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AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER1

DISCRETIZATIONS ∗2

P. MATALON †3

In collaboration with: D. A. Di Pietro, P. Mycek, U. Rüde, D. Ruiz4

Abstract. We consider a second order elliptic PDE discretized by the Hybrid High Order (HHO)5
method, for which globally coupled unknowns are located at faces. To efficiently solve the resulting6
linear system, we propose a geometric multigrid algorithm that keeps the degrees of freedom on the7
faces at every level. The core of the algorithm resides in the design of the prolongation operator that8
passes information from coarse to fine faces through the reconstruction of an intermediary polynomial9
of higher degree on the cells. Higher orders are natively handled by the conservation of the same10
polynomial degree at every level. The proposed algorithm requires a hierarchy of nested meshes11
where the faces are also successively coarsened. Numerical tests on homogeneous and heterogeneous12
diffusion problems in square and cubic domains show fast convergence, scalability in the mesh size13
and polynomial order, and robustness with respect to heterogeneity of the diffusion coefficient.14

Key words. Partial Differential Equations, Hybrid High-Order, Multigrid, static condensation.15

1. Introduction. We address in this work the solution of large sparse linear16

systems arising from Hybrid High-Order (HHO, [4, 3]) discretizations. HHO methods17

hinge on discrete unknowns that are broken polynomials on the mesh and its skeleton,18

and are designed so that element-based unknowns are not directly coupled with each19

other. As a result, the corresponding degrees of freedom (DoFs) can be efficiently20

eliminated from the linear system by computing a Schur complement element by el-21

ement, a procedure known in the mechanical literature as static condensation. The22

discrete solution can then be obtained in two steps: first, the Schur complement sys-23

tem, hereafter called trace system, is solved, yielding the values of the face unknowns;24

second, interior unknowns are recovered element-wise by solving a small local system.25

HHO stands amongst hybrid methods as one of the most efficient, owing to a special26

stabilization term that permits to gain one order of convergence with respect to other27

methods based on a similar set of unknowns [1].28

The main difficulty in designing a geometric h-multigrid algorithm for trace sys-29

tems lies in the fact that functional spaces on the mesh skeleton may be non-nested30

when coarsening. This prevents the straightforward construction of a multigrid al-31

gorithm based on standard ingredients. Although no existing geometric h-multigrid32

method has specifically targeted HHO so far, a few trace system solvers have been33

designed over the last years. In [2], the authors recast the trace functions into func-34

tions defined over the elements in order to make use of a known efficient solver. A35

different approach is considered in [8], where an hp-multigrid algorithm based on trace36

functions at every level is proposed.37

In this paper, we propose a novel geometric h-multigrid algorithm (i) based on38

approximation spaces supported by the mesh skeleton at every level, (ii) targeting39

HHO discretizations by making use of the underlying high-order potential reconstruc-40

tion, (iii) natively managing higher orders (as opposed to, e.g., putting a p-multigrid41

on top of an h- one). The polynomial order of approximation is preserved at every42
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2 P. MATALON

level at the sole cost of using a blockwise smoother instead of a pointwise one. This43

approach originates from the remark that a high-order finite element discretization44

yields a block matrix, whose diagonal blocks are formed by the degrees of freedom45

connected to the same cell. This configuration usually destroys the desirable M- or46

H-matrix structure and, along with it, the convergence of pointwise smoothers; on47

the other hand, the block structure paves the way to using block versions of similar48

smoothers. In a more functional way of thinking, relaxing together the DoFs related49

to the same polynomial comes as intuitive. The robustness of multigrid algorithms50

using block smoothers for high-order methods has been experimentally illustrated in51

