridional transport of heat from the tropics to the poles3.

As the effect of these mesoscale eddies on the global
circulation is remarkable, their systematic and accurate de-
tection has received considerable interest over the last two
decades4–7. In the literature, several definitions of vor-
tices have been introduced together with their automatic
detection8–11, most of these formulations are of Eulerian na-
ture. For instance, authors in12 proposed a vorticity curvature
criterion method to identify coherent vortices. An ωR criterion
for vortex identification has been proposed in13, their method
works by measuring the relative rotation strength on the plane
perpendicular to the local rotation axis. Authors in14 defines
a vortex as a connected flow region where the magnitude of
the vortex vector at each point is larger than zero. Such Eu-
lerian approaches make use of instantaneous velocity field to
detect vortices boundaries which fail to coherently carry and
transport their encircled water masses, instead, they stretch,

a)Electronic mail: anas.elaouni@gmail.com

deform and develop filaments. For example, the angular ve-
locity ω = dφ

dt is considered as an Eulerian approach to iden-
tify vortices’ boundaries. Fig.1(a) shows eddies’ boundaries
extracted from the angular velocity computed over the south-
ern ocean. Fig.1(b) (Multimedia view) shows their final po-
sition after three months of Lagrangian advection. None of
these eddies remains coherent, indeed they all stretch and fila-
ment. Their complete advection sequence is illustrated in the
movie M1 (Multimedia view).

On the other hand, Lagrangian methods are powerful tools
because they take into account the time-evolution of parti-
cles’ trajectories6,7,15,16. Various methods have been pro-
posed within this perspective, they typically fall into differ-
ent classes: probabilistic, which study the evolution of proba-
bility densities and almost-invariant sets5,17,18, and geometric
which use invariant manifolds. Authors in6 introduce a varia-
tional principle for coherent material vortices, where vortices’
boundaries are sought as elliptic LCSs, i.e. exceptional ma-
terial barriers that exhibit no appreciable stretching or folding
over a finite time interval. This method has been reformu-
lated such that it can be solved via the variational level set
methodology19. Another method has been proposed which
seeks vortices’ boundaries as maximal material tubes in which
material elements complete the same polar rotation over a
given finite-time interval20. However, these stretching-based
variational methods rely on a precise computation of Cauchy-
green tensor and its invariants, which requires accurate dif-
ferentiation of particles trajectories with respect to their ini-
tial positions. Authors in7 proposed a vorticity-based method
to identify rotational coherent vortices. This has been done
based on a decomposition of gradient deformation into prod-
uct of two deformation gradients; one for pure strain and other
for pure rotation21. This approach does not require differenti-
ation of the flow map with respect to initial conditions. How-
ever, it relies on derivatives of the velocity field, and requires
a large computational domain for spatial mean of vorticity.
Authors in22 adapted the latter technique to use it on mag-
netic fields and proposed a method of integrated averaged cur-
rent deviation to determine the boundary of magnetic vortices.
Authors in23 used the spectral clustering algorithm to identify
coherent structures by grouping Lagrangian particles into co-
herent and incoherent. This has been done by defining coher-
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FIG. 1: a) Eulerian eddies defined as outermost contours of
the angular velocity’s extrema. b) Their final positions under

Lagrangian advection over three months. (See the
supplemental movie M1 (Multimedia view) for the complete

advection sequence of these eddies’ boundaries).

ent structures as a set of Lagrangian trajectories that maintain
short distances among themselves relative to the others out-
side the structure. This method is simple to implement but has
no link between material vortices and the expected spinning
motion. On the other hand, authors in15 defined Lagrangian
vortices from their observed trajectories, their method indeed
has a link between material vortices and the expected spin-
ning motion. They defined Lagrangian coherent vortices from
their frequency-domain representation, they defined them as
closed material surfaces along which particles share similar
frequency components. Their method is simple to implement
and suitable to applications to float data because it does not
rely on velocity field.

The approach proposed in the present paper is based on
a decomposition of particle trajectory into two parts: closed
curves which give information about uniformly rotating flow,

and the second part which describes the mean displacement.
The former part yields a consistent measure of material ro-
tation. In this work, we seek to identify Lagrangian coherent
vortex boundary as closed material lines in which fluid parcels
complete the same polar rotation, therefore a Lagrangian vor-
tex is defined as an evolving domain enclosed by this lat-
ter. This turns out to be filled with outward-increasing closed
contours of the Averaged Closed Curve (A C C ). Addition-
ally, A C C−based vortex’s center is defined as the innermost
member of A C C . Our method is based on vortices trajecto-
ries, and it has several important features:

• It is naturally related to vortex feature and defines vor-
tices based on their observed trajectories.

