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Summary1

This paper explores the analogy between a saxo-2

phone resonator and a bicylindrical resonator, some-3

times called transverse saxophone or cylindrical saxo-4

phone. The dimensions of a bicylindrical resonator5

are optimized numerically to approximate a saxo-6

phone impedance. The target is the impedance mea-7

sured on an usual saxophone. A classical gradient-8

based non-linear least-square fit function is used. Sev-9

eral cost functions corresponding to distances to the10

target impedance are assessed, according to their in-11

fluence on the optimal geometry. Compromises ap-12

pear between the frequency regions depending on the13

cost function. It is shown that the chosen cost func-14

tions are differentiable and locally convex. The con-15

vexity region contains the initial geometrical dimen-16

sions obtained by crude approximation of the first17

resonance frequency of the target. One optimal ge-18

ometry is submitted to further analysis using descrip-19

tors of the impedance. Its deviations from the target20

saxophone are put into perspective with the discrep-21

ancies between the target saxophone and a saxophone22

from a different manufacture. Descriptors such as har-23

monicity or impedance peak ratio set the bicylindrical24

resonator apart from saxophone resonators, despite a25

good agreement of the resonance frequencies. There-26

fore, a reed instrument with a bicylindrical resonator27

could be tuned to produce the same notes as a saxo-28

phone, but due to differences in the intrinsic charac-29

teristics of the resonator, it should be considered not30

as a saxophone but as a distinct instrument.31

1 Introduction 32

This work deals with the bicylindrical approximation 33

of a conical geometry, where two cylinders are put 34

in parallel. As a purely academic approximation of a 35

conical instrument such as the saxophone, a ”cylindri- 36

cal saxophone” model permits to obtain analytical re- 37

sults on the produced sound [1, 2] and dynamic behav- 38

ior [3, 4]. A patent describing bicylindrical resonators 39

to be used for saxophone-like instruments [5] shows 40

that industrial interest exists for such innovative res- 41

onator shapes. This paper presents a bicylindrical res- 42

onator numerically optimized to replicate the acousti- 43

cal impedance of an existing saxophone, and compares 44

it to the target saxophone and another ”control” sax- 45

ophone. The goal is to judge whether bicylindrical 46

resonators may be considered as saxophones or not. 47

Traditionally, instrument makers design new prod- 48

ucts by trial and error, drawing on empirical knowl- 49

edge acquired over years of practice. They adjust the 50

manufacturing parameters to maximize the “quality” 51

of successive prototypes in terms of complex crite- 52

ria involving not only sound characteristics such as 53

intonation and timbre features, but also ergonomics, 54

playability, and feeling of the musician. Given the 55

complexity of this task, as well as the large num- 56

ber of parameters involved, the process is long and 57

requires building several prototypes, amounting to a 58

significant overall cost before the production begins. 59

Numerical optimization may take simple criteria into 60

account to offer geometrical dimensions for new res- 61

onators in a quick, repeatable and cheap manner. The 62

optimized resonators would probably have to be fine- 63
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tuned to satisfy the more complex criteria, but there64