[5] and later used in practical solvers such as [7].52

The rest of this work is organized as follows. Section 2 summarizes the construc-53

tion of the HHO method. Section 3 is devoted to the construction of the multigrid54

algorithm and illustrates how it takes advantage of the HHO potential reconstruction55

operator. Numerical results for various polynomial degrees are presented in Section 4,56

considering both homogeneous and heterogeneous diffusion problems in two and three57

space dimensions. The numerical experiments show that the number of iterations is58

nearly independent of the mesh size and of the presence of jumps in the diffusion59

coefficient. Finally, future research directions are discussed in conclusion.60

2. HHO formulation.61

2.1. Notation. Let d ∈ {2, 3} be the space dimension and Ω a bounded poly-62

hedral domain of Rd. Ω is discretized by the mesh (Th,Fh), where Th denotes the63

set of polyhedral elements T , Fh the set of faces F , and h := maxT∈Th diameter(T ).64

For T ∈ Th, FT denotes the set of faces of T , and for F ∈ FT , nTF denotes the unit65

vector normal to F pointing out of T . For X ⊂ Ω, L2(X) denotes the Hilbert space66

of square-integrable functions defined on X, equipped with its usual inner product67

(u, v)X :=
∫
X
uv. The same notation is used for vector-valued functions of [L2(X)]d:68

(u, v)X :=
∫
X
u · v. H1(X) denotes the Sobolev space of order 1, i.e. the func-69

tions of L2(X) whose partial derivatives are also square-integrable. H1
0 (X) defines70

the subspace of H1(X) whose functions vanish on the boundary ∂X in the sense of71

traces. Finally, P`(X) denotes the space spanned by the restriction to X of d-variate72

polynomials of total degree at most `, ` ∈ N.73

2.2. Model problem. We consider the following diffusion problem with homo-74

geneous Dirichlet boundary conditions:75

(2.1)

{
−∇ · (K∇u) = f in Ω,

u = 0 on ∂Ω,
76

where the diffusion tensor K : Ω→ Rd×dsym (with Rd×dsym denoting the space of symmetric77

d× d real matrices) is assumed uniformly elliptic and piecewise constant over Ω. The78

variational formulation of (2.1) reads79

(2.2) Find u ∈ H1
0 (Ω) such that a(u, v) =

∫
Ω

fv ∀v ∈ H1
0 (Ω),80

where the bilinear form a : H1(Ω)×H1(Ω)→ R is such that, for all v, w ∈ H1(Ω),81

a(v, w) := (K∇v,∇w)Ω :=

∫
Ω

K∇v · ∇w.82

We assume in what follows that Th partitions Ω in such a way that the diffusion83

tensor is constant inside each element, and we denote KT := K|T for all T ∈ Th.84
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AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER DISCRETIZATIONS 3

Decomposing the global integral in (2.2) as a sum of local integrals on the elements85

of the mesh Th, problem (2.2) becomes86

(2.3)
∑
T∈Th

(KT∇u,∇v)T =
∑
T∈Th

(f, v)T ∀v ∈ H1
0 (Ω).87

2.3. Discrete spaces and operators. We briefly recall the standard HHO88

discretization of problem (2.3). For a more comprehensive presentation, see [3, §3.1].89

The HHO method is based on discrete unknowns at cells and faces, and the90

adjective hybrid refers to their different nature. Given an arbitrary polynomial degree91

k ≥ 0, the discrete unknowns can be interpreted as the polynomial moments of degree92

up to k of the solution on the corresponding geometric entity.93

Specifically, for all T ∈ Th, we introduce the following space of local variables:94

UkT :=
{
vT := (vT , (vF )F∈FT

) | vT ∈ Pk(T ), vF ∈ Pk(F ) ∀F ∈ FT
}
.(2.4)9596

The discrete variables associated to a function v ∈ H1(T ) are obtained through the97

local interpolation operator IkT : H1(T )→ UkT defined by98

(2.5) IkT v :=
(
πkT v, (π

k
F v)F∈FT

)
,99

where, for any X ∈ Th∪Fh, πkX : L2(X)→ Pk(X) denotes the L2-orthogonal projector100

on Pk(X). Given the discrete variables IkT v ∈ U
k
T associated to v ∈ H1(T ), a higher-101

degree approximation of v can be reconstructed inside T . This is achieved by means102

of the local potential reconstructor pk+1
T : UkT → Pk+1(T ) such that, for all vT :=103