• Material A C C -vortices guarantee the revolving move-
ment of all particles within vortices’ boundaries. At
least, all particles rotate 360◦ around the observed cen-
ter.

• Our method does not require differentiation of flow map
with respect to initial conditions.

• The images produced by A C C map itself gives insight
into the qualitative evolution of different particles’ tra-
jectories.

• It is suitable to applications to float data.

• A C C is generic, it can be adapted with the finite-size
notion. The method can be set up to be more selective,
where it can require particles’ trajectories to complete a
certain number of closed curves. Thus, it could lump
vortices with different lifetimes into the same scalar
field.

This paper is organized as follows: Section II describes the
setup and outlines the main computational tool. Section III
discusses and illustrates particles trajectories in vortex bound-
ary. Section IV presents, details our new approach. Section V
illustrate our method via different fluid simulations. Conclu-
sion is drawn in the last Section.

II. SET-UP

We consider a time-dependent smooth vector field:

v(x, t), x ∈ R2, t ∈ [α,β ] (1)

and its associated ordinary differential equation:

ẋ = v(x, t), x ∈ R2, t ∈ [α,β ] (2)

where v a smooth velocity field defined on a possibly time-
dependent spatial domain U(t)⊂ R2× [α,β ].

The flow map is defined as the map that takes a particle
from its initial location x0 at time t0 to its location xt at time t:

Ft
t0(x0) := x(t, t0,x0), α ≤ t0 ≤ t ≤ β , (3)
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3

x(t, t0,x0) denoting the trajectory of Eq.2 passing through a
point x0 at time t0.

Consider a material line M (t0) advected by the flow. Its
image at time t can be expressed in term of the flow map as
M (t) = Ft

t0(M (t0)).
We write the trajectory’s arc-length of a given particle x0

traveling in the flow between the time interval [t0, t f ] as:

L (x(t f , t0,x0)) =
∫ t f

t0
‖v(x0, t)‖dt (4)

The arc-length of this trajectory can be approximated in
term of flow map as:

L (x(t f , t0,x0)) =
f

∑
i=1

∥∥∥Fti
t0(x0)−Fti−1

t0 (x0)
∥∥∥ (5)

With
∥∥∥(Fti

t0(x0)−Fti−1
t0 (x0))

∥∥∥ a line segment of a given par-
ticle x0 traveling between the time interval [ti−1, ti].

III. PARTICLES TRAJECTORY IN VORTEX BOUNDARY

Particle trajectory produced by integrating the velocity vec-
tor field in a vortex boundary result into a loopy curve which
intersects itself (Fig.2(a,b,c)). Thus, a possible way to iden-
tify Lagrangian coherent vortices is by computing the number
of closed curves in given particles’ trajectories. That is the
number n of times when a given particle x’s trajectory crosses
itself at ti+τi, x(ti+τi) = x(ti) and creates a closed curve such
as:

x(ti + τi) = x(ti), τi > 0 with i = 1 · · ·n (a)

ti ∈]t0 t f [, ti+1 /∈ [ti ti + τi[ (b)
and

x(ti+1) /∈]x(ti) x(ti + τi)[ (c)

(6)

Where τi is the period of time for a particle starting at ti takes
to cross its trajectory, whereas ti+1 refers to the time posi-
tion of the next closed-curve x(ti+1 + τi+1) = x(ti+1). Here,
(a) defines a closed curve, whereas, (b) and (c) insure that the
next intersection at ti+1 is not within the previous closed-curve
x(ti + τi) = x(ti). Fig.2 displays 3 different scenarios of parti-
cles initialized in vortices boundaries, closed curves satisfying
conditions in eq.6 are highlighted in red color.

