
HAL Id: hal-02434359
https://hal.science/hal-02434359

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polymer powder bed fusion surface texture measurement
Marc-Antoine de Pastre, Adam Thompson, Yann Quinsat, Albajez García,

Nicola Senin, Richard Leach

To cite this version:
Marc-Antoine de Pastre, Adam Thompson, Yann Quinsat, Albajez García, Nicola Senin, et al.. Poly-
mer powder bed fusion surface texture measurement. Measurement Science and Technology, 2020.
�hal-02434359�

https://hal.science/hal-02434359
https://hal.archives-ouvertes.fr


Polymer powder bed fusion surface texture measurement 

Marc-Antoine de Pastre1, 2, Adam Thompson1, Yann Quinsat2, José A Albajez 

García4, Nicola Senin1, 3 and Richard Leach1 
1Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, 

UK 
2ENS Paris-Saclay, Université Paris-Saclay, France 
3Department of Engineering, University of Perugia, Italy 
4Manufacturing Engineering and Advanced Metology Group, I3A, University of 

Zaragoza, Spain 

 

 
Abstract. Polymer laser powder bed fusion (LPBF) surfaces can be challenging to measure. 

These surfaces comprise complex features including undercuts, deep recesses, step-like 

transitions, a large range of measurement scales and unfavourable optically materials properties. 

While recent research has begun to examine the nature of these surfaces, there has not yet been 

significant effort in understanding how different measurement instruments interact with them. 

In this paper, we compare the results of LPBF surface topography measurements using a series 

of different instrument technologies, including contact stylus, focus variation microscopy, 

coherence scanning interferometry, laser scanning confocal microscopy and X-ray computed 

tomography. Measurements are made on both side and top surfaces of a cubic polyamide-12 

LPBF sample. Different instrument behaviours are highlighted through qualitative visual 

inspection of surface reconstructions. Further comparisons are then performed through 

evaluation of profile and areal surface texture parameters and statistical modelling of surface 

topographies. These analyses allow for the identification both of discrepancies between texture 

parameters and discrepancies between local topographies reconstructed from measurements. 

Instrument repeatability metrics are also presented for each measurement of the test surfaces. 

Results show that discrepancies in measurements made on the acquired datasets are often similar 

in magnitude to the size of the features present on the surfaces. Conclusions are drawn regarding 

the suitability of various surface measurement instruments for polymer LPBF surfaces. 

Keywords: additive manufacturing, polymer powder bed fusion, surface metrology, data 

comparison

1. Introduction 

 

Additive manufacturing (AM) is now fully capable of producing functional parts for a variety of high-

value applications [1,2], allowing for the creation of geometries that are not possible using conventional 

subtractive or formative manufacturing methods [1]. Examples of these geometries include lattices and 

other complex structures that often contain features inaccessible to conventional machine tools [3].   

 

The most developed of the AM technologies fall into the powder bed fusion process family [4]. Laser 

powder bed fusion (LPBF) is of particular interest to the manufacturing community, because it does not 

require support structures when using polymer materials. Not needing support structures means that 

there is a significant design freedom afforded to parts made using polymer LPBF, even when compared 

to other AM technologies [5]. LPBF involves the selective fusion of thin layers of powder by a scanning 

laser, successively spread by a roller within a building chamber [1,5,6].  

 



The precision and accuracy of LPBF systems remains poor in comparison to established methods (e.g. 

subtractive manufacturing), and its capability for meeting demanding design tolerances remains at an 

often unacceptable level for many manufacturers, so finishing operations are required [3]. LPBF parts, 

and indeed, AM parts in general, have suffered until recently from a lack of understanding of the physics 

of the underlying processes. Research is underway in process simulation to better understand the 

physical interactions taking place in the system during fabrication [7–9], and also in post-process 

investigation of parts produced by LPBF. Such after-the-fact investigation allows a manufacturer to 

characterise a process, and to better understand the ‘fingerprint’ left behind by it [10]. For example, 

measurement and characterisation of surface topography can allow a manufacturer to reconstruct how 

that topography was formed, leading to an improved understanding of the process that created it (as 

shown by Senin et al. [10]). 