is hope that overall, the prototyping stage would be65

accelerated.66

From the point of view of an acoustician, the opti-67

mization of a musical instrument could, at first, use68

some criteria pertaining directly to the characteris-69

tics of the produced sound, such as the playing fre-70

quency. Predicting the sound produced by the in-71

strument for various excitation conditions is possible72

by numerical synthesis, and has been applied to opti-73

mization problems with up to five optimization vari-74

ables [6]. However, this method is time consuming,75

hence incompatible with the optimization of dozens76

of parameters. Consequently, many wind instrument77

optimization methods adjust the resonance frequen-78

cies of the resonator, for instance using an analytic79

model accounting for small modifications of the bore80

of a trumpet [7]. Similarly, acoustical considerations81

were used to adjust iterativelly the positions and di-82

mensions of the holes in a quena to obtain a de-83

sired tuning profile [8]. Recent works also propose84

a method to compute the eigenfrequencies of a va-85

riety of multi-cylindrical resonators [9, 10, 11], with86

instrument design in mind. For problems with many87

parameters, computerized optimization strategies are88

the preferred choice. For example, the complete tone89

hole geometry of a clarinet was optimized by a gradi-90

ent descent based on the first and second impedance91

peaks [12], and the geometry and control of a clarinet92

model was optimized to reproduce signals obtained93

with an artificial blowing machine [13]. It is also pos-94

sible to use the input impedance deduced from a time-95

domain discretization of the Euler equations in the96

optimization of a saxophone bore [14]. Some authors97

take into account the complete input impedance in the98

cost function, rather than the resonance frequencies99

alone. This type of objective was applied to trumpets100

[15] and trombones [16], with Rosenbrock’s numer-101

ical optimization method [17], and saxophones [18]102

using the CMA-ES (Evolution Strategy with Covari-103

ance Matrix Adaptation) optimization method [19].104

In previous work, numerical optimization has mostly105

served as a tool to adjust or redesign existing instru-106

ments, but it can also be seen as a means to explore107

innovative geometries.108

This article presents the optimization of the ge-109

ometry of a bicylindrical resonator to match the110

impedance measured on a saxophone, which has a111

predominantly conical resonator. These geometries 112

being fundamentally different, the fit cannot be per- 113

fect. The acoustical differences between the optimum 114

and the target are analyzed. The optimization is per- 115

formed numerically, relying on an impedance model of 116

the designed instrument. Objective criteria depend- 117

ing only on linear acoustics considerations are used. 118

This allows to maintain a moderate computational 119

cost. Since our purpose is to compare the bicylindri- 120

cal resonator with existing saxophones, the target of 121

the optimization relies on impedances measured on a 122

professional alto saxophone (see 2.1). The impedance 123

is measured for several fingerings of the first regis- 124

ter, the optimization is performed for these finger- 125

ings. By choice, the optimization is limited to a given 126

frequency range: the impedance of the bicylindrical 127

resonator is fitted to the target impedance between 128

70 and 1200 Hz, which contains the main impedance 129

peaks. The fit is done according to a given norm (see 130

3.2). The effect of the choice of this norm on the re- 131

sult of the optimization is studied. Moreover, since 132

the optimization algorithm is local, the initial condi- 133

tion is modified to check if the procedure still con- 134

verges to the same optimum (see 3.3). The influence 135

of each design parameter on the cost function is re- 136

vealed around the optimum. Finally, the optimized 137

geometry for the example studied here is presented 138

in section 4. The numerical optimization procedure 139

yields the bicylindrical resonator that is as close as 140

possible to a saxophone – considering our criterion 141

and our degrees of freedom. The purpose of this pro- 142

cess is to better define the limit of the approximation 143

of a saxophone resonator by a bicylindrical resonator, 144

when it is conducted on several fingerings of the sax- 145

ophone. The deviations between the impedances of 146

the optimized geometry and the target saxophone are 147

computed, and they are compared with the discrep- 148

ancies between the target saxophone and a saxophone 149

of another brand. 150

2 Input impedance of the sax- 151

ophone and the bicylindrical 152

resonator 153

In order to optimize the dimensions of the bicylin- 154

drical resonator (see figure 1), it is necessary to 155

use a model giving the impedance of such resonator 156
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based on its geometrical dimensions. The computed157

impedance is then fitted to the target impedance : the158

impedance measured on a saxophone, for 16 fingerings159

of the first register.160

2.1 Saxophone impedance measure-161

ment: target and control162

Impedance measurements were performed on two sax-163

ophones. The first produces the target impedance.164

The second saxophone, of a different model and dif-165

ferent brand, is called the “control saxophone”. It166

serves as reference in the analysis of the difference167

of characteristics between the bicylindrical resonator168

resulting from the optimization and the target instru-169

ment. This way, we aim to check whether the opti-170

mized resonator is as close to the target saxophone171

as another saxophone. If the differences between two172

saxophones are of the same order than the differences173

between the bicylindrical resonator and a saxophone,174

then the bicylindrical resonator may be considered as175

a saxophone, at least from the input impedance point176

of view. The details of this comparison are presented177

in section 4. The target instrument and the control178

instrument are commercial models of alto saxophones.179

Impedance measurements are carried out using the180

impedance sensor apparatus developed in [20] on the181

first register (closed register hole) of the target and182

control saxophones. All the measurements are carried183

out in a semi-anechoic room. In total, 16 fingerings of184

the first register are measured. In written pitch for the185

alto saxophone, the fingerings range from the low B[186

to the C]2 of the first register – which correspond to187

the notes D[3 (138.59 Hz) to E4 (329.63 Hz) in concert188

pitch. The written pitch notation is kept throughout189

the rest of this paper.190

Since the apparatus does not allow impedance mea-

surements of the instrument with its mouthpiece, a

cylindrical mouthpiece chamber of typical dimensions

(radius 12 mm and length Lm = 60 mm) is added

in post-treatment, such that the dimensionless target

impedance writes

Ztar =
Zc,mj tan(kmLm) + Zmes

Zc,m + Zmesj tan(kmLm)
, (1)

where Zmes is the input impedance measured with-191

out the mouthpiece. In order to eliminate the noisy192

parts of the measurement, the target impedance is193

truncated at low frequencies, below 70 Hz. To de-194

crease the computation time of the optimization, the 195

target impedance is also truncated above 1200 Hz. 196

For the fingerings considered, the main impedance 197

peaks fall between 70 and 1200 Hz. Beyond 1200 Hz 198

the combined effect of the conicity of the resonator 199

and the tone hole network contribute to lowering the 200

impedance peaks. The actual target impedance is dis- 201

crete vector with 1413 samples, the frequency step 202

between two samples being 0.8 Hz. 203

2.2 Impedance of a bicylindrical res- 204

onator 205

The bicylindrical resonator, as defined in [21], is com-

posed of a cylindrical mouthpiece (i.e. a mouthpiece

with cylindrical chamber) followed by the parallel

association of two cylinders (see figure 1). There-

fore, the entire instrument’s dimensionless input

impedance writes

Zdes =
Zc,mj tan(kmLm) + Zts

Zc,m + Ztsj tan(kmLm)
, (2)

