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Abstract

Purpose Manual feedback from senior surgeons observ-

ing less experienced trainees is a laborious task that is

very expensive, time-consuming and prone to subjec-

tivity. With the number of surgical procedures increas-

ing annually, there is an unprecedented need to pro-

vide an accurate, objective and automatic evaluation

of trainees’ surgical skills in order to improve surgical

practice.

Methods In this paper, we designed a convolutional

neural network (CNN) to classify surgical skills by ex-

tracting latent patterns in the trainees’ motions per-

formed during robotic surgery. The method is validated

on the JIGSAWS dataset for two surgical skills evalua-

tion tasks: classification and regression.

Results Our results show that deep neural networks

constitute robust machine learning models that are able

to reach new competitive state-of-the-art performance

on the JIGSAWS dataset. While we leveraged from

CNNs’ efficiency, we were able to minimize its black-

box effect using the class activation map technique.

Conclusions This characteristic allowed our method to

automatically pinpoint which parts of the surgery in-

fluenced the skill evaluation the most, thus allowing

us to explain a surgical skill classification and provide

surgeons with a novel personalized feedback technique.

We believe this type of interpretable machine learning

model could integrate within “Operation Room 2.0”
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and support novice surgeons in improving their skills

to eventually become experts.

Keywords kinematic data, surgical education, deep

learning, time series classification, interpretable
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1 Introduction

Over the last century, the standard training exercise

of Dr. William Halsted has dominated surgical edu-

cation in various regions of the world [18]. His train-

ing methodology of “see one, do one, teach one” is

still one of the most adopted approaches to date [1].

The main idea is that the student could become an

experienced surgeon by observing and participating in

mentored surgeries [18]. These training techniques, al-

though widely used, lack of an objective surgical skill

evaluation method [14]. Standard assessment of surgi-

cal skills is presently based on checklists that are filled

by an expert watching the surgical task [1]. In an at-

tempt to predict a trainee’s skill level without using on

an expert surgeon’s judgement, objective structured as-

sessment of technical skills (OSATS) was proposed and

is currently adopted for clinical practice [17]. Alas, this

type of observational rating still suffers from several

external and subjective factors such as the inter-rater

reliability, the development process and the bias of re-

spectively the checklist and the evaluator [8].

Further studies demonstrated that a vivid relation-

ship occurs between a surgeon’s technical skill and the

postoperative outcomes [2]. The latter approach suffers

from the fact that the aftermath of a surgery hinges

on the physiological attributes of the patient [14]. Fur-

thermore, obtaining this type of data is very strenuous,

https://doi.org/10.1007/s11548-019-02039-4
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which renders these skill evaluation techniques difficult

to carry out for surgical education. Recent progress

in surgical robotics such as the da Vinci surgical sys-

tem [9] enabled the recording of video and kinematic

data from various surgical tasks. Ergo, a substitute for

checklists and outcome-based approaches is to gener-

ate, from these kinematics, global movement features

(GMFs) such as the surgical task’s speed, time comple-

tion, motion smoothness, curvature and other holistic

characteristics [14, 24]. While most of these techniques

are efficacious, it is not perspicuous how they could be

leveraged to support the trainee with a detailed and

constructive feedback, in order to go beyond a naive

classification into a skill level (i.e., expert, intermediate,

etc.). This is problematic as feedback on medical prac-

tice enables surgeons to reach higher skill levels while

improving their performance [10].

Lately, a field entitled Surgical Data Science [16]

has emerged by dint of the increasing access to a huge

amount of complex data which pertain to the staff, the

patient and sensors for capturing the procedure and pa-

tient related data such as kinematic variables and im-

ages [6]. Instead of extracting GMFs, recent inquiries

have a tendency to break down surgical tasks into finer

segments called “gestures”, manually before training

the model, and finally estimate the trainees’ perfor-

mance based on their assessment during these individ-

ual gestures [19]. Even though these methods achieved

promising and accurate results in terms of evaluat-

ing surgical skills, they necessitate labeling a huge

amount of gestures before training the estimator [19].