 

For surface characterisation to be of benefit, research is required to understand the surfaces produced by 

a manufacturing process, the features present on these surfaces, and how these features relate to physical 

phenomena occurring during the process. Surfaces should be studied in depth, and a co-creation process 

should ideally take place between the manufacturer and the metrologist, to develop measurement and 

characterisation pipelines that facilitate the development of improved process understanding [10]. In the 

co-creation model, a concerted effort should be made by researchers in manufacturing and metrology, 

to identify the relevant topographic features that should be isolated for analysis, and how they should be 

described in terms of their geometric properties. The requirement for this identification process is 

particularly highlighted in the review of methods for characterising metal AM surface texture by 

Townsend et al. [11]. 

 

Feature-based investigations of topography have recently been conducted for metal LPBF parts, 

involving the identification and characterisation of signature topographic formations present on surfaces 

[11–13]. For example, Senin et al. [10,14] compared non-contact methods of surface topography data 

acquisition, observing how different measurement technologies led to different topographic 

reconstructions of metal LPBF surfaces. The authors examined measured topography data using 

qualitative visual assessment, ISO 25178-2 surface texture parameters [15,16], direct comparison using 

statistical modelling of topographies and feature-based analysis methods. The primary conclusion was 

that the measured shape of a feature is intimately linked to the type of instrument used, its setup and the 

measuring conditions. Discrepancies between instruments were observed on the same order of 

magnitude as the size of the features being measured.  

 

While a significant bulk of work has been performed in the investigation of metal LPBF surfaces, 

polymer LPBF surfaces have not been studied to the same depth. Thus far, most of the work performed 

on polymer LPBF parts has been in studying the effect of altering printing parameters on ISO 4287 

texture parameters [17,18], without delving deeper into features present on such surfaces and how these 

features relate to the process itself. Most notably, laser power and scan speed are noted as the most 

significant adjustable parameters that influence surface texture [19,20]. 

 

There has been limited research on comparing measurement methods for polymer LPBF surfaces. An 

approach for surface texture evaluation on a polyamide-12 sintered cube with different methods was 

recently proposed by Vetterli et al. [21]. In this work, the cube top, bottom and side surfaces were 

examined, with Vetterli et al. presenting Ra and Rz ISO 4287 parameters [17] for each surface, measured 

in two orthogonal directions and each measured with two different contact stylus instruments. Contact 

measurements were compared to confocal and interferometric measurements, optical micrographs and 

cross-sectional profiles extracted from areal data acquired using an optical technique that obtains data 

using a reflective skin spread on an elastomer sensor [22]. Considering the time required to measure, 

Vetterli et al. argue that although contact stylus instruments seem to capture texture information in the 

shortest time period, optical methods provide a better information-to-time ratio than contact stylus 

instruments. Contact and non-contact methods are also compared  by Launhardt et al. [23], where 

measurements are made and Ra, Rz, Sa and Sz parameters are generated for a polyamide-12 tensile bar 

fabricated using AM. Two different contact stylus systems were compared for their performance in 

profile acquisition, while areal data were acquired for comparison using focus variation, fringe 



projection and confocal laser scanning microscopy. Similar trends were observed between different 

instruments for the computed Ra and Sa values. Launhardt et al. also identified that contact stylus 

measurements are liable to damage polymer surfaces, inducing potentially significant effects on the 

surface topography. Moreover, because of the low reflectivity of the material, Launhardt et al. noted 

that polymer LPBF surfaces are challenging to measure using optical methods. 

 

In this paper, using methods presented previously [9,14], we begin the process of deepening the 

understanding of polymer LPBF surfaces by examining how different optical areal measurement 

instruments reconstruct the topography of polymer LPBF surfaces We use multiple measurements 

acquired from the same area to provide qualitative and quantitative analysis of surface reconstructions, 

using ISO 25178-2 parameters as well as direct topography comparison using the statistical topography 

comparison method outlined in reference [14]. Further, we provide a comparison of data acquired using 

optical systems to data acquired using a contact system, by extracting profiles from areal optical data.  