where Lm is the length of the cylindrical mouthpiece,

Zc,m = ρc/Sm is its characteristic impedance depend-

ing on its cross section Sm, the ambient air density ρ,

the sound velocity c. It is worth noting that the pa-

rameter Lm should be understood as the equivalent

length of the chamber of the mouthpiece, not includ-

ing the length of the reed. Zts is the input impedance

of the parallel association of two cylinders. The wave

number ki [22] depends on the equivalent radius ri of

each section such that

ki(ω) =
ω

c
− (1 + j)3.10−5

√
ω/2π

ri
, (3)

where (i = {b,m}) associates with the long cylinder b

or the mouthpiece m. The short pipe a is defined by

its equivalent radius

req,a =
√
Sa/π, (4)

where Sa is the annular cross-section between the in-

ner wall of cylinder a and the outer wall of cylinder

b (see figure 1). Since this pipe is ring-shaped, losses

are adjusted by a factor µ′ corresponding to the ratio

of the internal wall surface of the ring a to the internal



Colinot et al., p. 4

m

Lm

m

Sm = πr2m
La

a

a

Sa = πr2eq,a

Lb

b

Sb = πr2b

Figure 1: Schematic layout of the optimized res-

onator : a bicylindrical resonator. Labels: mouth-

piece chamber m, short cylinder a and long cylinder

b.

wall surface of a cylinder of radius req,a

ka(ω) =
ω

c
− µ′(1 + j)3.10−5

√
ω/2π

req,a
, (5)

µ′ =

√
r2eq,a + (rb + e)2 + rb + e

req,a
, (6)

e being the thickness of the wall of cylinder b, fixed206

at 1 mm for the rest of the article.207

The impedance Zts of the parallel association of

cylinders seen from the end of the mouthpiece Lm is

written as

Zts = Zc,m

(
Zc,a + Zr,aj tan(kLa)

Zc,aj tan(kaLa) + Zr,a

+
Zc,b + Zr,bj tan(kbLb)

Zc,bj tan(kbLb) + Zr,b

)−1
,

(7)

where Li is the length of each cylinder (i = {a, b}),
Zc,i = ρc/Si the characteristic impedance of cylinders

a and b and Zr,i the radiating impedance (accord-

ing to [23]) on the output of the equivalent unflanged

cylinder i such that

Zr,i = Zc,i

(
jki∆`i +

1

4
(kiri)

2

)
. (8)

In this expression, the length correction ∆`i is taken208

as 0.6133ri, because both cylinders are assumed un-209

flanged and the influence of their thickness at output210

is ignored. The influence of the long cylinder on the211

radiation of the short one is neglected, which corre-212

sponds to a plane-wave approximation. A compar-213

ison with a flanged impedance radiation model [24]214

for the output of the short cylinder yields almost no215

difference in the considered frequency range. These216

impedance models of the bicylindrical resonator are217

validated by comparison with impedance measure-218

ment carried out on a bicylindrical resonator proto- 219

type in [21]. 220

2.3 Initial geometrical parameters of 221

the optimization 222

For the optimization on the 16 notes of the first reg-

ister of the designed instrument, the 20 varying pa-

rameters of the model are

X = {Lb1, ..., Lb16, rb, La, req,a, Lm}. (9)

See figure 1 for a schematic representation of the ge- 223

ometry. Lbn corresponds to the length of the longest 224

cylinder for the nth fingering. This definition corre- 225

sponds to a low frequency approximation of the tone 226

holes: each fingering is represented by an effective 227

length, that can be interpreted as the distance from 228

the input of the instrument to the first open tone hole 229

for this fingering. In this approximation, the effect of 230

the other open tone holes and their interactions are 231

ignored. Note that as a refinement, the optimization 232

procedure is conducted taking into account the effect 233

of the tone hole network in appendix B. The other pa- 234

rameters rb, La, req,a, Lm are geometrical dimensions 235

of the designed instruments that cannot be changed 236

between notes. 237

At the start of the optimization, the parameters of 238

the bicylindrical resonator are assigned initial values. 239

For a gradient-based optimization procedure like the 240

one used in this work (see section 3), the optimized 241

geometry is obtained by adjusting this initial geome- 242

try. The initial set of parameters should be chosen in 243

a vicinity of the optimal parameters. Here, based on 244

our knowledge of the characteristics of a bicylindrical 245

resonator, it is possible to suggest an initial geome- 246

try that is a coarse approximation of the target, as 247

explained below. 248

Among the twenty parameters to initialize, two are

chosen based on the geometrical dimensions of an alto

saxophone: the initial length of the short cylinder L0
a

is set at 200 mm, which corresponds to the missing

length of the top of the conical resonator, and the

initial mouthpiece length L0
m is set at 10 mm. The

length of the long cylinder is based on the first-order

approximation of the first resonance frequency for the

bicylindrical resonator, taking into account the length

corrections due to the radiation impedance. L0
b,n (for
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all fingerings n ∈ {1, 16}) is set so that

c

2(L0
b,n + L0

a + 2L0
m + 0.6133r0eq,a + 0.6133r0b )

