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AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER
DISCRETIZATIONS *

PIERRE MATALONT8Tl DANIELE A. DI PIETRO', FRANK HULSEMANN?, PAUL
MYCEKS®, ULRICH RUDESY, AND DANIEL RUIZ!

Abstract. We consider a second order elliptic PDE discretized by the Hybrid High-Order
method, for which globally coupled unknowns are located at faces. To efficiently solve the resulting
linear system, we propose a geometric multigrid algorithm that keeps the degrees of freedom on the
faces at every grid level. The core of the algorithm lies in the design of the prolongation operator that
passes information from coarse to fine faces through the reconstruction of an intermediary polynomial
of higher degree on the cells. High orders are natively handled by the use of the same polynomial
degree at every grid level. The proposed algorithm requires a hierarchy of meshes, non necessarily
nested, such that the faces (and not only the elements) are successively coarsened. Numerical tests
on homogeneous and heterogeneous diffusion problems show fast convergence, scalability in the mesh
size and polynomial order, and robustness with respect to heterogeneity of the diffusion coefficient.
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1. Introduction. We address in this work the solution of large sparse linear
systems arising in Hybrid High-Order (HHO) methods. Originally introduced in [12]
(see also [13] and the monograph [11]), HHO methods hinge on discrete unknowns
that are broken polynomials on the mesh and its skeleton, and are designed so that
element-based unknowns are not directly coupled with each other. As a result, the
corresponding degrees of freedom (DoFs) can be efficiently eliminated from the linear
system by computing a Schur complement element by element, a procedure known
in the mechanical literature as static condensation. The discrete solution can then
be obtained in two steps: first, the Schur complement system is solved, yielding the
values of the face unknowns; second, element unknowns are recovered element-wise by
solving a small local system. This second step is inexpensive inasmuch as it can be par-
allelized, leaving the first step as the costliest operation. Consequently, the problem
matrix in the context of hybridized methods is usually the Schur complement matrix
obtained after static condensation, also called trace, statically condensed, or some-
times Lagrange multiplier system (referring to the interpretation of face unknowns as
Lagrange multipliers enforcing a discrete flux continuity constraint, see [11, Section
5.4.6]). For a more detailed introduction to hybridization, we refer the reader to the
first pages of [9] and also [11, Appendix B.3.2]. The defining feature of HHO methods
is the embedding of a high-order potential reconstruction into the definition of the
discrete bilinear form. As a result, up to one order of convergence is gained with
respect to other hybrid methods [7, 10]; see, e.g., the discussion in [6] and also [11,

*Submitted to the editors June 11th, 2020.
Funding: ANR project Fast4HHO under contract ANR-17-CE23-0019.

fIMAG, Univ Montpellier, CNRS, Montpellier, France (pierre.matalon@etu.umontpellier.fr,
daniele.di-pietro@umontpellier.fr).

EDF R&D, Paris-Saclay, France (frank.hulsemann@edf.fr)

8CERFACS, Toulouse, France (paul.mycek@cerfacs.fr)

YFAU, Erlangen-Niirnberg, Germany (ulrich.ruede@fau.de)

ITRIT, Toulouse, France (daniel.ruiz@enseeiht. fr)

1


mailto:pierre.matalon@etu.umontpellier.fr
mailto:daniele.di-pietro@umontpellier.fr
mailto:frank.hulsemann@edf.fr
mailto:paul.mycek@cerfacs.fr
mailto:ulrich.ruede@fau.de
mailto:daniel.ruiz@enseeiht.fr

2 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE, D. RUIZ

Section 5.1.6].

The main difficulty in designing a geometric A-multigrid algorithm for trace sys-
tems lies in the fact that functional spaces on the mesh skeleton may be non-nested
when coarsening. This prevents the straightforward construction of a multigrid al-
gorithm based on standard ingredients. Although no existing geometric hA-multigrid
method has specifically targeted HHO so far, a few trace system solvers have been
designed over the last years. In [8], the authors propose a geometric multigrid solver
for general Hybridizable Discontinuous Galerkin discretizations of elliptic equations
and low order approximation, where the trace functions are recast into functions de-
fined over the elements in order to make use of a known efficient solver, typically a
standard piecewise linear continuous Finite Element multigrid solver. This special
multigrid method actually takes its origin from the one previously designed for hy-
bridized versions of the Raviart—Thomas and Brezzi-Douglas—Marini methods in [15],
from which the intergrid transfer operators are borrowed. A variation using an un-
derlying algebraic multigrid method instead of a geometric one was experimented in
[19]. A different approach is then considered in [28], where an hp-multigrid algorithm
based on trace functions at every level is proposed: it handles unstructured polyhedral
meshes and is based on the use of Dirichlet-to-Neumann maps to preserve energy from
coarse to fine levels. The management of high orders is carried out in the traditional
way of putting a p-multigrid algorithm on top of a multigrid iteration in h. Two p-
multigrid algorithms can also be cited [14, 24] as solvers used on condensed systems.
Additionally, besides multigrid methods, we can also refer to domain decomposition
methods [23, 27] and nested dissection [20].

In this paper, we develop a novel geometric h-multigrid algorithm (i) based on
approximation spaces supported by the mesh skeleton at every level, (ii) targeting
HHO discretizations by making use of the underlying high-order potential reconstruc-
tion, (iii) natively managing higher orders (as opposed to, e.g., putting a p-multigrid
on top of an h- one). Our algorithm development is based on the systematic approach
proposed in the seminal guide to multigrid development [4]. The method consists in
identifying the individual difficulties and obstacles that may inhibit the optimal per-
formance of a multigrid algorithm. For each of the difficulties, appropriate multigrid
components are developed. Here, in particular, we start from the Laplace problem
discretized on the skeleton of a simple Cartesian mesh to first develop a multigrid
method that is scalable in the number of unknowns and robust with respect to the
polynomial degree. With this algorithm, we then proceed to work on more general
problems and meshes. One consequence of this approach is that we focus in this article
on multigrid as a solver, not as a preconditioner. When used only as preconditioner,
this tends to obscure misconceptions in the design of the multigrid components. The
multigrid algorithms developed here can serve as efficient stand-alone solvers, but
they can also serve as preconditioners, as we will explore in future research.