 

2. Methodology 

 

2.1 Measurement technologies 

 

We considered three of the most common areal surface measurement technologies: laser scanning 

confocal microscopy (CM) [24,25], focus variation (FV) [26,27] and coherence scanning interferometry 

(CSI) [28–31]. Additionally, we measured the test surfaces using X-ray computed tomography (XCT) 

and a contact stylus profile measurement system. XCT has recently been demonstrated capable of 

providing surface measurement results that are comparable to results provided by established optical 

measurement systems [32,33]. Stylus measurement is the most common method of surface data 

acquisition, despite only capturing profile (as opposed to areal) data [11] unless equipped with a lateral 

stage. Comparisons were then performed between data acquired using each of these methods, measuring 

the same area of the test surfaces using each instrument. For this purpose, reconstructed surface 

topographies were aligned in a single co-ordinate system and similarly cropped using the dedicated 

relocation algorithm discussed in previous work (see [9,14] and section 2.3.2).  

 

2.2 Examined sample 

 

The sample used was a polyamide-12 cube of size (20 × 20 × 20) mm, produced using an EOS 

FORMIGA P110 with the following setup, in line with the machine manufacturers’ guidance for 

processing this material: layer thickness of 100 µm, hatch scan power of 21 W, contour scan power of 

16 W, scan speed of 2500 mm/s, hatch spacing of 250 µm and build volume temperature of 172 ° (see 

Figure 1). The part was cleaned following production, using the three-step process commonly employed 

to clean parts fabricated using polymer LPBF: the part was blasted with compressed air, washed with 

water and finally dried in an oven. Two regions of interest (ROIs) were selected on the sample, 

representative of ‘side’ and ‘top’ surfaces with respect to the build direction, shown in previous work to 

be significantly different from one another [21] (see the red squares in Figure 1). Surfaces built at other 

angles or using different machine settings could have been included in this work, but side and top 

surfaces were assumed to be broadly representative of the range of polymer LPBF surfaces for 

simplicity.  

 

 

Figure 1: The studied sample. 



 

2.3 Measurement setups and data processing 

 

2.3.1 Data acquisition 

 

Areal data 
 

In each case, a corner of the cube was included in the measured area and used to relocate topography 

data acquired using different measurement systems. The ROIs were subsequently cropped from within 

the total measured area, to remove effects present near the edges and corners of the cube. Because of 

differences between the instruments/setups, the total measured areas varied slightly between systems, 

but were all approximately (3 × 3) mm in size. The cropped ROIs were (2.5 × 2.5) mm in size. This size 

was chosen in contrast to the (8 × 8) mm area suggested as the default in ISO 25178-3 [34] because of 

data size limitations imposed by the current implementation of the analysis process. To measure using 

sufficiently high resolution to resolve the smallest features present on these surfaces, the wider 

(8 × 8) mm area becomes too large to process because of the computational expense of such large 

datasets. However, recent work examining the measurement of metal LPBF surfaces [9,14,35] has 

shown that an area of (2.5 × 2.5) mm is of sufficient size to evaluate such surfaces. 

 

Commercial instruments were used to perform CSI, FV and XCT measurements, while CM 

measurements were made using a research instrument. All instrument names have been redacted to 

prevent direct comparison of commercial instruments. In the descriptions below, FoV is the field of 

view, LR is the lateral resolution and NA is the numerical aperture. In each case, LR-pixel refers to the 

pixel spacing of the detector used by each instrument, LR-optical refers the calculated Sparrow optical 

limit of each instrument and LR-contrast refers specifically to a reference radius defining the width of 

the local window used by the FV measurement technology to compute local contrast (needed to compute 

local height at the measured location). The Sparrow limit was calculated using a wavelength of 580 nm 

for the broadband systems (CSI and FV) and 520 nm for the laser CM system. The following 

measurement setups were used for both side and top areal topography measurements. 

 

 CM: 5× objective lens (NA 0.13, FoV (1.16 × 0.95) mm, LR-pixel (x axis) 2.27 μm LR-pixel (y 

axis) 1.85 μm, LR-optical 0.63 μm), measured area (3.24 × 2.97) mm, stitching of multiple 

individually acquired FoVs performed in MountainsMap [36]. 