= fn,

(10)

where fn is the frequency of the nth note based on the249

tempered scale. The initial cross sections of the tubes250

are taken equal, such that their initial equivalent radii251

are r0eq,a = r0b = 4.3 mm (see figure 1). The total input252

section of the initial geometry is the same as the one253

of the measured instrument (see 2.1). The choice of254

this initial geometry is not critical to the convergence255

of the optimization algorithm, as the robustness test256

of subsection 3.3 shows.257

3 Optimization procedure258

In this section, a set of geometrical parameters for the259

designed instrument is provided by a numerical fit of260

its input impedance to a target impedance, using a261

gradient-based, nonlinear least squares optimization262

procedure.263

3.1 Optimization method264

The optimization is performed through a gradient-265

based approach (trust-region reflective algorithm), us-266

ing the lsqnonlin function from the Matlab Op-267

timization toolbox. This function implements non-268

linear least-square curve fitting with a convenient in-269

terface. The algorithm used is trust-region-reflective270

[25]. This algorithm is chosen because it allows271

bounds on the parameters: in our case, all parame-272

ters must remain positive. It is inherently local, which273

means it may converge to different local minima de-274

pending on initial conditions. Due to the size of the275

problem, the maximal number of evaluations of the276

cost function is set at 20000 and the maximal number277

of iterations at 1000. Stopping criteria are based on278

thresholds: the algorithm stops under a chosen varia-279

tion of cost function per step, a chosen step length, a280

chosen optimality descriptor value or a chosen cost281

function value. In all the optimization procedures282

presented here, the algorithm stops because the vari-283

ation of the cost function value at a given step is too284

low. This threshold may be lowered (from the default285

10−6 to 10−12) to give very precise value of the opti-286

mal parameters. Section 3.3 shows that the choice of287

initial conditions is not critical for the case at hand, 288

and the optimum found is valid over a large region of 289

the parameter space. The convergence properties of 290

this algorithm also depend on the derivability proper- 291

ties of the cost function [26]: the convergence of the 292

algorithm is proven (with some assumptions on the 293

problem) for a twice continuously differentiable cost 294

function. This property is verified by the cost func- 295

tions used in this work (see 3.2 and appendix A). In 296

addition, the solver is rather fast: one optimization 297

procedure lasts about 10 seconds on a laptop com- 298

puter. 299

3.2 Choice of the cost function 300

In this work, it is decided to use a cost function taking

into account the complete input impedance, over a

given frequency range. This choice is motivated by the

lack of a priori knowledge on the relative importance

of specific impedance descriptors, such as resonance

frequency and peak height, for an unusual type of

resonator. Still, an assumption is made that high-

amplitude impedance peaks play a crucial role in the

sound production (see for instance [27]). Therefore,

we investigate norms under the form

Jp(ω,X) =
∣∣∣ |Zdes(ω,X)| − |Ztar(ω)|

∣∣∣p (11)

where p is an integer, and Ztar and Zdes are respec- 301

tively the impedance of the target and designed in- 302

struments. The notation X stands for the vector of 303

optimization variables. Another motivation for choos- 304

ing this type of function is that a straightforward 305

mathematical expression allows for easy demonstra- 306

tion of properties of the cost function, like derivabil- 307

ity. For Zdes 6= 0 (which is the case for ω 6= 0), these 308

cost functions are at least twice continuously differen- 309

tiable with respect to the optimization variables (see 310

appendix A), which is beneficial to the convergence 311

properties of the optimization algorithm [26]. Figure 312

2 displays two cost functions (defined by eq. (11)) for 313

p = 2 and p = 5. It can be seen on this figure that, 314

as expected, the highest exponent gives more impor- 315

tance to the impedance peaks relative to the troughs. 316

Indeed, a high exponent makes the cost function tend 317

towards a infinite norm. 318

The optimization algorithm minimizes the sum of

the cost function values over the whole frequency

range for every considered fingerings: the cost func-
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(a)

(b)

Figure 2: Comparison before optimization, be-

tween the target impedance (solid line) and initial

impedance for the bicylindrical resonator (dashed

line) for the A fingering. The area is cost function

eq. 11 between the two impedances: (a) with p = 2;

(b) with p = 5. Note that the magnitude of the cost

functions values (right axes) is very different between

(a) and (b).

tion that is effectively minimized is

Jfull
p (X) =

16∑
n=1

ωmax∑
ω=ωmin

∣∣∣ |Zdes,n(ω,X)| − |Ztar,n(ω)|
∣∣∣p,

(12)