In our multigrid method, the polynomial order of approximation is preserved at
every level at the sole cost of using a blockwise smoother instead of a pointwise one.
This approach originates from the remark that a high-order finite element discretiza-
tion yields a block matrix, whose diagonal blocks are formed by the degrees of freedom
connected to the same cell. This configuration usually destroys the desirable M- or
H-matrix structure and, along with it, the convergence of pointwise smoothers; on
the other hand, the block structure paves the way to using block versions of similar
smoothers. In a more functional way of thinking, relaxing together the DoF's related
to the same polynomial comes as intuitive. The robustness of the multigrid algorithms
using block smoothers for high-order methods has been experimentally illustrated in
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[17] and later used in practical solvers such as [21].

The rest of this work is organized as follows. Section 2 summarizes the basics of
the HHO method. Section 3 is devoted to the construction of the multigrid algorithm
and illustrates how it takes advantage of the HHO potential reconstruction operator.
Numerical results for various polynomial degrees are presented in section 4, consider-
ing both homogeneous and heterogeneous diffusion problems in two and three space
dimensions. The numerical experiments show that the number of iterations is nearly
independent of the mesh size and of the presence of jumps in the diffusion coefficient.
Finally, future research directions are discussed in conclusion.

2. HHO formulation.

2.1. Notation. Let d € {2,3} be the space dimension and Q a bounded poly-
hedral domain of RY. We consider a mesh (75, F) of € in the sense of [11, Defini-
tion 1.4], with 7;, denoting the set of polyhedral elements, Fj the set of faces, and
h := maxper, diameter(T') the mesh size. The set JF), is partitioned as F} U FP,
where F} denotes the set of internal faces and FP the set of boundary faces. For all
T € Ty, Fr collects the mesh faces lying in the boundary of T'. Reciprocally, given a
face F' € Fy, Tr collects the elements which F is a face of. (Note that card(7r) = 2
for internal faces and card(7r) = 1 for boundary faces.) For all T € T, and F' € Fr,
nyp denotes the unit vector normal to F pointing out of 7. For X C Q, L?(X) de-
notes the Hilbert space of square-integrable functions over X, equipped with its usual
inner product (u,v)x := [ uv. The same notation is also used for the inner product
of [L?(X)]? (the exact meaning can be inferred from the context). Additionally, we
denote by H*(X) the space spanned by functions of L?(X) whose partial derivatives
are also square-integrable, and by HJ(X) its subspace with vanishing trace on the
boundary 90X of X. Finally, P™(X) is the space spanned by the restriction to X of
d-variate polynomials of degree at most m € N (in short, polynomials of degree m).

2.2. Model problem. Given a source function f € L?(f), we consider the
following diffusion problem with homogeneous Dirichlet boundary conditions:

1) {—v C(KVu)=f inQ,

u=0 on 09,
where the diffusion tensor K: 2 — ngxnlli (with ngxnlli collecting symmetric d x d real
matrices) is assumed uniformly elliptic and piecewise constant over a fixed partition
of © into polyhedra. The variational formulation of problem (2.1) reads

Find u € Hy(Q) such that

(2.2) a(u,v) = /ny Vv € Hy(9),

where the bilinear form a: H*(Q2) x H'(Q) — R is such that, for all v,w € H'(Q),
a(v,w) = (KVv,Vw)q = / KVu- Vo.
Q

2.3. Discrete spaces and operators. We briefly recall the standard HHO
discretization of problem (2.2) and refer to [11, Section 3.1] for a more comprehensive
presentation. From this point on, we assume that 7, partitions 2 in such a way that
the diffusion tensor is constant inside each element, and we let K := K| for all
TeTh.
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The HHO method is based on discrete unknowns at cells and faces, and the
adjective hybrid refers to their union, in spite of their different natures, to form one
set of unknowns. Let an integer k > 0 be fixed. We introduce the following broken
polynomial spaces, respectively supported by the mesh and its skeleton:

Ur = {vr, = (vr)rer, |vr € P"(T) VT € To}  for m € {k,k + 1},
U;_—h = {’U]:h = (’UF)Fe}_h | VR € Pk(F) VF € fh},
from which we build the global space of hybrid variables

QZ = {Qh = (UTMU}—;L) € U7k'h X U]k-‘h}'

The homogeneous Dirichlet boundary condition is strongly enforced in the following
subspaces of U% and Uy

Uk o={vs, €UL |vp=0VFeFP}, Uy, :=Uk xUk .

For any X € T, U Fy, denote by 7% : L?(X) — P¥(X) the L2-orthogonal pro-
jector on P¥(X) (cf., e.g., [11, Definition 1.36]). According to [11, Eq. (2.34)],
the element of Uy associated to a function v € H'(Q) through its interpolator is
((75v)reT,, (Thv)pez, ), showing that the element and face unknowns of the HHO
method (2.6) can be interpreted as local L?-orthogonal projections of the exact solu-
tion.

For all T € T, denote by Qifp the restriction of Qﬁ to T, that is,

(2.3) er} = {QT = (’UT7 (UF)FEFT) | v € Pk(T), VF € Pk(F) VF € .FT} .
We define the local potential reconstruction py™: Uk — PF1(T) such that, for all

vy = (vr, (vp)rer,) € Uk, pitluy satisfies

(2.48,) (KTVP!}_'JQT, Vw)T = 7(1}T, V. (KTV’LU))T + Z (UF, KrVw - nTF)F
FeFr
Vw € PFTY(T),
(2.4b) (05 op, Dr = (vr, D).
It can be checked that, for any v € H(T'), applying p?‘l to the interpolate of v yields
the local oblique elliptic projection of v on P¥**(T); see [11, Section 3.1.2].

2.4. HHO discretization of the model problem. The global bilinear form
ap: U 'fb x U 2 — R is assembled from elementary contributions as follows:

an(uy,vy,) = Z ar(ur, vr),
TETh
where for all T' € Tj,, the local bilinear form ar: Q]% X Q’% — R is defined as

(2.5) ar(up, vy) == (Ko Vphup, Vo) e + sp(up, vy).

In this expression, the first term is responsible for consistency while the second, in-
volving the bilinear form sy : Q’% x U ’% — R, is required to ensure stability of the
scheme. The global discrete problem then reads

Find u,, € Qi,o such that

(2.6) an(up,v) = Y (for)r Vo, €Uk,
TET
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REMARK 1 (Stabilization bilinear form sr). Design conditions for the stabiliza-
tion bilinear form st are provided in [11, Assumption 8.9]. These conditions imply, in
particular, that st must depend on its argument only through the difference operators
ok - Uk — P¥(T) and, for all F € Fr, 6k, : UX — P*(F) such that, for all vy € U%.,

5§QT = ﬂéﬁ(p?“yT —or) and 5§1FQT = W?(p’%“y:p —vp) for all F € Fr.