We pointed out two major limits in the actual existing

techniques that estimate surgeons’ skill level from their

corresponding kinematic variables: firstly, the absence

of an interpretable result of the skill prediction that

can be used by the trainees to reach higher surgical

skill levels; secondly, the requirement of gesture bound-

aries that are pre-defined by annotators which is prone

to inter-annotator reliability and time-consuming [20].

In this paper, we design a novel architecture of con-

volutional neural networks (CNNs) dedicated to evalu-

ating surgical skills. By employing one-dimensional ker-

nels over the kinematic time series, we avoid the need

to extract unreliable and sensitive gesture boundaries.

The original hierarchical structure of our model allows

us to capture global information specific to the surgi-

cal skill level, as well as to represent the gestures in

latent low-level features. Furthermore, to provide an

interpretable feedback, instead of using a dense layer

like most traditional deep learning architectures [23],

we place a global average pooling (GAP) layer which al-

lows us to take advantage from the class activation map

(CAM), proposed originally by [23], to localize which

fraction of the trial impacted the model’s decision when

evaluating the skill level of a surgeon. Using a stan-

dard experimental setup on the largest public dataset

for robotic surgical data analysis: the JHU-ISI Gesture

and Skill Assessment Working Set (JIGSAWS) [6], we

show the precision of our FCN model. Our main con-

tribution is to demonstrate that deep learning can be

leveraged to understand the complex and latent struc-

tures when classifying surgical skills and predicting the

OSATS score of a surgery, especially since there is still

much to be learned on what does exactly constitute a

surgical skill [14].

2 Background

In this section, we turn our attention to the recent ad-

vances leveraging the kinematic data for surgical skills

evaluation. The problem we are interested in requires

an input that consists of a set of time series recorded

by the da Vinci’s motion sensors representing the in-

put surgery and the targeted task is to attribute a

skill level to the surgeon performing a trial. One of the

earliest work focused on extracting GMFs from kine-

matic variables and training off-the-shelf classifiers to

output the corresponding surgical skill level [14]. Al-

though these methods yielded impressive results, their

accuracy depends highly on the quality of the extracted

features. As an alternative to GMF-based techniques,

recent studies tend to break down surgical tasks into

smaller segments called surgical gestures, manually be-

fore the training phase, and assess the skill level of the

surgeons based on their fine-grained performance dur-

ing the surgical gestures, for example, using sparse hid-
den Markov model (S-HMM) [19]. Although the lat-

ter technique yields high accuracy, it requires manual

segmentation of the surgical trial into fine-grained ges-

tures, which is considered expensive and time-consuming.

Hence, recent surgical skills evaluation techniques have

focused on algorithms that do not require this type of

annotation and are mainly data driven [4, 11, 21, 24].

For surgical skill evaluation, we distinguish two tasks.

The first one is to output the discrete skill level of a

surgeon such as novice (N), intermediate (I) or expert

(E). For example, [24] adopted the approximate entropy

(ApEn) algorithm to extract features from each trial

which are later fed to a nearest neighbor classifier. More

recently, [21] proposed a CNN-based approach to clas-

sify sliding windows of time series; therefore, instead of

outputting the class for the whole surgery, the network

is trained to output the class in an online setting for

each window. In [5], the authors emphasized the lack of

explainability for these latter approaches, by highlight-

ing the fact that interpretable feedback to the trainees
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is important for a novice to become an expert sur-