where Zdes,n and Ztar,n are the impedances of the nth319

fingering, respectively for the bicylindrical resonator 320

and the target instrument, and ωmin = 2π×70 rad.s−1 321

and ωmax = 2π × 1200 rad.s−1 are the angular fre- 322

quencies at which the impedances are truncated. 323

In order to explore the influence of the exponent 324

p on the optimal geometry, several optimization pro- 325

cedures are launched using the lsqnonlin function, 326

the only difference being the exponent p of the cost 327

function. Five values of p are tested: 1, 2, 3, 5 and 328

10. The optimal sets of geometrical parameters are 329

slightly different. As expected, the highest p ex- 330

ponents give a more accurate fit of the impedance 331

peaks with the greatest modulus, at the expense of 332

the lowest. The ratios between the frequency of the 333

impedance peaks are conserved, which could be ex- 334

pected since the bicylindrical resonator has few geo- 335

metrical degrees of freedom. For the target instru- 336

ment, the first impedance peak, which corresponds to 337

the first register, is lower than the next for the 12 338

first fingerings (from low B[ to high B[). The value 339

p = 1 is set aside because of the differentiability issue 340

it entails and because the impedance minima are of 341

lesser importance than the maxima. Therefore, the 342

exponent p = 2 is chosen for the cost function so as 343

not to reduce the importance of the first peak in the 344

optimization too much. 345

3.3 Robustness of the optimization 346

procedure 347

The chosen method is a local optimization procedure. 348

As such, its result depends on the initial conditions, 349

so we seek to further qualify the validity of the opti- 350

mum, particularly its robustness to a change of initial 351

geometry. As announced in subsection 3.2, the expo- 352

nent in the cost function (eq. 11) is p = 2 from now 353

on. 354

As a preliminary study, the optimization proce- 355

dure is tested using a temporary target: a simulated 356

impedance for a bicylindrical resonator with known 357

geometry (the geometry of the optimum presented in 358

section 4). The result of this optimization can then 359

be assessed, by comparing it to the known geometry 360

of the temporary target. A test is performed in which 361

the optimization procedure starts with 50 different 362

initial geometries placed around the geometry of the 363

temporary target. Each parameter is placed at a cer- 364

tain initial distance from its value for the temporary 365

target, yielding a set of extreme initial geometries. 366
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The possible distances are ±80 mm for each length367

Lb,n, ±30 mm for the length of the short cylinder368

La, [−2,+5] mm for the radius rb and the equivalent369

radius req,a, and [−10,+30] mm for the mouthpiece370

chamber length Lm. With these extreme initial condi-371

tions, the algorithm converges to optimal dimensions372

within 10−3 mm of the dimensions of the temporary373

target. For this controlled problem, this procedure374

gives the order of magnitude of the size of basin where375

the optimized geometry converges to the correct op-376

timum.377

We now apply a similar method to studying the378

main optimization problem: optimizing the bicylin-379

drical resonator to fit a target impedance measured380

on a saxophone. In this case, 50 initial geometries are381

generated, each parameter within a certain range of382

the value assigned to it in section 2.3. This range is set383

as ±10% for each Lb,n, ±30% for La and Lm, ±50%384

for rb and req,a. The size of the range is inspired by385

the preliminary test with the temporary bicylindrical386

target and adapted to fill the convergence basin.387

With 50 different initial geometries, the optimiza-388

tion converges every time to similar optimal geome-389

tries: less than 0.002% of variation for each optimal390

parameter, except for the optimal mouthpiece lengths391

Lm which has a 0.01% spread (less than 2 µm). This392

larger spread on the parameter Lm can be explained393

by looking at its influence on the cost function (figure394

6, detailed below). The dispersion on optimal value395

is due to the stopping criterion of the optimization396

procedure and can be reduced by restricting the con-397

ditions under which the algorithm stops. One of the398

conclusion that can be drawn from this result is that399

even though the optimization procedure is local, the400

initial geometry is not critical: when it is changed the401

resulting optimal geometry remains the same.402

In order to appreciate the evolution of the cost func-403

tion, the history plot of its value during the optimiza-404

tion is plotted in figure 3. In this figure, the different405

fingerings are separated (inner sum in equation (12)).406

Most of the improvement is accomplished during the407

first five iterations. During the rest of the optimiza-408

tion, compromises between fingerings appear. It can409

be seen that for some fingerings, one of the earlier it-410

erations has a better cost function value than the final411

iteration. The fit of those fingerings is then degraded412

to improve the global value of the cost function.413

To gain information on the convergence behavior414

Figure 3: Evolution of the cost function values dur-

ing the optimization: partial sums over each fingering

(inner sum in Eq. 12).

that can be expected from the algorithm, it is useful 415

to study the projection of the cost function around the 416

optimal set of parameters. Here, it is chosen to com- 417

pute the cost function over the complete frequency 418

range and the 16 fingerings by varying one or two 419

of the parameters around the optimum (all the other 420

parameters are left at their optimal values). 421

Figure 4 shows the variation of the cost function de- 422

pending on each length of the long cylinder Lb, within 423

100 mm of the initial lengths. All the other parame- 424

ters are fixed at their optimal values. The cost func- 425

tion appears locally convex, and the optimum cor- 426

responds to the minimum of the cost function in the 427

plotted range for each lengths: choosing any set of ini- 428

tial lengths Lb in a 100 mm range from the optimum 429

appears viable to obtain convergence. Initial points 430

used in the robustness test are between brackets on 431

figure 4. They are all in the convexity region accord- 432

ing to the represented projections. This is coherent 433

with the algorithm converging every time. 434

The projection of the cost function space on the pa- 435

rameters rb and req,a is displayed on figure 5. It may 436

be noted, on figures 5 and 6, the initial conditions are 437

not on the surface representing the projection of the 438

cost function around the optimum. This is because 439

all the parameters of the initial conditions differ from 440

their optimal value, whereas the surface is constructed 441

by varying only two parameters. Once again, the cost 442

function appears convex, although there is a slope in- 443

version for very small values of the radius rb. It can be 444

noted that the configuration where the two radii are 445

equal seems privileged (a local minimum follows the 446
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Figure 4: Variation of the cost function of Eq. (12)