These operators capture the higher-order correction that the reconstruction p’;ﬁ'l adds
to the element and face unknowns, respectively. A classical expression for s is the
following:

Krp

(65 p — %) vp, (65 p — ) wr) F,

st(vp, wr) = Z

FeFr
where Krp := Kprnrp -npp for all F € Fr.

2.5. Assembly and static condensation. The local contributions correspond-
ing to the representations, in the selected basis for U 2’07 of the bilinear form ar (cf.
(2.5)) and of the linear form U% 3 vy +— (f,vr)r € R are, respectively, the matrix
A7 and the vector By such that

Arr Arg ) <bT)
2.7 Ap = ), Bpi= :
@7) 4 (AJ-'TT Ar,rr 4 0

in which the unknowns have been numbered so that cell unknowns come first and face
unknowns come last; see [11, Appendix B] for further details. After assembling the
local contributions and eliminating the boundary unknowns by a strong enforcement
of the Dirichlet boundary condition, we end up with a global linear system of the form

(2.8) <Am Aﬁfﬁ) (VTM> - (bTh>.

Arm Amr) \VE 0
Since cell-DoF's are coupled with each other only through face-DoF's, A7, 1, is block-
diagonal, therefore inexpensive to invert. The static condensation process takes ad-

vantage of this property to locally eliminate the cell-DoFs: it goes by expressing v,
in terms of vz in the first equation of (2.8):

—1 -1

and then replacing v, with its expression (2.9) in the second equation:

—1 —1
(210) (A]:}Il]:’II — A‘F}lﬁ,AThThAﬁ}-}L> V]_-}IL = _A}-;ILThAThThbTh’

thus yielding a smaller system, involving only face unknowns. The main advantage
of this technique is the reduction of the problem size, especially for high polynomial
degrees k.

3. Multigrid algorithm. In this section, we present a geometric multigrid al-
gorithm to efficiently solve the condensed system (2.10). The method we propose
hinges on face-defined functions at every grid level, and works in synergy with the
discretization through intergrid transfer operators leveraging the potential reconstruc-
tion (2.4). The algorithm applies to any polynomial degree k without resorting to an
additional p-multigrid, which, in practice, can be seen as a valuable reduction of the
implementation cost.
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3.1. Coarsening strategy. The levels of the multigrid method are numbered
from 1 to L, L being the finest and 1 the coarsest. In what follows, we denote by /¢
the generic level and by hy the corresponding mesh size. To simplify the notation,
from this point on hy is replaced by ¢ in subscripts so we write, e.g., 7, instead of Ty,
Fe instead of Fj,, and so on.

Relative to those levels, we consider a hierarchy of nested polyhedral meshes
(Te, Fe)e=1...- We assume the hierarchy to successively coarsen not only elements,
but also faces. This means that, for all £ = 1...L, letting hy, := maxpc7, by and
hr, := maxper, hr, it holds:

h7—e71 > hTZ, h]:ef1 > h]:z-

Standard coarsening of structured Cartesian and triangular meshes, as well as unstruc-
tured meshes obtained from successive structured refinements of an initial coarse mesh
fall under the scope of these assumptions; examples of admissible coarsening strate-
gies are illustrated in Figure 3.1. Requiring that the faces be coarsened is justified by
our algorithm being face-defined at every level. Indeed, the smoother applies to faces
the same way it applies to elements in a classical element-defined multigrid method:
once the high frequencies of the error have been annihilated on the fine mesh, the
smoother requires coarser elements to reach the low frequencies on the coarse mesh.
For the same reason, a multigrid working on the mesh skeleton needs the faces to
be coarsened: the consequence of a face not being coarsened between a fine and a
coarse mesh would be to keep the smoother working on the same range of frequencies,
leaving it unable to efficiently reduce the lowest ones; see Figure 4.10 below.

v v X
— — — 9 ®

Fig. 3.1: Coarsening examples. The first two are admissible, whereas the third one is
not: edges have been removed, but none of the remaining ones has been coarsened.

We will also assume that, for every £ = 1... L, the diffusion coefficient is piecewise
constant on 7y, so that jumps can occur across faces but not inside elements.

3.2. Prolongation. We consider two successive levels ¢ (fine) and £—1 (coarse).
In this algorithm, faces support the functions at every level. To prolongate a coarse
function onto the fine mesh skeleton, which includes some faces that are not present
in the coarse mesh, we propose an intermediary step that passes through the cells
(Figure 3.2). Following this idea, the prolongation operator P: U’}eil,o — U’;-Z’O is
defined as the composition
(3.1) P=1I 00,1,
where the coarse level potential reconstruction operator ©,_1: U}“_—bl’o — U%tll re-
constructs a broken polynomial of degree k + 1 on 7;,_1 from face unknowns; then,
the trace prolongation operator IT§_, : U%tll — UJ’%Z,O maps the polynomials of degree
k + 1 defined on the coarse cells to a broken polynomial function of degree k on the
fine skeleton.
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potential trace on the
reconstruction fine faces
Y
Or_1 g,

Fig. 3.2: Prolongation from coarse to fine edges.

3.2.1. Oy: from faces to cells. This operator is at the core of the algorithm and
is what makes it original. Given a trace error function er, € U}“_—bo as the operand of
Oy, we retrieve the associated cell-defined error function er, € U%H by first reversing
the static condensation process, then take advantage of the potential reconstruction
operator defined by (2.4) to gain one order of approximation inside the cells.

As these operations are local, the process will be outlined for a generic mesh
element T € Ty. Defining ex, := (er)rer,, we let er and er, := (er)per, denote
the algebraic representations of er and er,., respectively, as vectors of coefficients
in the selected polynomial bases. If we denote by (X% ,x—}'—-k)—r the vector obtained
completing the solution vector of the global system (2.8) with boundary unknowns
equal to zero, then its restriction to T, namely (x;., XI—T)T, is the solution of the local
system defined by (2.7), i.e.

<ATT Arr, > <XT > _ (bT>

Arrr Arcrr) \XFr 0)’

from which the static condensation process expresses X in terms of xz, as

(3.2) xr = —A AT, X5, + Apbbr.