geon [10]. Therefore, the authors proposed an approach

that uses a sliding window technique with a discretiza-

tion method that transforms the time series into a bag

of words and trains a nearest neighbor classifier cou-

pled with the cosine similarity. Then, using the weight

of each word, the algorithm is able to provide a degree

of contribution for each sliding window and therefore

give some sort of useful feedback to the trainees that

explains the decision taken by the classifier. Although

the latter technique showed interesting results, the au-

thors did sacrifice the accuracy in favor of interpretabil-

ity. On the other hand, using our fully convolutional

neural networks (FCN) we provide the trainee with an

interpretable yet very accurate model by leveraging the

class activation map (CAM) algorithm, originally pro-

posed for computer vision tasks by [23]. The second

type of problem in surgical skill evaluation is to train

a model that predicts the modified OSATS score for a

certain surgical trial. For example, [24] extended their

ApEn model to predict the OSATS score, also known

as global rating score (GRS). Interestingly, the latter

extension to a regression model instead of a classifica-

tion one enabled the authors to propose a technique

that provides interpretability of the model’s decision,

whereas our neural network provides an explanation for

both classification and regression tasks.

We present briefly the dataset used in this paper

as we rely on the features’ definitions to describe our

method. The JIGSAWS dataset, first published by [6],

has been collected from eight right-handed subjects with

three different surgical skill levels: novice (N), interme-

diate (I) and expert (E), with each group having re-

ported, respectively, less than 10 h, between 10 and 100

h and more than 100 h of training on the Da Vinci. Each

subject performed five trials of each one of the three

surgical tasks: suturing, needle passing and knot tying.

For each trial, the video and kinematic variables were

registered. In this paper, we focused solely on the kine-

matics which are numeric variables of four manipula-

tors: right and left masters (controlled by the subject’s

hands) and right and left slaves (controlled indirectly

by the subject via the master manipulators). These 76

kinematic variables are recorded at a frequency of 30

Hz for each surgical trial. Finally, we should mention

that in addition to the three self-proclaimed skill lev-

els (N,I,E), JIGSAWS also contains the modified OS-

ATS score [6], which corresponds to an expert surgeon

observing the surgical trial and annotating the perfor-

mance of the trainee. The main goal of this work is

to evaluate surgical skills by considering either the self-

proclaimed discrete skill level (classification) or the OS-

ATS score (regression) as our target variable. We con-

ceive each trial as a multivariate time series (MTS) and

designed a one-dimensional CNN dedicated to learn au-

tomatically useful features for surgical skill evaluation

in an end-to-end manner [13].

3 Methods

Our approach takes inspiration of the recent success of

CNNs for time series classification [13, 22]. Figure 1 il-

lustrates the fully convolutional neural network (FCN)

architecture, which we have designed specifically for

surgical skill evaluation using temporal kinematic data.

The network’s input is an MTS with a variable length

l and 76 channels. For the classification task, the out-

put layer contains a number of neurons equal to three

(N,I,E) with the softmax activation function, whereas

for the regression task (predicting the OSATS score),

the number of neurons in the last layer is equal to

six: (1) “Respect for tissue”; (2) “Suture/needle han-

dling”; (3) “Time and motion”; (4) “Flow of opera-

tion”; (5) “Overall performance”; (6) “Quality of final

product” [6], with a linear activation function.

Compared with convolutions for image recognition,

where usually the model’s input exhibits two spatial di-

mensions (height and width) and three channels (red,

green and blue), the input to our network is a time series

with one spatial dimension (surgical task’s length l) and

76 channels (denoting the 76 kinematics: x, y, z, . . . ).

One of the main challenges we have encountered when

designing our architecture was the large number of chan-

nels (76) compared to the traditional red, green and

blue channels (3) for the image recognition problem.

Hence, instead of applying the filters over the whole

76 channels at once, we propose to carry out different

convolutions for each group and subgroup of channels.

We used domain knowledge when grouping the differ-

ent channels, in order to decide which channels should

be clustered together.