(vT , (vF )F∈FT
) ∈ UkT , pk+1

T vT is the unique polynomial of degree at most k + 1104

verifying105

(2.6a)

(2.6b)


(KT∇pk+1

T vT ,∇w)T = −(vT ,∇ · (KT∇w))T +
∑
F∈FT

(vF ,KT∇w · nTF )F

∀w ∈ Pk+1(T ),

(pk+1
T vT , 1)T = (vT , 1)T .

106

It can be checked that, for any v ∈ H1(T ), pk+1
T (IkT v) coincides with the oblique107

elliptic projection of v on Pk+1(T ); see [3, §3.1.2].108

The global space of discrete unknowns is defined as109

Ukh := {vh := ((vT )T∈Th , (vF )F∈Fh
) | vT ∈ Pk(T ) ∀T ∈ Th,

vF ∈ Pk(F ) ∀F ∈ Fh},
110

and for a generic vector of discrete unknowns vh ∈ Ukh, we denote its restriction111

to T by vT := (vT , (vF )F∈FT
) ∈ UkT . We also define Ukh,0 as the subset of Ukh with112

boundary face unknowns equal to zero.113

2.4. HHO discretization of the model problem. The global bilinear form114

ah : Ukh × U
k
h → R is assembled from elementary contributions as follows:115

ah(uh, vh) :=
∑
T∈Th

aT (uT , vT ),116

where for all T ∈ Th, the local bilinear form aT : UkT × U
k
T → R is defined as117

(2.7) aT (uT , vT ) := (KT∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ).118
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4 P. MATALON

The first term is responsible for consistency while the second, involving the bilinear119

form sT : UkT × UkT → R, is required for stability. For all T ∈ Th, sT is designed120

to depend on its arguments only through the difference operators δkT and (δkTF )F∈FT
121

defined for all vT ∈ U
k
T as122

(δkT vT , (δ
k
TF vT )F∈FT

) := IkT (pk+1
T vT )− vT .123

These operators capture the higher-order correction that the operator pk+1
T adds to124

the respective L2-projections of a function on the cell and faces. A classical expression125

for sT is the following:126

sT (vT , wT ) :=
∑
F∈FT

KTF

hF
((δkTF − δkT )vT , (δ

k
TF − δkT )wT )F ,127

where KTF := KTnTF · nTF . Note that other expressions are possible but will not128

be considered here. For more details about the stabilization, the reader can refer to129

[3, §2.1.4].130

The global discrete problem reads131

(2.8) Find uh ∈ U
k
h,0 such that ah(uh, vh) =

∑
T∈Th

(f, vT )T ∀vh ∈ U
k
h,0.132

2.5. Assembly and static condensation. The local contributions correspond-133

ing to the representations, in the selected basis for Ukh,0, of the bilinear form aT (cf.134

(2.7)) and of the linear form Pk(T ) 3 vT 7→ (f, vT )T ∈ R correspond, respectively, to135

the matrix AT and to the vector BT such that136

(2.9) AT :=

(
ATT ATFT

AFTT AFTFT

)
, BT :=

(
bT
0

)
,137

in which the unknowns have been numbered so that cell unknowns come first and face138

unknowns come last. After assembling the local matrices, we end up with a global139

linear system of the form140

(2.10)

(
AThTh AThFI

h

AFI
hTh

AFI
hF

I
h

)(
vTh
vFI

h

)
=

(
bTh
0

)
,141

where the unknowns corresponding to the boundary faces have been eliminated by142

strongly enforcing the Dirichlet conditions, hence the notation F I
h, denoting the subset143

of interior faces. Because cell-DoFs are entirely decoupled from neighbouring cells,144