We now introduce the local face-defined approximate solution vector Xz, such that

er, = Xr; — Xr;, and, inspired by (3.2), we define the associated cell-based approx-
imate vector X by

(3.3) Xr = —ALpArr. X5, + ALrbr.
Definition (3.3) ensures consistency in the sense that for Xz, = x ., it yields Xy = xp
by (3.2). We can finally define the error on the cell by setting er := xp — X7, and

replace xp and X7 with their respective expressions (3.2) and (3.3), thus cancelling
the terms involving b7 and giving

(3.4) er = —ArpArr, (XF, — XFp) = —ArpArEer,.

Once er is retrieved from (3.4), the local potential reconstruction ph™ defined
in subsection 2.3 is applied to the hybrid vector (er,ex,.) to obtain an approximate
error of degree k + 1 on the cell:

(3.5) (Ocer,)r = p?“(eT,e;T) VT € Tp,.

Figure 3.3 summarizes the process.
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local problem
solution

(3.4)

higher order
_ reconstruction

(3.5)

\/

Fig. 3.3: Reconstruction of a polynomial of degree k 4+ 1 from polynomials of degree
k (here for k = 1) on the four edges of a 2D square element.

3.2.2. TIY_,: from cells to faces. For any v € U%tl and any F' € Fy, (Hgfﬂ)lF

1
is built as the L2-orthogonal projection on P¥(F) of the weighted average of the traces
of v on both sides of F' if F is an internal face, while (IIj_,v)r is set equal to zero if
F' is a boundary face, i.e.,

k k . 1
wryF (O )| F + 0 E TR e if FE Fy,
0 otherwise,

(36) (I w)r = {

where T, Ty denote the distinct elements in T C 7Ty, w5 is the L2-projector on P*(F),
and the weights satisfy
(37&) wn F+ W, p = 1

K
(3.7b) YhE _ 2TF

- b)
wr,r  Knr

where we remind the reader that, for ¢ € {1,2}, K1, := Kr,ng,p - nr,r. Enforcing
both constraints (3.7) yields, for ¢ € {1, 2},
_ K,

K p+ Kryr

3.3. Multigrid components. The prolongation operator P is defined by (3.1).
The restriction operator R is defined as the adjoint of P in the usual way. Interpreted
algebraically as matrices (using the notations R and P), it means R = PT. Note
that I15_, does not make a distinction between the fine faces contained in the skeleton
of the coarse grid and those that are not; consequently, the polynomials on coarse
faces are not transferred identically to the fine grid, but instead take on new values
coming from the (weighted) average of the reconstructed cell-polynomials on each
side. The alternative way of prolongating coarse functions from coarse faces to their
respective identical fine faces, namely keeping them unchanged, has also been tested
(cf. subsection 4.4) and yields a less efficient algorithm. This observation is consistent
with the fact that solving the local problems produces additional information that
the coarse polynomials do not possess. In addition, the reconstruction using higher
degree polynomials also results in higher accuracy in the case where two fine faces are
agglomerated into a single coarse one: the polynomial of degree k + 1 on the coarse
cell can induce two different polynomials of degree k on the two corresponding fine
faces, which would not be the case if the reconstruction were only of degree k.

The coarse grid operator at level £—1 can be chosen either as the discretized oper-
ator on the respective coarse mesh, or as the Galerkin construction: A, := RA,P.
The numerical tests in the next section show equivalent performances.

In order to relax the DoF's related to the same polynomial function together, block
versions of standard fixed-point smoothers are chosen, whose block size corresponds
to the number of DoF's on each face.

(38> wr,F -
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4. Numerical results.

4.1. Experimental setup. The numerical tests have been performed on the
diffusion problem (2.1) in various d-dimensional domains Q@ C R¢, d € {2,3}. The unit
square/cube  := (0, 1)? is used to study the algorithm on structured meshes, whereas
more complicated geometries shall be used for unstructured ones. The source function
f is chosen so that the analytical solution of the homogeneous problem corresponds
to (z,y) — sin(4rzx) sin(4ry) in 2D and (z,y, z) — sin(4dnrz) sin(4ny) sin(4nz) in 3D.
For structured cases, given an integer N > 0, the domain is discretized by a Cartesian
grid composed of N? square/cubic elements of side length 1/N. Each of them is
respectively decomposed into 2 triangles or 6 tetrahedra if the mesh is simplicial. In
what follows, k& denotes the polynomial degree on the faces (meaning that the HHO
method ultimately yields an approximation of degree k+1). Our multigrid algorithm
is used to solve the statically condensed linear system (2.10). The mesh is successively
coarsened until the coarse system reaches a size with less than 1000 unknowns. On
the coarsest level, the system is solved by a direct solver. The operators on the
coarser levels are constructed directly as the discretization of the equation on the
respective coarse meshes. The smoother is a block Gauss—Seidel method, in which
the block size corresponds to the number of face-DoFs. In pre-smoothing, the iteration
is performed in lexicographic order, while in post-smoothing, it is performed in anti-
lexicographic order to ensure the symmetry of the overall iteration. The multigrid
cycles will vary depending on the test. An L?-orthogonal Legendre basis is chosen to
represent the local polynomials on cells and faces. The stopping criterion is set to
lr|l2/|Ibll2 < 1078, where r denotes the residual vector, b the right-hand side of the
linear system, and | - || the Euclidean norm on the vector space of coordinates.

4.2. Homogeneous diffusion on structured meshes. The diffusion tensor
field is constant across the domain and equals the identity matrix. The model problem
is discretized using four structured meshes: Cartesian and triangular in 2D, Cartesian
and tetrahedral in 3D. The mesh hierarchies are constructed from the fine mesh by
standard coarsening. This strategy ensures the hierarchical nestedness as well as
geometrically similar elements at every level. Note that the tetrahedral meshes are
built from the Cartesian ones, where each cube is divided into six geometrically similar
tetrahedra (cf [3, Figure 9]).

4.2.1. Preliminary tests using classical multigrid cycles. Figure 4.1 presents
performance results of the multigrid algorithm as a solver, using the cheapest sym-
metric V-cycle that ensures convergence in a reasonable number of iterations as well
as good scalability, namely V(1,1) for 2D meshes and the 3D Cartesian one, V(2,2)
for the tetrahedral mesh. Leaving the lowest order case aside for the moment, these
results are consistent with the desired multigrid property of a convergence rate that is
independent of the mesh size and the number of levels, provided that a sufficient (yet
reasonable) number of smoothing steps are performed. Moreover, although the num-
ber of iterations may increase moderately with the polynomial degree, the algorithm
still exhibits the same desirable properties for high approximation orders.