Computing the number of closed curves for all particles
might give an idea about the location of potential vortices.
Such idea might identify vortices as homogeneous regions
where particles’ trajectories have similar number of closed-
curve (vortices where particles have similar angular velocity),
or the number of closed curves increases toward their centers
and decreases in inverse proportion to the distance from the
centers (vortices where the angular velocity increases toward
their centers). However, this picture won’t give a precise loca-
tion of vortices boundaries due to the fact particles’ trajecto-
ries within a vortex boundary might not have the same number

x(t0)

x(t f)

x(t0)

x(t f)

a)

b)

c)

x(t0)

x(tf )

FIG. 2: a,b and c) 3 particles’ trajectories with different
angular velocities; closed curves satisfying eq.6 are

highlighted in red color.

of closed curves due to their initial location and finite-time
advection. Fig.3(a) shows two trajectories of two particles
within the same vortex boundary advected for the same time
interval [t0 t f ]; one exhibits 5 closed curves while the other
has 6 closed curves. On the other hand, Fig.3(b) shows this
idea applied on velocity field derived from satellite altimetry
over the southern ocean, where region of high spinning are
highlighted.

IV. DEFINING VORTEX BOUNDARY FROM PARTICLES
TRAJECTORY

In this part, we aim to define Lagrangian coherent vortices
from their trajectories. We seek to identify these structures
as closed material lines along which particles exhibit similar
rotations around the same axis, and over the same finite time
interval. We have seen in the previous section that particles
within the same vortex boundary can have similar trajectories
but not necessarily the same number of closed curves. In this
work, we choose to decompose Lagrangian trajectories into
two parts; closed curves which give information about uni-
formly rotating flow, and the second part that describes the
mean displacement. Here, we only consider the former part
which is most closely related to the nature of vortices.

We define the Averaged Closed Curve metric (A C C ) as:

A C C (x(t f , t0,x0)) =
n

∑
i=1

∫ ti+τi
ti ‖v(x0, t)‖dt

n
(7)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
38

89
9



4

x0(t 0)

x0(t f)

x1(t 0)

x1(t f)

(a)

-4 -2 0 2 4 6 8

Longitude

-35

-34

-33

-32

-31

-30

-29

-28

La
tit

ud
e

0

1

2

3

4

5

6

7

8

9

nu
m

be
r 

of
 c

lo
se

d 
cu

rv
es

(b)

FIG. 3: a) Trajectory of two particles within the same
vortex’s boundary and advected for the same period of time;
both have different number of closed curves. b) Regions of
potential vortices: number of closed curves computed from

sea surface velocity field derived from satellite altimetry over
the southern ocean.

such as

x(ti + τi) = x(ti), τi > 0 with i = 1 · · ·n
,

ti ∈]t0 t f [, ti+1 /∈ [ti ti + τi[

and
x(ti+1) /∈]x(ti) x(ti + τi)[

(8)

With n being the number of segments of a given particle x
trajectory satisfying eq.8. Where τi is the period of time for
a particle initialized at ti to return to the same point at ti + τi.
Fig.4(a) shows an example of a particle trajectory and its seg-
ments satisfying the eq.8. On the other hand, Fig.4(b) shows
the geometric view of the A C C approach. In similar way,
we show the geometric view of the A C C method applied on
a particle trajectory within a vortex with a radial flow where

all particles converge toward its attracting center in Fig.5. For
a fluid parcel starting from x0, the A C C t

t0(x0) field is dynam-
ically consistent measure material rotation.

x(t 1+ 1)=x(t 1)

x(t 2+ 2)=x(t 2)

x(t 3+ 3)=x(t 3)

x(t 4+ 4)=x(t 4)

x(t 5+ 5)=x(t 5)

x(t 6+ 6)=x(t 6)

x(t 0)

x(t f)

(a)

x0(t 0)

x0(t f)

x1(t 0)

x1(t f)

LACOL(x(tf, t0, x0)) =
n∑

i=1

∫ ti+τi
ti

v(x0, t)dt

n

LACCL(

LACCL

‖

6∑

i=1

∫ ti+τi
ti

‖v(x1, t)‖ dt
6

5∑

i=1

∫ ti+τi
ti

‖v(x0, t)‖ dt
5

(x(tf , t0,x1)) =

(x(tf , t0,x0)) =A C C

A C C

(b)

FIG. 4: a) (black) Trajectory of particle within vortex
boundary, (red) segments satisfying equation 8. b) Example

of A C C
t f
t0 calculation of two partilcles within the same

vortex’s boundary.

We now use the A C C to identify vortex boundary as ma-
terial line along which fluid parcels experience the same polar
rotation over the same time interval [t0, t f ]. Time t0 positions
of such material lines are contours of the function A C C

t f
t0 .