AThTh is block-diagonal, therefore inexpensive to invert. The static condensation145

process takes advantage of this property by locally eliminating the cell-DoFs: it goes146

by expressing vTh in terms of vFI
h

in the first equation of (2.10):147

(2.11) vTh = A−1
ThTh(bTh −AThFI

h
vFI

h
),148

and then replacing vTh with its expression (2.11) in the second equation:149

(2.12) (AFI
hF

I
h
−AFI

hTh
A−1
ThThAThFI

h
)vFI

h
= −AFI

hTh
A−1
ThThbTh ,150

thus yielding a smaller system, involving only face unknowns. The main advantage151

of this technique is the reduction of the problem size, especially at high-order.152
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AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER DISCRETIZATIONS 5

3. Multigrid algorithm. In this section, we present a geometric multigrid al-153

gorithm to efficiently solve the condensed system (2.12). The method we propose154

respects the unknowns of the condensed system by maintaining face-defined functions155

at every level, and works in synergy with the discretization through intergrid transfer156

operators based on the mathematical operators used to formulate the HHO problem.157

Moreover, the algorithm is not restricted to the lowest order, it inherently manages158

any arbitrary order of approximation without resorting to an additional p-multigrid,159

which, in practice, can be seen as a valuable reduction of the implementation cost.160

3.1. Coarsening strategy. The levels of the multigrid method are decreasingly161

numbered from L to 1, L being the finest and 1 the coarsest. Relatively to those levels,162

we consider a hierarchy of nested polyhedral meshes (T`)`=1..L, which we assume to163

successively coarsen not only elements, but also faces. Standard coarsening of struc-164

tured Cartesian and triangular meshes, as well as unstructured meshes obtained from165

successive refinements of an initial coarse mesh by a structured refinement method166

fall under the scope of this assumption; examples of admissible coarsening strategies167

are illustrated in Figure 3.1. Requiring the coarsening of the faces is justified by our168

algorithm being face-defined at every level. Indeed, the smoother applies to faces the169

same way it applies to elements in a classical element-defined multigrid method: once170

the high frequencies of the error have been annihilated on the fine mesh, the smoother171

requires coarser elements to reach the low frequencies on the coarse mesh. Likewise,172

faces need to be coarsened as well. The consequence of a face not being coarsened173

between a fine and a coarse mesh would be to keep the smoother working on the same174

range of frequencies, leaving it unable to efficiently reduce the lowest ones.175

•
•
•

•
•
•

•
•
•

3

• •

• •

•
•
•

•
•
•

•
•
•

3

• •

• •

•
•
•

•
•
•

•
•
•

7

• •

• •

Fig. 3.1: Coarsening examples. The first two are admissible, whereas the third one is
not: edges have been removed, but none of the remaining ones has been coarsened.

In order to keep the diffusion coefficient piecewise constant inside each coarse176

element, we also take the assumption that the mesh hierarchy does not agglomerate177

elements across discontinuities of the coefficient. For every mesh T`, we denote by178

F` the corresponding set of faces. Given an element T ∈ T`, FT still denotes the set179

of faces in F` that lie on the boundary of T . Reciprocally, given a face F ∈ F`, we180

denote by TF the set of elements T such that F ∈ FT . (Note that card(TF ) = 2 for181

interior faces and card(TF ) = 1 for boundary faces.)182

3.2. Approximation spaces. We consider the same polynomial degree k ∈ N183

on the faces of each level. For all ` ∈ {1, . . . , L}, we consider the approximation space184

M` defined as the broken polynomial space of total degree at most k on the mesh185

skeleton:186

M` := Pk(F`) := {vF`
∈ L2(F`) | vF`

|F ∈ Pk(F ) ∀F ∈ F`}.187

Additionally, we define the higher-order broken space on the mesh itself:188

V` := Pk+1(T`) := {vT` ∈ L2(T`) | vT` |T ∈ Pk+1(T ) ∀T ∈ T`}.189
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6 P. MATALON