 CSI: 5.5× objective lens at 1× zoom, (NA 0.15, FoV (1.56 × 1.56) mm, LR-pixel 1.571 μm, LR-

optical 1.82 μm), measured area (4.2 × 4.2) mm, stitching of multiple FoVs performed in the 

manufacturer software. 

 FV: 10× objective lens, (NA 0.3, FoV (1.62 × 1.62) mm LR-pixel, 0.88 μm, LR-optical 

0.91 μm, LR-contrast 2.77 μm), coaxial illumination, measured area (4.5 × 4.5) mm, stitching 

of multiple FoVs performed in the manufacturer’s software. 

 XCT: geometric magnification of 20×, leading to a voxel size of 10 μm. Volumetric 

reconstruction was performed from 3142 X-ray projections (each formed from averaging of two 

exposure per projection, each lasting 2 s), tube voltage 105 kV, tube current 95 μA, 0.1 mm 

copper pre-filter. A warmup scan of approximately one hour was performed prior to the scans 

and data were reconstructed in the manufacturer software, using no beam hardening correction 

and a ramp filter. Surfaces (triangulated meshes) were determined in VGStudio MAX 3.0 [37] 

from volumetric data, using the maximum gradient method over four voxels, with the ISO-50 

isosurface as a starting point [38]. Determined surfaces were outputted as triangle meshes in 

STL format. 

 

In each measurement setup, the sample was measured five times consecutively without moving the part 

between measurements for both side and top surfaces. 

 

Profile data 

 

A comparison was made between the optical instruments and a contact stylus instrument, to provide a 

check on the performance of the optical systems by relying upon the well-understood physics of a 

contact based measurement system [39]. An area similar to the ROI discussed in section 2.2 was 



measured using the same measurement setups as outlined above, with modified measured area 

dimensions to account for the need for profile evaluation lengths of 4 mm (in each case, one FoV × 

5 mm) [35]. Tactile measurements were made using a contact stylus instrument with a 2 μm tip radius. 

Stylus measurements were made after all optical measurements were completed, to prevent any 

modification of the surface from the contact-based measurement process. 

 

2.3.2 Data extraction and comparison 

 

Areal data 

 

Raw data (height maps) from CM, CSI and FV systems were converted into a standard format (.SDF), 

using the software MountainsMap. The height maps were then imported into Matlab [40]. XCT surface 

data, available as STL models, were also imported into Matlab [33,41]. Height maps were converted 

into triangle meshes by virtual raster scanning [9,14] and co-localised by rigid transformations (rotation, 

translation) within a single co-ordinate system. Co-localisation was performed in two stages, involving 

an initial coarse localisation based on alignment of visually recognisable landmarks [42], followed by 

an automated fine alignment using an iterative closest point algorithm [43] as per the method described 

in references [9,14]. To co-localise the data, a single CSI dataset was arbitrarily chosen as the ‘master’ 

dataset, and one dataset from each instrument was chosen as a ‘sub-master’. The FV, XCT and CM sub-

masters were aligned to the master CSI dataset, and all remaining datasets were aligned to their 

respective sub-master. This method maximises the quality of the alignment within a set of repeats from 

one instrument. We assume for this study that discrepancies between datasets resulting from poor 

alignment are negligible compared to the discrepancies between measured datasets (see reference [14]). 

Following co-localisation, the triangle meshes were converted into height maps at a resolution 

approximately equivalent to that of the dataset with the lowest lateral resolution (5 μm) using the method 

described in references [9,14]. This resolution is approximate as the lateral resolution of XCT surface 

topography measurement is poorly defined [38], but 5 μm was chosen as equivalent to half of the voxel 

size. Finally, all the aligned height maps were similarly cropped and (2.5 × 2.5) mm ROIs were 

extracted. The areal data processing pipeline is shown in the upper portion of Figure 2. 

 

 

Figure 2: Data processing pipelines for profile and areal cases. 