The inner-most member of such nested sequences of contours,
with inward decreasing A C C values, defines the vortex cen-
ter. In similar way, the outer-most contour defines the vortex’s
boundary. At least, all particles within the vortex boundary
have to complete one polar rotation to allow their identifi-
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5

FIG. 5: (black) Trajectory of particle within a vortex with a
radial flow where particles converge toward its center, (red)

segments satisfying equation 8. b) Example of A C C
t f
t0

calculation of this converging trajectory.

cation. We summarize the A C C -based vortex identification
approach in the following definition, with its geometry illus-
trated in Fig.6(a):

Definition 1 for a given time interval [t0, t f ]:

• 1) Lagrangian coherent vortex is an evolving material
domain U(t)⊂R2× [t0, t f ] such that U(t0)⊂R2 is filled
with a nested family of contours of A C C

t f
t0 (x0) with

outward-increasing A C C values.

• 2) The boundary B(t) ⊂ R2× [t0, t f ] of U(t) is the out-
ermost convex contours of A C C

t f
t0 (x0) in U(t0).

• 3) The center C(t)⊂R× [t0, t f ] of U(t) is defined as the
innermost (minimum) member of A C C

t f
t0 (x0) in U(t0).

In the computational world, we relax the convexity strict-
ness for closed material surface of A C C . The first reason for
this convexity relaxation consists of allowing small tangential
filamentation even at time t0 of vortices’ boundaries (Fig.6-b-
1). The second reason consists of the nature of multi-scale
data, such data shows the presence of small-scale vortices
nearby the boundaries of big-scale vortices (Fig.6-b-2). The
third reason consists of the representation of vortices’ bound-
aries by discrete polygons (Fig.6-b-3). At the initial time t0,
the definition 1 identify Lagrangian coherent vortices with a
simple geometry, that is by defining a parameter of maximal
convexity deficiency dmax to allow the relaxation of convexity
strictness. This enables capturing filamented parts that rotate

C(t0)B(t0 ) B(t)

U(t0 )
U(t)

C(t)

(a)

2
3

1

(b)

FIG. 6: a) Initial and time t positions of a Lagrangian
coherent vortex U(t), its boundary B(t) and center C(t). b)
An example of a closed material line which profits from the

relaxation of convexity to small convexity deficiency. Orange
area indicates the area difference between the closed material
line and its convex hull: (1) minor tangential filamentation,

(2) deformation by smaller-scale vortices, (3) discrete
approximation of a convexity.

together with the vortices without a global breakaway. The
aforementioned definition allows the identification of vortex
boundary B(t0) which has convexity deficiency less than the
maximal limit dmax. We define the convexity deficiency of a
closed curve in the plane as the ratio of the area difference
between the curve and its convex hull to the area enclosed by
the curve as: d = A(Conv(B(t0)))−A(B(t0))

A(B(t0))
. Fig.6-b shows the ge-

ometrical view of the convexity deficiency parameter, the or-
ange color refers to the difference between the curve (in white)
and its convex hull.

Lagrangian vortices, as well as their boundaries and cen-
ters, are materials objects7,15,24. Thus, their position at a given
time t is only determined by Lagrangian advection:

U(t) = Ft
t0(U(t0)), B(t) = Ft

t0(B(t0))
C(t) = Ft

t0(C(t0)), t ∈ [t0, t f ]
(9)

The A C C -vortex approach differs from the previous defi-
nitions, it does define vortex based on its observed trajectory,
more precisely closed-curves segments of its particles’ tra-
jectories. As no differentiation of particles trajectories with
respect to their initial positions is required, our approach
does not require advection of high-density grids. A C C -
vortex may show material filament, but by definition, these
filamented parts will rotate together with the vortex without
breaking away. An interesting feature of our approach is its
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ability to include the notion of finite-size by requiring parti-
cles’ trajectory to complete a certain number closed-curves.
In this case, the present method could lump vortices occurring
over different time intervals into the same scalar field. This
could be interesting in geophysical flows applications.

V. EXPERIMENTS

This section presents numerical results that confirm our the-
oretical predictions regarding the identification of coherent
vortices.