3.3. Prolongation. We consider two successive levels ` (fine) and `−1 (coarse).190

In this algorithm, faces support the functions at every level. To prolongate a coarse191

function onto the fine faces, including some that are not kept on the coarse mesh, we192

propose an intermediary step that passes through the cells (Figure 3.2). Following193

this idea, the prolongation operator P : M`−1 →M` is defined as the composition194

(3.1) P = IM`

V`−1
◦ IV`−1

M`−1
,195

where I
V`−1

M`−1
: M`−1 → V`−1 reconstructs a coarse polynomial of degree k + 1 defined196

on the cells from face unknowns; IM`

V`−1
: V`−1 → M` computes a trace of degree k on197

the fine faces of the cell-defined polynomial of degree k + 1.198

interior
interpolation

trace on the
fine faces

Fig. 3.2: Prolongation from coarse to fine edges.

3.3.1. IV`

M`
: from faces to cells. This operator is at the core of the algorithm199

and is what makes it original. Here, we propose to take advantage of the local re-200

construction operator pk+1
T defined by (2.6). We denote by vF`

∈ M` the operand of201

IV`

M`
and we define vF := vF`

|F for all F ∈ F`. Let T ∈ T`. Applying pk+1
T requires202

a polynomial of degree k on each of the faces, which is given by (vF )F∈FT
, as well203

as a polynomial of degree k on the cell. To obtain the latter, which we denote by204

vT ∈ Pk(T ), we reverse the static condensation performed during the assembly step205

to recover the cell-based unknowns. Let vT and (vF )F∈FT
be the respective represen-206

tations of vT and (vF )F∈FT
as vectors of coefficients in the chosen polynomial bases.207

vT is then given by the local expression of equation (2.11),208

(3.2) vT := −A−1
TTATFT

vFT
,209

where ATT and ATFT
are blocks of the local matrix defined in (2.9), and vFT

is the210

vector of coefficients that concatenates (vF )F∈FT
. Note the absence of the local right-211

hand side contribution bT , yet present in (2.11). This is justified by the operator being212

part of an intergrid operator in a multigrid context, and therefore applied to error213

vectors (as opposed to solution vectors), which do not carry affine information. Once214

vT is retrieved from (3.2), pk+1
T is finally applied to the hybrid vector (vT , (vF )F∈FT

)215

to yield a polynomial of degree k + 1 on the cell:216

(IV`

M`
vF`

)|T := pk+1
T (vT , (vF )F∈FT

).217

Figure 3.3 summarizes the process.218

local problem
solution

higher order
reconstruction

Fig. 3.3: Reconstruction of a polynomial of degree 2 from polynomials of degree 1 on
the four edges of a 2D square element.
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AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER DISCRETIZATIONS 7

3.3.2. IM`

V`−1
: from cells to faces. For F ∈ F` and v ∈ V`−1, (IM`

V`−1
v)|F is built219

as the weighted average of the the traces of v on both sides of F . The operator IM`

V`−1
220

is then constructed locally from the local L2-projectors on the faces. For all F ∈ F`,221

each element T ∈ TF of which F is a face adds a contribution:222

IM`

V`−1
:=

∑
F∈F`

∑
T∈TF

wTF π
k
F ,223

where πkF is the L2-projector on Pk(F ) and (wTF )T∈Th,F∈FT
is a family of scalar224

values deriving from the enforcement of two constraints: first, we require the operator225

to preserve constant functions (i.e. a cell-defined constant function must result, after226

application of IM`

V`−1
, in the face-defined constant function of same value), which leads227

to the condition228

(3.3) ∀F ∈ F`,
∑
T∈TF

wTF = 1.229

Next, we require the element contribution on each side of F to be weighted propor-230

tionally to its diffusion coefficient. For all T1, T2 ∈ TF , this translates to231

(3.4)
wT1F

wT2F
=
KT1F

KT2F
,232

where we recall that, for all T ∈ TF , KTF := KTnTF ·nTF . Enforcing both constraints233