Firstly, we separate the 76 channels into four dis-

tinct groups, such as each group should contain the

channels from one of the manipulators: the first, sec-

ond, third and fourth groups correspond to the four

manipulators (ML: master left, MR: master right, SL:

slave left and SR: slave right) of the da Vinci surgi-

cal system. Thus, each group assembles 19 of the total

kinematic variables. Next, each group of 19 channels

is divided into five different subgroups each contain-

ing variables that we believe should be semantically

clustered together. For each cluster, the variables are

grouped into five sub-clusters:

– First sub-cluster with three variables for the Carte-

sian coordinates (x, y, z);
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Fig. 1: Fully convolutional network (FCN) for surgical skill evaluation.

– Second sub-cluster with three variables for the linear

velocity (x′, y′, z′);

– Third sub-cluster with three variables for the rota-

tional velocity (α′, β′, γ′);

– Fourth sub-cluster with nine variables for the rota-

tion matrix R;

– Fifth sub-cluster with one variable for the gripper

angular velocity (θ).

Figure 1 illustrates how the convolutions in the first

layer are different for each subgroup of kinematic vari-

ables. Following the same line of thinking, the convolu-

tions in the second layer are different for each group of

variables (SL, SR, ML and MR). However, in the third

layer, the same filters are applied for all dimensions (or

channels), which corresponds to the traditional CNN.

To take advantage from the CAM method while

reducing the number of parameters (weights) in our

network, we employed a global average pooling oper-

ation after the last convolutional layer. In other words,

the convolution’s output (the MTS) will shrink from a

length l to 1, while maintaining the same number of di-

mensions in the third layer. Without any sort of valida-

tion, we choose the following default hyperparameters.

We used 8 kernels for the first convolution, and then

we doubled the number of kernels, thus allowing us to

balance the number of parameters for each layer as a

function of its depth. We used ReLU as the nonlinear

hidden activation function for all convolutional layers

with a stride of 1 and a kernel length equal to 3.

We fixed our objective loss function to be the cate-

gorical cross-entropy to learn the network’s parameters

in an end-to-end manner for the classification task, and

the mean squared error (MSE) when learning a regres-

sor to predict the OSATS score, which can be written

as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2. (1)

The network’s weights were optimized using the Adam

optimization algorithm [15]. The default value of the

learning rate was fixed to 0.001 as well as the first and

second moment estimates were set to 0.9 and 0.999 re-

spectively. We initialized the weights using Glorot’s uni-

form initialization [7]. The network’s parameters were

updated with back-propagation using stochastic gradi-

ent descent. We randomly shuffled the training set be-

fore each epoch, whose maximum number was set to

1000 epochs. We then saved the model at each training

iteration by choosing the network’s state that minimizes
the loss function on a random (non-seen) split from the

training data. This process is also referred to as “model

checkpoint” by the deep learning community [3], allow-

ing us to choose the best number of epochs based on the

validation loss. Finally, to avoid overfitting, we added

an l2 regularization parameter whose default value was

fixed to 10−5; however, similarly to the learning rate,

we further discuss the effect of this hyperparameter in

Sect. 4. For each surgical task, we have trained a dif-

ferent network, resulting in three different models.1 We

adopted for both classification and regression tasks a

leave-one-super-trial-out (LOSO) scheme [1].

The use of a GAP layer allows us to employ the

CAM algorithm, which was originally designed for im-

age classification tasks by [23] and later introduced for

time series data in [22]. Using the latter technique, we

are able to highlight which fractions of the surgical trial

contributed highly to the classification. Let Ak(t) be the

1 Our source code is available at https://github.com/hfawaz/
ijcars19

https://github.com/hfawaz/ijcars19
https://github.com/hfawaz/ijcars19
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result of the third convolution which is an MTS with

K dimensions (here K is equal to 32 filters (by default)

and t denotes the time dimension). Let wck be the weight

between the output neuron of class c and the kth filter.

Since a GAP layer is used, the input to the output neu-

ron of class c can be written as zc and the CAM as Mc:

zc =
∑
k

wck
∑
t

Ak(t) =
∑
t

∑
k

wckAk(t) ,

Mc(t) =
∑
k

wckAk(t).
(2)

Mc(t) denotes the contribution of each time stamp t

when identifying a class c. Finally, for the regression

task, the CAM can be extended in a trivial manner: In-

stead of computing the contribution to a classification,

we are computing the contribution to a certain score

prediction (1 out of 6 in total).