A. Direct numerical simulation of two-dimensional
turbulence

We solve numerically the Navier-Stokes PDE model for the
time evolution of 2 components of the velocity, u : D→R2 of
an incompressible fluid on a torus, D = [0,2π]× [0,2π]. This
can be expressed as:

∂ut +u ·∇u =−∇p+
1

Re
∆u+ f , (x, t) ∈D× [a,b],

∇ ·u = 0, (x, t) ∈D× [a,b],
∫

u jdx = 0, (x, t) ∈D× [a,b], j = 1,2,

u = u∗, (x, t) ∈D×{0}
(10)

Where u ·∇u is the inertial term which characterizes Navier-
Stokes equation, and is responsible for the transfer of kinetic
energy in the turbulent cascade. ∇p is the pressure gradients
which guarantee the incompressibility of the flow, and 1

Re ∆u
is the the dissipative viscous term. We further assume peri-
odic boundary conditions and use a standard pseudo-spectral
method with 512 modes in each direction and 2/3 dealias-
ing to solve the above Navier-Stokes equation with Reynolds
number Re= 104 on the time interval t ∈ [0,1600]. The model
is parameterized by the pressure function p : D× [a,b]→ R,
with no external forcing ( f = 0). We initialize the system with
the vorticity of two adjacent vortices perturbed by a random
uniform distribution:

ω|t0 = exp(
(x−π)2 +(y−2π−π/4)2

0.2
)

− exp(
(x−π−π/4)2 +(y−π−π/4)2

0.8
) (11)

We use the vorticity stream formulation25 for implementa-
tion and get back velocity and pressure from the stream func-
tion. The flow integration is then carried out over a uniform
grid of 512× 512 and over the interval t ∈ [400,1600], in
which the turbulent flow is under fully developed turbulence,
by a fourth-order Runge-Kutta method with variable step-size.

Fig.8(a) shows coherent vortices and their centers extracted
from the A C C

t f
t0 (x0) map applied on the simulated realiza-

tion of fluid velocity of the model 10. Fig. 8(b) (Multimedia

FIG. 7: Time evolution of the magnitude of fluid velocity
governed by the Navier–Stokes model 10, over two spatial

dimensions: the angle of the inner ring (horizontal axis) and
outer ring (vertical axis) of a two-dimensional torus. Angles
are expressed in radians. Velocity field is evaluated at times

t = (0, 400, 1200, 1600).

view) shows their final position under Lagrangian advection
as well as trajectories of their centers. These vortices remain
coherent, their boundaries do not stretch or ford. The com-
plete advection sequence over the time interval [0, 1200] is
illustrated in the movie M2 (Multimedia view).

(a) (b)

FIG. 8: a) Coherent vortices and their centers at time t0
extracted from the velocity field generated by Navier–Stokes
model 2 using definition.1 with the A C C

t f
t0 (x0) map shown

in background. b) Their initial and final positions under
Lagrangian advection. (See the supplemental movie M2

(Multimedia view) for the complete advection sequence of
these vortices).
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B. Two-dimensional eddies in satellite altimetry

Here, we use sea surface velocity data to illustrate the detec-
tion of Lagrangian vortices. This velocity data is derived from
satellite altimetry under the geostrophic approximation where
sea-surface height η(ϕ,θ , t) serves as a non-canonical Hamil-
tonian for surface velocities in the (ϕ,θ) longitude-latitude
coordinate system. The evolution of fluid particles satisfies:

ϕ̇(ϕ,θ , t) =− g
R2 f (θ)cosθ

∂θ η(ϕ,θ , t)

θ̇(ϕ,θ , t) =
g

R2 f (θ)cosθ
∂ϕ η(ϕ,θ , t)

(12)

where g is the constant of gravity, R is the mean radius of
the Earth and f (θ) = 2Ωsinθ is the Coriolis effect, with Ω

denoting the Earth’s mean angular velocity. This data is pro-
duced by Ssalto/duacs multi-mission sea level products pro-
vided by AVISO (CLS/Archiving, Validation, and Interpreta-
tion of Satellite Oceanographic data)26 with a spatial resolu-
tion of 1/4◦ and temporal resolution of 7 days. We chose
the region of the Agulhas leakage in the Southern Ocean,
spans from [−28◦N,−4◦W ] and [−35◦N,9◦W ]. This region
is well known for its long-lived propagating eddies that carry
water properties from the Indian ocean far into the South
Atlantic2. In this study, we chose the time period between
11/11/2006 and 11/1/2007. We integrate the AVISO dataset
(eq.12) over the period of time between t0 = 11 November
2006 and t f = t0 + 90 days over an initial grid of particles
with step size ∆x0 = 1/50◦.