(3.3) and (3.4) finally imposes, for all F ∈ F`,234

wTF :=
KTF∑

T ′∈TF KT ′F
∀T ∈ TF .235

3.4. Multigrid components. The prolongation operator P is defined by (3.1).236

The restriction operator R is defined as the adjoint of P in the usual way. Interpreted237

algebraically as matrices, R = PT . Note that IM`

V`−1
does not distinguish the fine238

faces kept on the coarse grid from those removed; consequently, the polynomials on239

coarse faces are not transferred identically to the fine grid, but instead take on new240

values coming from the (weighted) average of the reconstructed cell-polynomials on241

each side. The alternative way of prolongating coarse functions from coarse faces to242

their respective identical fine faces, namely keeping them unchanged, has also been243

tested and does not yield a scalable algorithm. This observation is consistent with244

the fact that solving the local problems brings additional information that the coarse245

polynomials do not possess. In addition, the reconstruction in a higher degree also246

results in higher accuracy in the case where two fine faces are agglomerated into a247

single coarse one: the polynomial of degree k + 1 on the coarse face can induce two248

different polynomials of degree k on the two corresponding fine faces, which could not249

happen if the reconstruction was only of degree k.250

The coarse grid operator at level `−1 can be chosen either as the discretized oper-251

ator on the respective coarse mesh, or as the Galerkin construction: A`−1 := RA`P .252

The numerical tests show equivalent performances.253

In order to relax together the DoFs related to the same polynomial function, block254

versions of standard fixed-point smoothers are chosen, whose block size corresponds255

to the number of DoFs per face. Only block Gauss Seidel has been considered in the256

experiments.257
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8 P. MATALON

4. Numerical results.258

4.1. Experimental setup. The numerical tests have been performed on the259

diffusion problem (2.1) in the domain Ω := (0, 1)d, d ∈ {2, 3}. The source function260

f is chosen so that the analytical solution of the homogeneous problem corresponds261

to a sine function. Given an integer N ≥ 0, the domain is discretized by a Cartesian262

grid composed of Nd square/cubic elements of width h := 1
N . In what follows, k263

denotes the polynomial degree on the faces (meaning that the HHO method ultimately264

yields an approximation of degree k + 1). Our multigrid algorithm is used to solve265

the statically condensed linear system (2.12). When the number of levels is not266

fixed, the mesh is successively coarsened until the coarse system reaches a size with267

less than 1000 unknowns. On the coarsest level, the system is solved by a direct268

solver. Operators on coarse levels are the discretized operators on the respective269

coarse meshes. The smoother is a block Gauss Seidel method, in which the block size270

corresponds to the number of face-DoFs. Unless stated otherwise, the V(1,1)-cycle is271

used: 1 sweep as pre-smoothing, 1 sweep in the reverse order as post-smoothing. The272

stopping criterion is set to ‖r‖2/‖b‖2 < 10−8, where r denotes the residual vector, b273

the right-hand side of the linear system and ‖ · ‖2 the Euclidean norm on the space274

of coefficients in the linear combinations obtained with respect to the choice of the275

L2-orthogonal Legendre polynomial basis.276

4.2. Homogeneous diffusion. The diffusion tensor is constant across the do-277

main and equals the identity matrix. Figure 4.1 summarizes the scalability results. It278

shows that the algorithm converges at a rate that is almost independent of the mesh279

size and the number of levels. Although the number of iterations increases moderately280

with the polynomial order of the approximation, the algorithm still exhibits the same281

desirable properties in higher orders.282

103 104 105 106 107

15

20

25

30

2D

Number of DoFs

It
er

at
io

n
s

k = 0 k = 1
k = 2 k = 3

104 105 106 107

3D

Number of DoFs

Fig. 4.1: Number of iterations to achieve convergence for the homogeneous problem.