For the lowest order case k = 0, the results are plotted throughout the tests in
dashed lines. Here the results are less clear. Although in case of k = 0 we still ob-
serve good scalability on Cartesian meshes, the convergence on the triangular meshes
deteriorates with growing mesh size. For the tetrahedral mesh in 3D and k£ = 0 no
data is shown in Figure 4.1 since this version does not converge with the V(2,2) cycle.
Here, more smoothing steps would be needed to ensure convergence.
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Fig. 4.1: Number of iterations to achieve convergence for the homogeneous problem on
structured meshes: 2D Cartesian (top left), 2D triangular (top right), 3D Cartesian
(bottom left), 3D tetrahedral (bottom right). The first three are solved using the
V(1,1) cycle, while the last one (tetrahedral mesh) is solved using the V(2,2) cycle.

4.2.2. Multigrid cycle optimization. While the above results demonstrate
the asymptotic optimality of our new multigrid algorithm, we now proceed to study-
ing how the inherent design options of multigrid can be used to further improve the
real-life efficiency. In particular, we identify the most efficient cycle structure and
how much pre- and post-smoothing should be performed. To assess the performance
impact of these choices, it is necessary to define a criterion modeling the trade-off
between convergence rate and iteration cost. We emphasize that the sole number
of iterations is not sufficient to assess the solver’s overall efficiency, because the cost
of each iteration must be taken into account. Hence, Figure 4.2 compares the per-
formance, measured in total computational work to reach convergence, of different
multigrid cycles on a 2D test problem (triangular mesh, N = 512, k = 1). In the
left plot, the numerical values have been obtained by taking the theoretical computa-
tional work (in flops) of the multigrid algorithm, using the following simplifying rules:
(i) the asymptotic value of the work count is used, meaning that only the dominant
term (in the matrix size or non-zero entries) is kept; (ii) the work of the direct solver
on the coarsest grid is neglected. The total number of iterations required to achieve
convergence is displayed for information in the right plot. Recalling that all tests stop
upon reaching the same convergence criterion, we consider all the solutions produced
to be equivalent: for instance, V(1,1) is about 50% more computationally expensive
than V(0,2) for the same quality result. Note that V- and W-cycles have been tested,
and exhibit, for the same numbers of smoothing steps, the same convergence rate.
Since W-cycles are more computationally expensive by definition, the corresponding
results are not presented in further detail. The comparisons have also been made in
terms of CPU time in order to compare the estimates of computational work with
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respect to a hard practical criterion. Again, these results show a similar ranking and
allow to draw the same conclusions; so they are not displayed in detail either.

Now, we can comment on the importance of post-smoothing: for example, amongst
V(1,2), V(2,1) and V(0,3), although they all have the same total number of smoothing
steps, and consequently the same cost per cycle iteration, V(0,3) is found to be the
most efficient. More generally, among all cycles V(vq,v5) with v; +v5 = v, the option
1 = 0 and v, = v appears to be the most efficient. Moreover, we find that the extra
cost of more post-smoothing is compensated to a great extent by a better convergence
rate. Particularly, moving away from the sweet spot V(0,v), e.g. by taking V(0,v+1)
instead, only induces a minor overhead, which grants a pragmatic flexibility in the
actual choice of the number of post-smoothing steps.

Figure 4.3 presents the same tests in 3D on the tetrahedral mesh. They also clearly
show the superiority of cycles with post-smoothing only. Since both the lexicographic
and the antilexicographic Gauss-Seidel smoothers depend on the numbering of the
DoF's, we have checked whether these observations depend on a particular numbering
of the unknowns. To this end, we have additionally performed experiments with the
damped block Jacobi smoother with w = 2/3 as the under-relaxation parameter (see
Figure 4.4). This test leads to the same qualitative conclusions, but with a milder
quantitative effect. Based on these measures, we settle for V(0,3) in 2D and V(0,6) in
3D as the most efficient cycles when using block Gauss-Seidel. In Figure 4.5 we present
the results of the same scalability tests as in Figure 4.1 using these “optimized” cycles.
Besides the expected improved convergence rates, we point out that the iteration count
for different polynomial degrees are now almost the same: in all cases, the number
of iterations lies in a narrow interval regardless of the polynomial degree. Again the
lowest order on the tetrahedral mesh constitutes an exception, since the method still
diverges in that case.

The multigrid algorithm can be used as a preconditioner for Krylov-space meth-
ods and in particular for the Conjugate Gradient (CG) method. In the latter case,
the algorithm requires formally a symmetric positive definite preconditioner to ensure
convergence. Consequently, the choice of a symmetric and therefore suboptimal multi-
grid cycle seems to be necessary, unless the conditions of [16] are met. A thorough
investigation of the multigrid algorithm of this article as preconditioner is outside the
scope of this article.

4.3. Heterogeneous diffusion. The domain is split into four quadrants as il-
lustrated in Figure 4.6a. The heterogeneity pattern is such that each pair of opposite
quadrants have the same, homogeneous, diffusion coefficient. On each homogeneous
part Q;, i = 1,2, the diffusion tensor is defined as K|q, := k;14, where k; is a positive
scalar constant and I; denotes the identity matrix of size d.

Our first test evaluates the convergence rate for varying values of the coefficient
ratio px := k1/k2 in the range 1 < pg < 108. The results demonstrate robustness
of the algorithm with respect to the heterogeneity. Regardless of the magnitude of
the coefficient ratio, the convergence rate remains unchanged and matches that of the
homogeneous case.