We show in Fig.9(a) the A C C
t f
t0 (x0) map computed from

the satellite velocity field (eq.12). At the same image, we
show eddies’ boundaries and their centers extracted from the
A C C map. In Fig.9(b) (Multimedia view), we show their
initial and final position under Lagrangian advection as well
as trajectories of their centers. These eddies remain coherent,
their boundaries do not stretch or fold. The complete advec-
tion sequence over the time interval [0, 90] is illustrated in the
movie M3 (Multimedia view).

VI. INERTIAL PARTICLES IN GEOSTROPHIC
LAGRANGIAN VORTEX

Here, we illustrate our method over a vortex with a ra-
dial flow where particles converge toward its attracting cen-
ter. Consider a small spherical particle of radius r0 and den-
sity ρpart in a geostrophic flow of density ρ and viscosity ν .
Here we consider the β -plane approximation. By applying
a slow-manifold reduction to the Maxey-Riley equations27 in
the limit of small Rossby numbers, it has been shown by28

that the inertial particle motion satisfies:

ẋ = v(x, t)+ τ(δ −1) f Jv(x, t)+O(τ2), J =

(
0 −1
1 0

)
,

x ∈ R2, t ∈ [α,β ] (13)

with f being the Coriolis parameter, and:
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-35

-34

-33

-32

-31

-30

-29

-28

(a)

   6 oW    3 oW    0 o     3 oE    6 oE 
  35 oS 

  34 oS 

  33 oS 

  32 oS 

  31 oS 

  30 oS 

  29 oS 

  28 oS 

(b)

FIG. 9: a) Coherent eddies and their centers at time t0
extracted using definition.1 with the A C C

t f
t0 (x0) map shown

in background. b) Their initial and final positions under
Lagrangian advection. (See the supplemental movie M3

(Multimedia view) for the complete advection sequence of
these vortices.)

δ =
ρ

ρpart
, τ :=

2r2
0

9νδ
, (14)

Remarkably, in the limit of vanishing Rossby numbers, cy-
clones attract light particles (δ > 1) and anticyclones attract
heavy particles (δ < 1) in (eq.13). We select the compu-
tational domain between [2◦W,4◦W ] and [−30◦N,−32◦N],
which falls inside the region of the Agulhas leakage in the
Southern Ocean.

We consider the AVISO dataset covering the period be-
tween t0 = 11 November 2006 and t f = t0+90 days. We inte-
grate this satellite velocity data (12) using the Maxey-Riley
equation (eq.13). Inertial particles were assumed to have
r0 = 0.25m, which is a realistic radius for commonly used
spherical drifting buoys. Both light and heavy particles were
considered, with δ = 1.1 and 0.9 respectively. We show in
Fig.10(a) an example of this eddy and its center extracted from
the A C C

t f
t0 (x0) map. Fig.10(b) (Multimedia view) shows its

initial and final positions under Lagrangian advection, also in
the same image Lagrangian trajectories of two heavy parti-
cles released in different positions within the eddy. This con-
firms that eddy’s boundary does not fold or filament under
Lagrangian advection even when it shrinks by time. This also
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shows that the A C C -based vortex centers act as attractors for
heavy particles released in anticyclones. The complete advec-
tion sequence over the time interval [0,90] is illustrated in the
movie M4 (Multimedia view).

FIG. 10: a) Coherent anticyclone and its center at time t0
extracted using definition.1 with the A C C

t f
t0 (x0) map shown

in background. b) Its initial and final positions under
Lagrangian advection. At the same image, trajectories of two

heavy particles released inside the anticyclone. (See the
supplemental movie M4 (Multimedia view) for the complete

advection sequence of this anticyclone).

VII. CONCLUSION

The present paper defines Lagrangian vortices from their
observed trajectory. It defines these vortices as closed mate-
rial lines in which fluid parcels exhibit similar rotation. These
latter are obtained based on particle trajectory decomposition.
In this work, coherent vortices boundaries are expressed as
convex contours of the Averaged Closed Curve (A C C ) map.
On the other hand, their centers are extracted as the most-
inner member of A C C . The proposed approach is illus-
trated on different two-dimensional fluid flows. Results show
that vortices boundaries and their centers obtained are sharply
defined, do not fold or filament. The proposed method has
the advantage of not requiring high-grids advection of fluid
parcels. It is suitable to applications to float data. Moreover,
it can be adapted to select votrices boundaries occurring over
different time interval.
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