In Figure 4.2, the problem is solved by the Conjugate Gradient algorithm, where283

our multigrid method is used as preconditioner: it shows the same scalability proper-284

ties, as well as a milder dependency to the polynomial degree.285

Figure 4.3 compares the performance, measured in flops and CPU time, of differ-286

ent multigrid cycles on a 3D test problem with k = 0. In the left plot, the numerical287

values have been obtained by taking the theoretical computational work (in flops)288

of the multigrid algorithm, using the following simplifying rules: (i) the asymptotic289

value of the work count is used, meaning that only the largest power term (in the ma-290

trix size or non-zero entries) is kept; (ii) the work of the direct solver on the coarsest291

grid is neglected. The comparison in CPU time plotted on the right-hand side shows292
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Fig. 4.2: Number of iterations to achieve convergence for the homogeneous problem
solved by the Conjugate Gradient preconditioned by our multigrid.

an equivalent ranking. V- and W-cycles have been tested; however, we stress that293

the W-cycle shows the same convergence rate as the V-cycle, while being costlier by294

definition; hence it is not presented here. Now, regarding the number of smoothing295

steps, we can say that V(1,2) and V(2,2) equivalently seem the most efficient cycles,296

while V(1,1) is about 30% costlier for the same result. In terms of convergence rate,297

V(1,2) and V(2,2) converge in about half the number of iterations required in V(1,1).298

1 1.1 1.2 1.3 1.4 1.5 1.6

V(0,1)
V(1,0)
V(1,1)
V(0,2)
V(2,0)
V(1,2)
V(2,1)
V(2,2)

Normalized computational work

1 1.1 1.2 1.3 1.4

V(0,1)
V(1,0)
V(1,1)
V(0,2)
V(2,0)
V(1,2)
V(2,1)
V(2,2)

Normalized CPU time

Fig. 4.3: Cycle comparison on the 3D test problem N = 64, k = 0. In each plot, the
values are normalized by the lowest one.

299

4.3. Heterogeneous diffusion. The domain is split into four quadrants. The300

heterogeneity pattern follows the diagonals, so that quadrants 1 and 3 (resp. 2 and301

4) are homogeneous. On each homogeneous part (indexed by i = 1, 2), the diffusion302

tensor is defined as Ki := κiId, where κi is a positive scalar constant and Id denotes303

the identity matrix of size d. A first test consists in observing the convergence rate304

according to the jump in the coefficient, i.e. for varying values of the ratio κ1/κ2.305

Experiments have been conducted with a jump ranging from 1 to 108. The results306

demonstrate perfect robustness of the algorithm with respect to heterogeneity; re-307

gardless of the magnitude the jump, the convergence rate remains unchanged and308

matches the homogeneous case.309

In [6], Kellogg published the analytical solution of a specific case of such a config-310

uration for a source function f ≡ 0 and non-homogeneous Dirichlet boundary condi-311

tions. The solution exhibits a singularity at the center of the square, and is known to312

be of class H1+ε, 0 < ε < 1. Since the strength of the singularity and thus the regu-313
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larity ε can be adjusted by choosing the size of the jump in coefficients, this problem314

is often used to benchmark discretizations and solvers. The parameters of our Kellogg315

test problem are set such that ε = 0.1 (the jump κ2/κ1 ≈ 161). Figure 4.4 presents316

on the left the graphical representation of the solution; on the right, the numerical317

results show the scalability and robustness of the multigrid solver with respect to the318

number of DoFs.319
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Fig. 4.4: On the left: analytical solution of the Kellogg problem. On the right:
Number of multigrid iterations to achieve convergence for a growing number of DoFs.

5. Conclusion. The multigrid solver proposed and developed in this article320

comes up as fast, scalable and robust to heterogeneity for elliptic problems discretized321

in HHO. Moreover, none of these desirable properties suffers from raising the order322

of approximation. Although no assumption is made concerning the mesh structure,323

imposing that the faces be also coarsened on coarse meshes makes the design of an324

admissible coarsening strategy for unstructured polyhedral meshes more difficult. Ad-325

ditional complexity must indeed be expected when the faces are not coplanar (resp.326

colinear in 2D).327
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