 



 

Profile data 

 

Raw data from CM, CSI and FV systems were imported into MountainsMap as height maps, while raw 

data from the contact stylus system were imported as profiles. XCT data were imported into 

MountainsMap and automatically converted into height maps at a spatial resolution automatically 

determined by MountainsMap to match the point density of the original triangulated mesh 

((4.80 × 5.34) μm for the top surface and (3.77 × 5.49) μm for the side surface). Profiles were then 

extracted from areal data in MountainsMap from single measurements made with each optical 

measurement system of the same approximate area, measured using the same measurement setups 

described above. In all cases, profiles were acquired as per the patterns shown in Figure 3. For side 

surfaces, twelve equally-spaced 5 mm long profiles were acquired by scanning perpendicular to the main 

visible lay (i.e. the layer structure), while twelve linear, 5 mm paths were defined on the top surface in 

various directions, to account for the lack of a discernible lay on this surface. The areal data processing 

pipeline is shown in the lower portion of Figure 2. 

 

  

Figure 3: Illustration of the contact stylus measurement pattern for the side (left) and top surfaces 

(right), overlaid on example levelled, unfiltered FV datasets. 

 

2.4 Comparison methods 

 

2.4.1 Qualitative comparisons 

 

Visual inspection was performed in MountainsMap on 3D and 2D geometric models reconstructed, 

respectively, from the height maps and profiles, noting visible similarities and discrepancies. Features 

present on the surfaces were identified at different scales. 

 

2.4.2 ISO parameter evaluation  

 

Surface texture parameter evaluation is the main tool used in research and industry to describe surface 

topographies [9]. Commonly used parameters were generated for the measured surfaces and compared 

statistically. All filtering and computation of parameters was performed in MountainsMap, while 

statistical testing was performed in Minitab [44]. 

 

ISO 25178-2 areal surface texture parameters 

 

From the measured surface, primary surfaces were obtained by application of an S-filter with a nesting 

index of 5 μm, to match the resolution chosen when resampling the triangle meshes into height maps 

after the co-localisation process. An F-operator was then applied (least-squares mean plane removal by 

subtraction) to provide SF surfaces. SL surfaces were also generated through the use of an L-filter with 

a nesting index of 0.8 mm. The index of 0.8 mm was chosen based upon values used in the existing 

literature [14]. Four of the most commonly used ISO 25178-2 [15,16] surface texture parameters, Sa, 

Sq, Ssk and Sku, were then generated and compared for each of the forty acquired surface datasets in the 



SF and SL cases. Confidence intervals (CIs) of the mean at 95% confidence were estimated for each 

parameter using t-distributions generated for both surfaces using five repeat measurements acquired 

using each of the four instruments. T-distributions are used instead of Gaussian distributions throughout 

this work because of the small sample sizes examined. 

 

ISO 4287 profile surface texture parameters 

 

From the measured profiles, primary profiles were obtained by application of a λs filter with a cut-off 

set at 2.5 μm. A form removal operation was then applied using least-squares mean line removal by 

subtraction and a λc filter with a cut-off set at 0.8 mm was applied. Profile ends were removed to provide 

an evaluation length of 4 mm. ISO 4287 [17] Ra and Rq parameters were computed for each of the 120 

acquired profiles and CIs of the means at 95% confidence were estimated for each parameter using t-

distributions. t-distributions were generated for both surfaces using twelve repeat measurements 

acquired using each of the five instruments. Ra and Rq were chosen as the two most common profile 

parameters to provide a simple comparison between optical and contact methods.  

 

It should be noted that for surfaces where 10 µm < Ra < 80  µm (i.e. surfaces such as those examined in 

this work), ISO 4288 [46] recommends an evaluation length of 40 mm and λs and λc filters of 25 µm and 

8 mm, respectively. However, work by Triantaphyllou et al. [35] showed that it is possible to evaluate 

such surfaces using a 4 mm evaluation length and λs and λc filters of 2.5 µm and 0.8 mm, respectively. 

It can be noted that the chosen λs filter (2.5 µm) is different from the chosen S-filter (5 µm) used above 

in the areal case. While the S-filter chosen above was selected to best match the spatial measurement 

bands of the instruments in the areal case, 2.5 µm was chosen in the profile case to match the filtering 

conditions generally used when performing stylus measurements with a 2 µm radius tip. 