In [18], Kellogg studied the analytical solution of a specific case of such a config-
uration. The source function is set f = 0 and non-homogeneous Dirichlet boundary
conditions are imposed. The particular solution u exhibits a singularity at the center
of the square and has reduced regularity v € H'*¢, 0 < ¢ < 1. Since the strength of
the singularity and thus the regularity 1 + € can be adjusted via the coefficient ratio,
this problem is often used to benchmark discretizations and solvers. Here we set the
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Fig. 4.2: Cycle comparison on the 2D test problem, triangular mesh, N = 512,
k=1 (= 1.6 x 10° DoFs). The pre-smoother is the lexicographic block Gauss-Seidel,
the post-smoother is the antilexicographic block Gauss-Seidel. In the first plot, the
numerical values in flops of the computational work are normalized by the lowest
one. V(0,1) and V(1,0), being very ineflicient in comparison to the others, are not

presented here.
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Fig. 4.3: Cycle comparison on the 3D test problem, tetrahedral mesh, N = 32, k=1
(=~ 1.2 x 10° DoFs). The pre-smoother is the lexicographic Block Gauss-Seidel, the
post-smoother is the antilexicographic Gauss-Seidel. In the first plot, the numerical
values in flops of the computational work are normalized by the lowest one. The
first cycles, with less than 3 or 4 total iterations are not efficient and therefore not
presented here.

parameters of the Kellogg problem such that we have a strong singularity of ¢ = 0.1,
corresponding to px =~ 161. The analytical solution w is illustrated in Figure 4.6b,
and Figure 4.7 shows the scalability of the multigrid solver and its robustness with
respect to the polynomial degree. Here, the V(1,1) cycle is used, but other cycle types
exhibit the same properties.
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Fig. 4.4: Cycle comparison on the 2D test problem, triangular mesh, N = 512,
k=1 (=~ 1.6 x 10° DoFs). The pre- and post-smoothers are the damped block Jacobi
smoother with the relaxation parameter 2/3. In the first plot, the numerical values
in flops of the computational work are normalized by the lowest one. The first cycles,
with less than 3 or 4 total smoothing steps are not efficient and therefore not presented
here.
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Fig. 4.5: Number of iterations to achieve convergence for the homogeneous problem
on structured meshes: 2D Cartesian (top left), 2D triangular (top right), 3D Carte-
sian (bottom left), 3D tetrahedral (bottom right). The V(0,3) cycle is used for 2D
problems, the V(0,6) for 3D. The absence of the lowest order case on the tetrahedral
mesh is due to the divergence of the multigrid method.

4.4. Impact of different choices in the algorithm.

4.4.1. Alternative prolongation operators. Here we discuss alternatives in
the coarse reconstruction of the cell-defined polynomial and in the trace prolongation
on the fine faces. Especially, in the definition of ©,_1, reconstructing a polynomial of
higher degree may be optional. As a matter of fact, only solving the cell unknowns by
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(a) Chiasmus heterogeneity pattern. (b) Kellogg’s solution.

Fig. 4.6: (a) Square domain partitioned into four quadrants defining an heterogeneity
pattern in the shape of a chiasmus. (b) Analytical solution of the Kellogg problem.
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Fig. 4.7: Scalability results on the Kellogg problem. Number of V(1,1) iterations to
achieve convergence for a growing number of DoF's.

(3.4) and skipping the higher order reconstruction (3.5) could be enough to construct
a suitable cell-based polynomial from which to take the trace on the fine faces. In that
second step of the prolongation, namely Hﬁ,l, we could also rely on the nestedness
of the meshes to identically transfer the polynomials on the coarse faces to the fine
grid using the canonical injection', instead of taking the average of the traces of
the cell-based polynomials on both sides (see (3.6)). Table 4.1 summarizes these
options. In order to quantify the impact of the choices made, Figure 4.8 compares
the performance in term of scalability of the four option combinations applied to a
homogeneous test problem. With the optimal V(0,3) cycle (left plot), the results
show the good scalability of all options, with a better convergence rate for the final
algorithm (about 15% better than with any other option combination). However,
the results with the V(1,2) cycle (right plot) indicate that the differences between
options may amplify when using non-optimal cycles. Indeed, in this case, it seems that
taking the average on both sides instead of using the canonical injection on the faces
geometrically shared by the coarse and fine meshes becomes an important criterion

IHere, the canonical injection refers to the linear operator that identically transfers the elements
from one space to a larger one. It is not to be mistaken with the straight injection designating, in
multigrid terminology, a special type of restriction operator.
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to achieve the most scalable behaviour. On the other hand, the reconstruction of
higher degree seems to simply improve the convergence rate, with no visible impact
on scalability.

Option label \ Description

cell k+1 Formula (3.5).
Or-1 cell k Formula (3.4), the higher-order reconstruction (using p}. ')
is skipped.
average Formula (3.6).
Hﬁ_l iniection The polynomials on the coarse faces are identically
) transferred to the fine grid using the canonical injection.
Table 4.1: Summary of the 4 options defined for the algorithm.
50 T T T T T T

—a—cell k£ and injection
40 - —+—cell k and average
——cell £+ 1 and injection
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Fig. 4.8: Scalability comparison of different versions of the algorithm, applied on
the 2D homogeneous problem discretized with the structured triangular mesh for
k = 1. On the left, the V(0,3) cycle is used, on the right, V(1,2). The various option
combinations are labeled according to Table 4.1.

4.4.2. Weighting strategy for heterogeneous problems. In the same way,
in the case of a heterogeneous problem, we quantify the impact of weighting the cell
contribution in IIj_, proportionally to its diffusion coefficient via (3.8). This strat-
egy is hereafter called heterogeneous weighting, as opposed to the alternative that
is, given a non-boundary face, to take from each cell of which it is the interface an
equally weighted contribution (i.e. to use weighting factors of 1/2). The first thing
to be noted is that, if we do not use the heterogeneous weighting (3.8), our algorithm
diverges when the heterogeneity ratio pg > 50. Now, if we use the Galerkin operator
instead of the discretized operator on the coarse grids, the algorithm becomes much
more robust to high heterogeneity ratios and allows for a quantitative comparison.
Figure 4.9 illustrates the differences in the weighting strategies for an increasing het-
erogeneity ratio, using the Galerkin operator. The heterogeneous weighting ensures
perfect robustness with respect to pk regardless of the polynomial degree. But with-
out it, the convergence rate of the algorithm clearly becomes sensitive to the strength
of the discontinuity. Moreover, this sensitivity intensifies with the increase of the
polynomial degree.
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Fig. 4.9: Robustness of our multigrid algorithm for the heterogeneous 2D test problem
with (a) and without (b) the heterogeneous weighting strategy (3.8), in terms of
number of iterations to achieve convergence for various orders of magnitude of the
heterogeneity ratio px. The square domain is discretized by a Cartesian mesh with
N = 64, partitioned in four quadrants as described in 4.3. The multigrid algorithm
uses the Galerkin operator and the V(0,3) cycle.