(solid lines) depending on each parameter Lb, around

the optimum obtained for p = 2 in Eq. 11 (light

dot). The displayed cost function values are normal-

ized. All lengths are displayed with respect to the

initial values (vertical black line). The brackets stand

for the minimal and maximal initial lengths used in

the robustness test.

main diagonal on the figure). This is the configura-447

tion of the usual cylindrical saxophone approximation448

[1].449

Figure 6 displays the projection along the length of450

the short cylinder La and the length of the mouth-451

piece Lm. There, two features may be noted: there452

is a slope inversion for lengths of the short cylinder453

above La = 230 mm and below La = 50 mm, and the454

length of the mouthpiece Lm appears to have small455

influence on the cost function value. This explains456

the larger dispersion in optimal mouthpiece lengths:457

a change in the parameter Lm amounts to a very small458

modification of the cost function value.459

It can be seen on the figures 4, 5 and 6 that the460

cost function appears continuously differentiable, as461

announced in subsection 3.2. This is one of the nec-462

Figure 5: Variation of the cost function of Eq. (12)

(mesh) depending on the radii of the two cylinders rb

and req,a around the optimum obtained for p = 2 in

Eq. 11 (clear dot). Black dots: initial conditions in

the robustness test.

Figure 6: Variation of the cost function of Eq. (12)

(mesh) depending on the lengths of the short cylinder

La and the mouthpiece Lm around the optimum ob-

tained for p = 2 in Eq. (12) (clear dots). Black dots:

initial conditions in the robustness test.

essary hypotheses in the proof of the convergence of 463

the trust-region reflective algorithm of the lsqnonlin 464

function. Overall, this study on the profile of the 465

cost function near the optimum contributes to justi- 466

fying the use of a local, gradient-based optimization 467

method. 468
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4 Differences between the bi-469

cylindrical resonator and the470

saxophone resonators471

The geometrical and acoustical characteristics of the472

optimized bicylindrical resonator are discussed, in re-473

lation with the target instrument. The target sax-474

ophone is also compared to the control saxophone,475

in order to observe the differences that can exist be-476

tween two saxophones on various impedance descrip-477

tors. The differences between the bicylindrical res-478

onator and the target saxophone are then compared479

with the differences between the two saxophones.480

4.1 Optimization results481

The optimization procedure yields geometrical dimen-

sions for the designed instrument, summarized in ta-

ble 1. Several comments can be made on the pro-

posed values of the geometrical parameters, notably

in relation to the dimensions of the target instrument.

The length of the instrument Lb corresponds to the

approximate length of the bore of an alto saxophone,

ranging from 1000 mm to under 300 mm. In the coax-

ial configuration of the bicylindrical resonator (see fig-

ure 1) where the short cylinder is around the long

cylinder, the total input radius of the optimized res-

onator is

rm =
√
Sm/π =

√
πr2eq,a + π(rb + e)2

π
= 6.6 mm.

(13)

It is very close to the input radius of the target in-482

strument, 6.0 mm. However, the optimal mouth-483

piece is shorter than the mouthpiece added to the484

impedance measurements of the target instrument485

(12.5 mm versus 60 mm). This is consistent with486

the usual formulation of the cylindrical saxophone487

approximation, where a complete conical instrument488

including its mouthpiece is replaced by two parallel489

cylinders without any mouthpiece [4]. This suggests490

that the mouthpiece chamber should be as short as491

possible, which is possible in the coaxial configura-492

tion (see figure 1).493

For further analysis of the optimum geometry, it is494

necessary to consider the input impedance of the de-495

signed instrument, computed from (2). For the sake496

of clarity, among the total of 16 fingerings in the opti-497

Long radius rb 4.2 mm
cylinder lengths Lb [323.6; 1016.9] mm
Short Eq. radius req,a 4.1 mm
cylinder length La 138.2 mm
Mouthpiece length Lm 12.5 mm

Table 1: Optimized geometrical parameters of the de-

signed bicylindrical resonator.

mization procedure, 2 fingerings are displayed in fig- 498

ure 7. They correspond to the low B and the A in 499

written pitch, or D3 = 146.83 Hz and C4 = 261.63 Hz 500

in concert pitch. Even though the complete display 501

of the impedance holds a quantity of information too 502

large to be interpreted clearly, it is natural to look 503

at it first in this context: the optimization proce- 504

dure aims to match the impedance curves themselves 505

(see Eq. (12)) and does not rely on impedance de- 506

scriptors. In the frequency range where the opti- 507

mization is performed, from ωmin/(2π) = 70 Hz to 508

ωmax/(2π) = 1200 Hz, the impedance correspond- 509

ing to the optimum shows good qualitative agreement 510

with the target. The impedance peaks are slightly 511

higher for the target. This phenomenon can be related 512

to the difference in the geometry of the two instru- 513

ments: the optimized geometry being composed only 514

of cylinders, the losses and radiation mechanisms dif- 515

fer from those encountered in the mainly conical res- 516

onator of the target instrument. In terms of phase, the 517

impedance of the designed instrument fits that of the 518

target more accurately at the resonances (i.e. when 519

the phase goes from positive to negative) than at the 520

anti-resonances. The chosen cost function (see 3.2) 521

appears to have emphasized the importance of these 522

peaks in the optimization strategy. However, the bi- 523

cylindrical resonator shows additional resonances in 524

high frequency – between 1200 Hz and 2200 Hz – 525

above the optimized region. This second group of 526

peaks is inherent to the bicylindrical geometry, but 527

it is worth noting that an adequate tone hole net- 528

work could attenuate these peaks, by introducing a 529

cutoff frequency [28]. In terms of global impedance 530

shape, this phenomenon is the major difference with 531

real saxophones. It is possible that these resonances 532

would affect the production of sound. 533
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(a)