 

2.4.3 Direct topography comparison 

 

A recently developed method for point-by-point comparison of surface topographies [14] was applied 

in this work. Using the five aligned datasets acquired by each measurement system, mean surfaces were 

computed for each instrument. For the direct topography comparisons, data are not filtered using 

Gaussian filters as described in section 2.4.2, but instrument spatial frequency response bands are 

intrinsically matched as part of the alignment process (see references [9,14,47]). CIs for the mean 

surfaces were then estimated on a point-by-point basis using t-distributions at 95% confidence. Mean 

width of the CIs was calculated as a repeatability metric, and CIs were plotted on a point-by-point basis, 

to quantify the variation in repeatability across the surface. Global discrepancy between instrument pairs 

was then computed, defined as the percentage of the surface area where CIs do not overlap. It should be 

noted that discrepancy may also exist in overlapping areas, as this is a statistical test and so is only 

capable of declaring discrepancy with a specific confidence. As such, CI overlap does not necessarily 

mean agreement, but rather than disagreement cannot be explicitly disproven. In addition to the use of 

CI width as an indication of local repeatability, local bias between the examined instruments was 

assessed by identifying the regions where the CIs of different instruments do not overlap. If the CSI 

measurement is taken as the metrological reference (i.e. unbiased measurement result), then discrepancy 

with respect to the CSI data becomes an indication of local bias. CSI was chosen as the reference as CSI 

data are typically associated with the lowest mean width of the CIs in both the side and top surface cases. 

Local bias between instrument pairs (i.e. the distance between the means of the two statistical 

topography models) was finally plotted to visualise areas of the surface that cause greater and smaller 

discrepancies. 

 

3. Results 

 

3.1 Qualitative comparison of aligned topographies 

 

3.1.1 Areal data 

 

In Figure 4 and Figure 5, qualitative overviews of the aligned height maps are provided for both side 

and top surfaces, respectively. Height maps are presented in these figures in their unlevelled states (i.e. 

before application of the F-operator). Both types of surface appear to be similar in terms of the 



topographic formations present, with formations seemingly randomly distributed in both cases. 

Although side surfaces present a lay that is visible to the naked eye, no discernible lay is visible in either 

case when visualised in the figures below. Qualitative similarity also exists between instruments, with 

few obvious visible differences. Zoomed in regions of each dataset are presented in Figure 6, to show 

how each instrument reconstructs example features on the surface. 

 

 

Figure 4: Example unfiltered side surface topographies: (a) CM, (b) CSI, (c) FV and (d) XCT. 

 

 

 

 



 

Figure 5: Example unfiltered top surface topographies: (a) CM, (b) CSI, (c) FV and (d) XCT. 

 

 

Figure 6: Instrument acquisition of an unfiltered side and a top surface feature (FoV: 0.38 mm × 0.38 

mm). 

 

3.1.2 Profile data 

 



In Figure 7, qualitative overviews of example profiles are provided for both side and top surfaces. These 

profiles are not aligned with one another so should not be identical, but are representative of the set of 

profiles acquired using each instrument. Profiles have been levelled for this visualisation. As in the areal 

case, both types of surface appear to be similar in terms of the topographic formations present, with 

formations seemingly randomly distributed in both cases. Qualitative similarity also exists between 

instruments, with few obvious visible differences.  

 

 

Figure 7: Example unfiltered profile topographies. Differences in z-axis scale should be noted between 

top and side surfaces. 

 

3.2 Texture parameter comparison 

 

3.2.1 Areal data 

 

For both the SF and SL cases, ISO 25178-2 [15] Sa, Sq, Ssk and Sku surface texture parameters with 

confidence intervals on the mean at 95% confidence are plotted for each surface in Figure 8. Statistical 

discrepancy is seen between instruments for all parameters, though cases where discrepancy cannot be 

demonstrated (i.e. overlapping CIs) also exists in many cases. When compared to the other examined 



instruments, CM returned statistically different parameter values most often and by the largest amount. 

The CI widths (i.e. repeatability) are similar between each instrument, with CSI consistently returning 

the smallest CIs. FV was the next-most repeatable, while CM was consistently the least repeatable 

instrument for texture parameters. The areal field texture parameters Ssk and Sku were found generally 

less repeatable than Sa and Sq, particularly when obtained from CM and XCT data. These observations 

are different from previous work on metal LPBF [14].  