4.4.3. Role of the face coarsening. We now investigate the need for coars-
ening the faces in the coarsening strategy and show that without doing so, the
solver’s performance degrades rapidly. In our standard coarsening of uniform Carte-
sian meshes, two edges in 2D (or four faces in 3D) are ideally combined to become a
single one. Consequently, each mesh cell has four edges (or six faces in 3D), and this
on all levels. Alternatively, we also have the option that each coarse cell is represented
with eight edges, colinear by pairs (see the last (inadmissible) coarsening strategy de-
scribed by Figure 3.1). One of the effects of this alternative coarsening is that the
number of unknowns per level is reduced less aggressively. Indeed, asymptotically,
the number of unknowns is only decreasing by a factor of two per level (whether in
2D or 3D), whereas the standard coarsening rate is four in 2D and eight in 3D. For
this nonstandard coarsening, the coarse grid spaces are then enlarged. In a Galerkin
setting, the usual coarse grid spaces are subspaces of these enlarged coarse grid spaces,
and as a consequence, we expect the two-grid convergence rates to improve. This is
indeed verified, under the condition that the Galerkin operator is invertible (which is
not necessarily the case with this coarsening strategy). However, this improvement
cannot be observed in V-cycles with more levels, and not at all if we step out of the
Galerkin setting to use the rediscretized operator. This observation is caused by the
neglect of one important condition in multigrid convergence: as the smoother only
efficiently reduces the high-frequency components of the error, it is crucial that the
remaining low frequencies be seen as higher frequencies in the coarser spaces. And
this can happen only if the geometric entities on which the DoF's lie are coarsened
in between levels. As we work on the condensed system, whose unknowns rest on
the mesh skeleton, this condition means that the faces should be coarsened. Only
in this appropriate setting can the smoother at each level successfully target its own
range of frequencies. If the faces are not coarsened, the smoother on the coarser grids
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spends most of its effort to compute irrelevant solution modes, which causes the con-
vergence rate to deteriorate. Figure 4.10 illustrates this convergence degradation as
the number of DoF's (and therefore the number of levels) grows. Note that the overall
performance of the solver also reduces due to the increased amount of work and the
slower coarsening.
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Fig. 4.10: On the right, scalability test of the algorithm using a coarsening strategy
which does not coarsen faces. The test problem is the homogeneous problem on the
2D Cartesian mesh, solved by the V(0,3) cycle of our multigrid algorithm, using the
coarsening strategy described on the right-hand side of Figure 3.1. In the left plot,
standard coarsening is used in comparison.

4.5. Unstructured meshes. The convergence of a geometric multigrid method
relies on the approximation properties of the underlying discretization scheme through
its coarse grid correction step. Furthermore, most discretization schemes are sensitive
to the quality of the mesh, degrading in presence of flattened or stretched elements. As
a direct consequence, the convergence of a multigrid method is often also sensitive to
the mesh quality. The reader may refer to [1] for further details about the sensitivity of
the HHO method to the element shapes. Moreover, even when starting from a good-
quality coarse (resp. fine) mesh, the construction of a suitable mesh hierarchy may
be difficult. In such an unstructured mesh hierarchy, the distortions of the elements
must be kept under control when refining (resp. coarsening) the mesh. This is less
a problem in 2D, but it remains difficult in 3D [25, 5]. Tetrahedral mesh refinement
preserving mesh quality is still a topic of recent research [26, 22]. These difficulties
help explain why more costly cycles may be required for highly unstructured 3D
meshes.

In all the following tests, the mesh hierarchy is built by successive refinement
of a coarse mesh. In 2D, we find that the convergence on unstructured meshes is
qualitatively and quantitatively comparable to the convergence on structured meshes.
Here the V(0,3) cycle is found to be sufficient. In 3D, the lower quality of tetrahedral
meshes forces us to use costlier cycles. First of all, since the meshing method used
to discretize the different refinements of the cubic domain (described in 4.2) is not
applicable on general geometries, we investigate the impact of another, more generally
applicable, tetrahedral refinement method. The method used is inspired by Bey’s
refinement algorithm [3]. Figure 4.11 shows that trading the refinement strategy for
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one that does not conserve the topology of the tetrahedra causes a serious performance
degradation, which can be mitigated at the cost of substantially more smoothing steps.
In order to quantify the loss of performance with respect to the loss of mesh quality
upon refinement, we use the regularity indicator o, defined as

. dr

(4.1) on = Irpez% or with or = oy vT € Tn,

where dr denotes the diameter of the largest ball included in T. A good regularity
parameter is close to 1 while a bad one may be close to 0. As a reference, a cube
has a regularity parameter of 0.64. Now, the original coarse mesh, namely the cubic
domain divided into 6 geometrically identical tetrahedra, has a g, of 0.21. The so-
called Cartesian tetrahedral refinement method described in 4.2 does not change the
geometry of the refined tetrahedra, so the regularity parameter is conserved on the
refined meshes, and we have seen that the V(0,3) cycle exhibits scalable behaviour and
fast convergence. On the other hand, our custom Bey’s method degrades the mesh
quality during the first refinement (but not during the next ones), yielding in this
case a regularity parameter of 0.14, which corresponds to a loss of 1/3. Figure 4.11
shows that over three times more smoothing steps are required to compensate for the
poorer mesh quality and to recover comparable performance.

Using this time the custom Bey’s refinement method, a cycle comparison in the
model of Figure 4.3 finds V(0,10) as the most efficient cycle in this context. V(0,10) is
therefore used for the test of the highly unstructured 3D mesh presented in Figure 4.12.
In this test case, the initial coarse mesh has g = 0.10, which degrades to 0.06 after
refinement. The poor initial mesh quality and the further degradation of 40% result
in sub-optimal performance: in spite of the large number of smoothing steps, the
convergence degrades for larger meshes. Thus, the desired h-independent convergence
cannot be confirmed. Table 4.2 summarizes the impact of the mesh quality and the
refinement method on the performance of the multigrid algorithm.

—e— Custom Bey’s refinement, V(0,6

30 -| | —m— Custom Bey’s refinement, V(0,8
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Fig. 4.11: Comparison on the cubic domain of the Cartesian tetrahedral refinement
method described in 4.2 and the custom Bey’s refinement method, with different
cycles, in terms of scalable performance.