4 Results

The first task, which we have originally tackled in [11],

consists in assigning a skill level for an input surgical

trial out of the three possible levels: novice (N), inter-

mediate (I) and expert (E). In order to compare with

current state-of-the-art techniques, we adopted the mi-

cro and macro measures defined in [1]. The micro mea-

sure refers simply to the traditional accuracy metric.

However, the macro takes into consideration the sup-

port of each class in the dataset, which boils down to

computing the precision metric. Table 1 reports the

macro and micro metrics of five different models for

the surgical skill classification of the three tasks: sutur-

ing, knot tying and needle passing. For the proposed

FCN model, we average the accuracy over 40 runs to

reduce the bias induced by the randomness of the opti-

mization algorithm. From these results, it appears that

FCN is much more accurate than the other approaches

with 100% accuracy for the needle passing and suturing

tasks. As for the knot tying task, we report 92.1% and

93.2%, respectively, for the micro and macro configu-

rations. When comparing the other four techniques, for

the knot tying surgical task, FCN exhibits relatively

lower accuracy, which can be explained by the minor

difference between the experts and intermediates for

this task: Mean OSATS score is 17.7 and 17.1 for ex-

pert and intermediate, respectively.

A sparse hidden Markov model (S-HMM) was de-

signed to classify surgical skills [19]. Although this ap-

proach does leverage the gesture boundaries for train-

ing purposes, our method is much more accurate with-

out the need to manually segment each surgical trial

into finer gestures. [24] introduced approximate En-

tropy (ApEn) to generate characteristics from each sur-

gical task, which are later given to a classical nearest

neighbor classifier with a cosine similarity metric. Al-

though ApEn and FCN achieved state-of-the-art results

with 100% accuracy for the first two surgical tasks, it

is still not obvious how ApEn could be used to give

feedback for the trainee after finishing his/her training

session. [4] introduced a sliding window technique with

a discretization method to transform the MTS into bag

of words. To justify their low accuracy, the authors in [4]

insisted on the need to provide explainable surgical skill

evaluation for the trainees. On the other hand, FCN is

equally interpretable yet much more accurate; in other

words, we do not sacrifice accuracy for interpretabil-

ity. Finally, [21] designed a CNN whose architecture is

dependent on the length of the input time series. This

technique was clearly outperformed by our model which

reached better accuracy by removing the need to pre-

process time series into equal length thanks to the use

of GAP.

In this paper, we extend the application of our FCN

model [11] to the regression task: predicting the OSATS

score for a given input time series. Although the com-

munity made a huge effort toward standardizing the

comparison between different surgical skills evaluation

techniques [1], we did not find any consensus over which

evaluation metric should be adopted when comparing

different regression models. However, [24] proposed the

use of Spearman’s correlation coefficient (denoted by

ρ) to compare their 11 combination of regression mod-

els. The latter is a nonparametric measure of rank cor-

relation that evaluates how well the relationship be-

tween two distributions can be described by a mono-

tonic function. In fact, the regression task requires pre-

dicting six target variables; therefore, we compute ρ for

each target and finally report the corresponding mean

over the six predictions. By adopting the same vali-

dation methodology proposed by [24], we are able to

compare our proposed FCN model to their best per-

forming method. Table 1 reports also the ρ values for

the three tasks, showing how FCN reaches higher ρ val-

ues for two out of three tasks. In other words, the pre-

diction and the ground truth OSATS score are more

correlated when using FCN than the ApEn-based solu-

tion proposed by [24] for the second task and equally

correlated for the other two tasks.