 

 

Figure 8: Filtered ISO 25178-2 [15] parameters for side and top surfaces. 

 

3.2.2 Profile data 

 

ISO 4287 [17] Ra and Rq texture parameters with confidence intervals on the mean, computed at 95% 

confidence, are plotted for each surface in Figure 9. Statistical disagreement between optical and contact 

measurements is seen in the side surface case, and in the top surface case when compared to the FV and 

XCT results. In all cases, the mean parameter values returned by the contact stylus system are lower 

than those reported for the optical systems. 

 



 

Figure 9: Filtered ISO 4287 [17] parameters for side and top surfaces. 

 

3.3 Direct topography comparison 

 

The mean width of the local CIs associated to the statistical topography models are presented for each 

surface and each instrument in Figure 10. These widths are consistently higher for the side surface than 

for the top surface. For CM, CSI and FV, the ratio of the side CI width to the top CI width is similar 

(1.2 to 1.4). This ratio is not the same for the XCT data, however, where the ratio is 3.3. The point-by-

point CIs for each surface are presented in Figure 11, highlighting regions of the surface where 

repeatability is poor and where repeatability is good. Overall discrepancies between instrument pairs are 

presented in Table 1. 

 

 

Figure 10: Mean CI widths for the examined spatial frequency band matched surfaces.  

 



 

Figure 11: Point-by-point CIs for each spatial frequency band matched measurement setup. 

 

Table 1. Discrepancies between instrument pairs. 

Instrument pair CSI/FV CSI/XCT CSI/CM FV/XCT FV/CM XCT/CM 

Side surface discrepancy/ % 41.51 38.64 45.15 27.11 35.87 24.37 

Top surface discrepancy/% 58.25 45.87 39.23 54.06 39.78 32.74 

 

Global discrepancy between mean surfaces is presented in Figure 12, while local bias between mean 

surfaces is presented in Figure 13. The mean unsigned bias between instruments is consistently below 

2 µm, but varies substantially between 0.5 µm and 1.75 µm with no discernible trend. Local bias 

between the examined instrument maps show concentrated increases in bias surrounding specific 

features, and a bow in the data is visible in the in the CM/CSI top surface case. 

 

Figure 12: Global discrepancy between instrument pairs, comparing each measurement to CSI. 

 



 

Figure 13: Local bias between spatial frequency band matched instrument pairs, comparing each 

measurement to CSI. 

 

4. Discussion 

 

Side and top surfaces (Figure 4, Figure 5 and Figure 7) provide similar results in terms of qualitative, 

visual assessment. In both cases, there are no obviously identifiable features akin to those commonly 

found on metal powder bed fusion surfaces [9], and the features present appear (at least visually) to be 

randomly distributed. Representation of both surfaces by the various instruments is broadly similar, with 

some differences visible when examining smaller scale features (Figure 6) on both surfaces. It is not 

clear from the data what the cause of these discrepancies is, but likely options include complex optical 

effects that result from measurement of translucent surfaces, where sub-surface reflections distort each 

instruments’ response to the surface (e.g. see reference [27]). Further research is required in optimisation 

of each measurement technology, to understand the exact cause of these discrepancies. 

 

The values taken by ISO 4287 [17] and 25178-2 [15] parameters (as shown in Figure 8 and Figure 9) 

show that side surfaces are slightly rougher than top surfaces (with higher Ra, Rq, Sa and Sq parameters 

as measured by all instruments). The areal skewness of side surfaces was negative, while for top surfaces 

it was positive. Kurtosis values were slightly higher in the top surface case than the side surface case. 