Having stated the sensitivity of the algorithm to the mesh quality, along with the
known problem of refining (resp. coarsening) unstructured tetrahedral meshes without
(too much) degradation, it is important to recall HHO as a polyhedral method. In
this context, taking advantage of the flexibility of general polyhedral meshes is one
way of overcoming these difficulties and keep the mesh quality under control. For the
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Fig. 4.12: On the left: tetrahedral mesh of a plate with four polyhedral holes going
through the object from one side to the other. On the right: Scalability results of the
multigrid algorithm, using the V(0,10) cycle and Bey’s tetrahedral refinement. The
case k = 0 is divergent.

Domain Mesh Refinement 01 or | Quality | Required
method loss cycle
Cartesian Standard 0.64 | 0.64 0% V(0,3)
Cube Tetrahedral | Cartesian tet. | 0.21 | 0.21 0% V(0,6)
Tetrahedral | Custom Bey | 0.21 | 0.14 | 33% V(0,10)

Plate w/ holes | Tetrahedral | Custom Bey | 0.10 [ 0.06 | 40% | > V(0,10)

Table 4.2: Numerical values of the mesh quality and the quality loss caused by the
refinement method, along with their consequences on the minimum cycle required
to retrieve a close-to-optimal convergence rate. g7 (resp. or) corresponds to the
quality indicator (4.1) of the initial coarse mesh (resp. of the fine mesh obtained by
the application of the refinement method). The domain “Plate w/ holes” refers to
Figure 4.12.

same purpose, the use of non-nested meshes, discussed in the next paragraph, can
constitute an additional tool.

4.6. Non-nested meshes. In this section we relax the requirement that the
meshes must be nested. Although no rigorous redefinition of the algorithm is made
here, we will explain the changes that are necessary for non-nested meshes.

e Coarsening strategy: The hierarchy (7¢)s=1...1 is now non-nested, in which
we consider two successive levels ¢ (fine) and ¢ — 1 (coarse). Figure 4.13
presents an example of two such levels. For a fine element T' € T;, we define
its associated coarse element T¢~' € T;_; as the one coarse element that
contains “most of” T, and we make the assumption that the definition used
for “most of” ensures existence and uniqueness of T*~! for all T € 7;. In
our implementation, we have considered that a coarse element contains “most
of” the fine element 7' if it contains its centroid. Note that when the meshes
are nested, T¢~! simply reduces to the coarse element that geometrically
embeds T. Now, given a fine face ' € Fy, F is either absent from the coarse
mesh (black dotted edges in Figure 4.13), or still geometrically present in
a coarsened form, which we denote by F*~! (solid edges). Non-nestedness
implies that F may no longer be geometrically embedded in F*~! (like blue
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dotted edges are not embedded in the coarse red ones). If so, we talk of non-
nested faces. The assumption that discontinuities in the diffusion coefficient
do not happen inside elements consequently implies that the faces describing
such discontinuities must still be nested.

e Trace on the fine faces: Although the reconstruction from the coarse faces to
the coarse cells remains the same, inasmuch as the fine mesh is not involved,
taking the trace of a coarse cell-defined polynomial on a fine face which is
not fully included in the closure of the coarse cell is no longer possible. As
example, consider in Figure 4.13 one coarse triangle with a red edge and
pointing to the center of the figure: the blue edges corresponding to the
refinement of the red edge are fully outside the coarse triangle, while two
interior fine edges (which are simply no present on the coarse mesh in a
coarsened form) are only partially included in the coarse triangle. In this
case, we consider that the cell-defined polynomial is extended outside of the
cell boundaries to overlap the targeted fine cells, which allows to take the
trace on those faces. Considering v € U%‘tll and a face F € F}, formula (3.6)
then becomes

(If_10)F := wr,p (017, |7 + wr Th(0)7,)| P

where v is the extension of vjpe—1 to Ty UT5.
These remarks are equivalent to stating that non-nested faces correspond to slight
perturbations of nested ones.

Our algorithm is tested on a hierarchy of non-nested 2D meshes obtained by
successive refinements for a domain containing a disk. The curved boundary of this
disk is approximated more accurately with each refinement, see Figure 4.14. The
results of Figure 4.15 show that the algorithm does not suffer from the non-nestedness
in this form.

This observation is important regarding the design of coarsening strategies for un-
structured meshes. In this case, agglomerating faces that are close to being coplanar
(close to colinear in 2D) to form coarser ones seems possible. However, the non-nested
meshes must be employed with great care. Although this leads to efficient algorithms
for the homogeneous diffusion case when approximating complex fine shapes, it loses
its efficiency when used to approximate the fine geometry of the coefficient disconti-
nuities. Indeed, as said above, the faces describing the discontinuities must be nested.
Indeed, regarding the test case of Figure 4.14, if we set the diffusion tensor to k114
inside the circle approximation at every level, and to koI, outside, the multigrid fails
to stay robust to the heterogeneity ratio ko /k1: it quicky diverges with the discretized
operator or yields very poor convergence (equivalent to the right plot of Figure 4.9)
with the Galerkin operator.

5. Conclusion. The multigrid solver proposed and developed in this article is
fast, scalable with respect to the mesh size, and robust to heterogeneity for elliptic
problems discretized with HHO, provided a good enough mesh is used. Moreover,
these desirable properties hold also for higher polynomial order. The algorithm pro-
posed works for general meshes. However, the need to coarsen the faces can make the
design of admissible coarsening strategies more difficult. While excellent convergence
rates are observed for canonical nested mesh hierarchies, additional complexity must
be expected when the faces are not co-planar. We have shown that fine faces that are
sufficiently close to being co-planar may be approximated on coarse meshes by straight
coarse faces without loss of performance. This can be exploited to construct coarse
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in dotted lines, the coarse mesh in solid lines. The non-nestedness is highlighted by

Fig. 4.13: Example of admissible non-nested coarsening. The fine mesh is represented
colors: the blue fine edges are coarsened into the red ones.

Fig. 4.14: Geometry of a disk embedded in a square, coarsely meshed and successively
refined by a splitting method. Each refinement approximates more accurately the
disk’s shape, consequently yielding a mesh hierarchy that is non-nested at the disk’s
boundary. The non-nestedness of the first two meshes is highlighted in Figure 4.13.
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meshes in which the faces are also coarsened. Additionally, using non-nested meshes
may also offer ways to avoid the degradation of the mesh quality upon coarsening or
refinement.

The work on non-nested, unstructured meshes is motivated by the aim to provide a

solver for the free, open-source CFD software code_saturne [2], developed and released
by EDF.
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