(b)

Figure 7: Comparison between target impedance

(solid line) and impedance for the designed bicylin-

drical geometry (dotted line) for (a) the A fingering

and (b) the low B fingering.

4.2 Comparison between characteris-534

tics of the impedances535

In order to quantify the difference between the536

impedance curves, we use a descriptor: the fre-537

quency of the first resonance, represented by the first538

impedance peak, that plays a large role in determining 539

the playing frequency for the first register. In practice, 540

these resonance frequencies are detected as the points 541

where the phase passes from positive to negative. Fig- 542

ure 8 compares the frequency of the first impedance 543

peak for every note of the first register of the target 544

instrument and the optimized geometry. The same 545

descriptor is computed for the control saxophone: the 546

differences between the two saxophones serve as refer- 547

ences when comparing the optimized geometry to the 548

target. A common reference is taken as the 12-tone 549

tempered scale based on A4 = 440 Hz. There is a 550

shared global tendency along the first register: the 551

discrepancy between the resonance frequencies and 552

the reference frequencies becomes larger towards the 553

top of the register. It appears on the figure that the 554

two saxophones (target and control) are closer to- 555

gether than the target and the optimum. There is 556

a good agreement between the optimized resonator 557

and the target for the highest fingerings of the regis- 558

ter (high B2, C2 and C]2). This is possibly due to the 559

smaller number of impedance peaks in the frequency 560

range taken into account for the optimization (70 Hz 561

to 1200 Hz) for the highest fingerings. Indeed, when 562

there is no third or fourth impedance peak in the fre- 563

quency range, the geometrical degrees of freedom are 564

entirely devoted to fitting the first and second peak. 565

Otherwise, for the rest of the fingerings, a compro- 566

mise must be made, that leads to a slightly poorer fit 567

of the first peak. 568

Table 2 summarizes the difference for the first four 569

peaks by averaging the difference over the studied fin- 570

gerings. Although it is difficult to draw final conclu- 571

sions from the mean value of an indicator over several 572

fingerings, it is a simple quantitative way to qual- 573

ify the global difference between target and optimum, 574

and compare it with the difference between the two 575

saxophones. There, we can see that except for the first 576

peak, the average difference between the target and 577

the optimized resonator is similar to the difference be- 578

tween the two real saxophones (target and control). 579

Looking at this average descriptor only, the bicylin- 580

drical resonator could be assimilated to a saxophone 581

resonator. However, other descriptors point out the 582

limits of the cylindrical saxophone analogy in terms 583

of impedance characteristics. 584

Another way to study the resonance frequencies of

an instrument is to compare them with its first res-
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Figure 8: First impedance peak frequency: target

(cross, solid), the control saxophone (plus, dashed)

and the optimum for the cost function Eq. (12) with

p = 2 (circle, dotted). Discrepancy in cents versus the

corresponding notes in the tempered scale.

Instrument Optimum, p = 2
vs. Target

Control saxophone
vs. Target

Peak 1 +12.5 −5.61
Peak 2 −7.47 −7.96
Peak 3 +5.77 +6.18
Peak 4 +16.5 +12.1

Table 2: Mean discrepancy to the resonance

frequencies of the target, for the optimum (p = 2)

and the control sax, in cents.

onance frequency. The ratio between the second and

the first resonance frequencies has been shown to in-

fluence the tone color and tuning of the instrument

[27]. A descriptor called harmonicity can be defined

Harmonicity = 100× f2
2f1

, (14)

expressed in percents, where f1 and f2 are the first585

and second resonance frequencies. A global reference586

when looking at this descriptor is the integer multi-587

ples of the first resonance frequency. For instance, if588

the second resonance corresponds to the octave of the589

first, the harmonicity for the second peak is worth590

exactly 100%. Figure 9 shows the harmonicity for591

the second resonance. The trend along the register592

clearly differs between the optimum and the two sax-593

ophones. It can be noted that the bicylindrical res-594

onator has harmonicity closer to 100% for the second595

peak. This is one of the possible characteristics of596

a bicylindrical resonator compared to a conical one. 597

Doc [29] shows that a few percents of difference on 598

the harmonicity conditions the production of certain 599

regimes, quasi-periodic for example, on a saxophone. 600

The high-frequency resonances that appear with the 601

bicylindrical resonator (see figure 7) may also change 602

the sound production behavior. Therefore, the bi- 603

cylindrical resonator can be expected to play quite 604

differently from a usual saxophone. 605

Figure 9: Harmonicity between the second and first

impedance peaks for the target (cross, solid), the con-

trol saxophone (plus, dashed) and the optimum for

the cost function eq (12) with p = 2 (circle, dotted).