The CAM technique allows us to visualize which

parts of the trial contributes the most to a skill classi-

fication. By localizing, for example, discriminative be-

haviors specific to a skill level, observers can start to

understand motion patterns specific to certain class of

surgeons. To further improve themselves (the novice
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Method
Suturing Needle passing Knot tying

Micro Macro ρ Micro Macro ρ Micro Macro ρ

S-HMM [19] 97.4 n/a n/a 96.2 n/a n/a 94.4 n/a n/a
ApEn [24] 100 n/a 0.59 100 n/a 0.45 99.9 n/a 0.66
Sax-Vsm [4] 89.7 86.7 n/a 96.3 95.8 n/a 61.1 53.3 n/a
CNN [21] 93.4 n/a n/a 89.9 n/a n/a 84.9 n/a n/a
FCN (proposed) 100 100 0.60 100 100 0.57 92.1 93.2 0.65

Table 1: Micro, macro and Spearman’s coefficient ρ for surgical skill evaluation.
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Fig. 3: Feedback using the CAM on subject E’s second knot-tying trial

surgeons), the model, using the CAM’s result, can pin-

point to the trainees their good/bad motor behaviors.

This would potentially enable novices to achieve greater

performance and eventually become experts.

By generating a heatmap from the CAM, we can

see in Fig. 2 how it is indeed possible to visualize the

feedback for the trainee. In fact, we examine a trial of

an expert and novice surgeon: The expert’s trajectory

is illustrated in Fig. 2a while the novice’s trajectory is

depicted in Fig. 2b. In this example, we can see how

the model was able to identify which motion (red sub-

sequence) is the main reason for identifying a subject

as a novice. Concretely, we can easily spot a pattern

that is being recognized by the model when outputting

the classification of subject H’s skill level: The orange

and red 3D subsequences correspond to same surgical
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gesture “pulling suture” and are exhibiting a high in-

fluence over the model’s decision. This feedback could

be used to explain to a young surgeon which move-

ments are classifying him/her as a novice and which

ones are classifying another subject as an expert. Thus

ultimately, this sort of feedback could guide the novices

into becoming experts.

After having shown how our classifier can be in-

terpreted to provide feedback to the trainees, we now

present the result of applying the same visualization

(based on the CAM algorithm) in order to explain the

OSATS score prediction. Figure 3 depicts the trajectory

with its associated heatmaps for subject E performing

the second trial of the knot-tying task. Figure 3a and

3b illustrates the trajectory’s heatmap, respectively, for

“suture/needle handling” and “quality of the final prod-

uct” OSATS score predictions. At first glimpse, one can

see how a prediction that requires focusing on the whole

surgical trial leverages more than one region of the in-

put surgery—this is depicted by the multiple red subse-

quences in Fig. 3b. However, when outputting a rating

for a specific task such as “suture/needle handling”—

the model is focusing on less parts of the input trajec-

tory which is shown in Fig. 3a.

5 Limitations

We would like to first highlight the fact that our feed-

back technique would benefit from an extended real use-

case validation process, for example verifying with ex-

pert surgeons if indeed the model is able to detect the

main reason for classifying a surgical skill. In addition,

the fact that we are performing only a LOSO setup

means that a surgeon should be present in the train-

ing set in order to make a prediction. However, since

only two experts exist in the dataset, this suggests that

performing a leave-one-user-out setup would mean hav-

ing one expert in the training set. This constitutes a

huge problem originating from the limited dataset size.

Therefore, we finally conclude that our approach should

be validated on a larger dataset.

6 Conclusion

In this paper, we proposed a novel deep learning-based

method for surgical skills evaluation from kinematic

data. We achieved state-of-the-art accuracy by design-

ing a specific FCN, while providing explainability that

justifies a certain skill evaluation, thus allowing us to

mitigate the CNN’s black-box effect. Furthermore, by

extending our architecture we were able to provide new

state-of-the-art performance for predicting the OSATS

score from the input kinematic time-series data. In the

future, in order to compensate for the lack of labeled

data, we aim at exploring several regularization tech-

niques such as data augmentation and transfer learn-

ing [12] for time-series data.
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