Another indicator of fundamental difference be-

tween a usual saxophone and the bicylindrical res-

onator studied here is the height of the impedance

peaks, defined as the impedance modulus at the res-

onance frequency. As with the harmonicity, the first

resonance for each fingering can be taken as reference

to study the other, leading to a height ratio of the

form

Peak height ratio =
|Z(f2)|
|Z(f1)|

. (15)

The value of the ratio is very different for the bicylin- 606

drical resonator, as shown in figure 10. An analytical 607

and numerical study [30] shows that this may also 608

lead to differences in the sound production charac- 609

teristics, in particular the ease of playing in the first 610

register. The harmonicity and relative amplitude of 611

the first two peaks may also change the timbre of the 612

instrument, notably by affecting the harmonics of the 613

produced sound. 614
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Figure 10: Ratio between the height (modulus of the

impedance) of the second and first impedance peak

height for the target (cross, solid), the control saxo-

phone (plus, dashed) and the optimum for the cost

function Eq. (11) with p = 2 (circle, dotted).

5 Conclusion615

The optimization of the bicylindrical resonator to616

fit impedance measurements performed on an usual617

saxophone shows that compromises on the optimum618

are inevitable, to fit certain impedance peaks or oth-619

ers. We have shown that choosing between cost func-620

tions allows to emphasize certain parts of the target621

impedance and control this compromise. Some prac-622

tical properties of the type of cost functions chosen623

in this work, such as derivability and local convexity,624

have been exhibited. In the present case of optimiza-625

tion on a complete instrument with a rather simple626

geometrical model, a local, least-square method has627

proven sufficiently robust to initial conditions. The628

development of original resonators may particularly629

benefit from optimization procedures, to yield sensi-630

ble geometrical parameters as a starting point in the631

design of completely new instruments. In this con-632

text, adding geometrical degrees of freedom – for in-633

stance the parameters of a tone hole network – would634

be a way to provide a more precise fit of the target635

impedance.636

Here, the optimized resonator has characteristic637

trends along the register that are inherent to its cylin-638

drical nature and differ from those of the (conical)639

target. On the second, third and fourth resonance640

frequencies alone, the bicylindrical resonator does not641

differ from the target more than another saxophone 642

does. However, descriptors like harmonicity and peak 643

height ratio show notable differences. The interpre- 644

tation that can be made from such results is that the 645

bicylindrical resonator can be tuned to produce the 646

same notes as a saxophone, like an oboe may produce 647

the same notes as a saxophone, but intrinsic char- 648

acteristics of the resonator differ. This means that, 649

even in low frequency, a reed instrument with bicylin- 650

drical resonator should probably be envisioned as a 651

new instrument rather than a pure copy of the ex- 652

isting saxophones, although they share some global 653

acoustic features. The bicylindrical geometry requires 654

further study in terms of sound production, to con- 655

clude on its similarity with existing saxophones and 656

its viability as a musical instrument. 657
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A Derivability and derivatives 669

of the cost function 670

The cost function defined by Eq. (11) with

p = 2 is twice continuously differentiable, as long

as |Zdes(ω,X)| 6= 0, which is true for strictly positive

frequencies. The first order derivative with respect to

a given parameter Xi writes

∂J2(ω,X)

∂Xi
=2Zdes(ω,X)

∂Zdes(ω,X)

∂Xi

× |Zdes(ω,X)| − |Ztar(ω)|
|Zdes(ω,X)|

,

(16)

where the derivative of the impedance Zdes with re- 671

spect to each parameter can be computed from Eq. 672

(2) and exists for nonzero values of the geometrical 673

parameters. The expression in Eq. (16) may be dif- 674

ferentiated a second time with respect to a geometri- 675
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cal parameter, leading to a continuous function, still676

under the assumption |Zdes(ω,X)| 6= 0.677

B Optimization of a bicylindri-678

cal resonator with tone holes679

As a refinement, the impedance model may be mod-680

ified to include tone holes. An optimization is per-681

formed using this model, with tone holes whose radii682

are identical and fixed at half the radius of the long683

cylinder. The number of optimization parameters is684

the same as in the case without tone holes : 1 total685

length of the main cylinder, corresponding to the low-686

est note, 15 positions of tone holes (one for each of the687

other fingerings), the radius of the longest cylinder rb,688

the equivalent radius req,a and length La of the short689

cylinder and the mouthpiece length Lm. The opti-690

mization is significantly longer (by a factor of 10) due691

to the added complexity of the impedance model, but692

the optimum is very close in terms of impedance. Fig-693

ure 11 shows the comparison between the target and694

the two optimums. The closeness of the impedances695

may be explained by the fact that the tone-hole net-696

work has a high frequency effect. On figure 11 the697

impedances start to differ at about 2000 Hz, which698

is beyond the frequency range taken into account in699

the optimization. A calculation of the associated cut-700

off frequency, as the Helmhotz frequency of the res-701

onators formed by each association of a tone hole and702

the pipe section underneath, yields results between703

3.4 kHz and 5 kHz, well above the frequency of the704

main impedance peaks.705
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