While often statistically discrepant, CIs on parameter mean values were small in comparison to the 

values of the parameters themselves, and parameters took quantitatively similar values for all 

instruments. Contact stylus measurement returned notably lower parameter values than the non-contact 

optical systems. These lower values may be due to the aforementioned optical effects when measuring 

translucent samples, the contact nature of the measurement process or the location of the specific profiles 

extracted or some other local or widespread effects. Additionally, while the probing force is low, the 

relatively soft polyamide-12 being measured may have been scratched by the stylus during 

measurement, removing the tops of peaks. As the recorded profiles are likely to be of the scratched 

surface as opposed to the raw surface, this scratching may have had the effect of reducing the measured 

Ra and Rq values with respect to the non-contact methods. While no discernible scratches were visible 

during subsequent qualitative microscopic evaluation, such peak removal may be impossible to detect 

in areal visualisations of measurements. In any case, the specific reason cannot be discerned from the 

data and further work is required to make conclusions about the existence of reduced parameter values 

in the contact case. Regardless, while they are in some cases statistically discrepant, the parameters 

generated using each measurement method are similar in magnitude for both contact and non-contact 

methods, implying that measurement of these surfaces is possible using all of the examined instruments. 

 



A note should be made about comparing surface texture parameter CI overlap as a method for assessing 

instrument performance. When CIs do not overlap, it is safe to say that results are different (i.e. the 

difference is statistically significant). When CIs do overlap, the conventional interpretation should be 

that there is not enough evidence to state that the results are different. In truth, the difference may still 

be statistically significant even when CIs do overlap, but the test is not powerful enough to detect it. A 

similar issue would be encountered by applying ANOVA as an alternative method of investigation. In 

such an analysis, significant inhomogeneity in variances across the samples (as frequently observed in 

our data) simialrly leads to a loss of statistical power for the test. More powerful tests could be adopted 

to obtain a further refinement in the assessment of discrepancy, but in this work we focus on providing 

an overview of where the major discrepancies are found in relation to the generation of surface texture 

parameters. Noting that discrepancies exist, we then perform further analysis to understand why the 

parameters are discrepant. 

 

Direct topography comparison provides this deeper course of analysis when there are discrepancies 

between generated parameters. Top surface measurements were shown to be more repeatable than side 

surface measurements, with mean CI widths consistently taking higher values in the side surface case 

(Figure 10). The stable ratio of side surface CI width to top surface CI width (excepting the XCT case) 

implies there may be a correlation between repeatability and some quality of the surface, though further 

research is required to understand what aspect of the surface repeatability is correlated to, and to solidify 

the statistical significance of this correlation (if any). Global discrepancy between instrument pairs 

(Table 1) also appears to increase with CI width, with increasing confidence intervals increasing the 

overlap between CIs. It should be noted that this method does not provide information about the causes 

of discrepancies, but rather provides information as to the location of discrepancies in the data. 

 

Further understanding of the various instruments’ ability to measure these surfaces is presented in the 

point-by-point CIs (Figure 11), which highlight areas on the surface that are difficult for each instrument 

to measure. Some of these regions are consistent for all instruments, while other regions cause issues 

for some instruments and not others. These data show that poor repeatability often occurs at the outlines 

of features, where high slopes exist, implying a correlation between measurement repeatability and slope 

characteristics; as could be expected for CM, CSI and FV [14]. This fact is particularly of note in the 

XCT case, however, where such a correlation would not necessarily be expected, given the volumetric 

nature of the measurement process. As the XCT data have poor repeatability in similar areas to the other 

optical data, however, there may also be a correlation between slope and XCT surface measurement 

repeatability. Further investigation is required to ascertain whether this correlation truly exists, but these 

results present questions for future study. These plots also reveal other issues present in the measurement 

process, such as the bow seen in top surface measurement by CM.  

 

Examination of the global discrepancy between surfaces (Figure 12) shows regions where measurements 

are more or less discrepant from one another. Areas that have good or bad repeatability for the whole 

array of instruments are highlighted, as are areas of good or bad repeatability for individual instruments. 

For example, there is a region in the bottom left of the side surface measurements in Figure 12 where 

CSI returns different height values compared to the other instruments, though point-by-point CI plots 

(Figure 11) show this area to be very repeatable. Further examination of the raw data (Figure 13) shows 

that this region was an area of non-measured points in each of the CSI measurements, clearly indicating 

a problematic feature. Most notably, as with metal LPBF surfaces [9], discrepancies between 

instruments are often similar in size to the features being measured. 

 

Potential improvements to the methods for comparing surfaces presented here should be noted. While 

measurements were made by skilled operators, further optimisation of instruments is always possible, 

and further work is required in optimising the systems used during this work for the measurement of 

polymer LPBF surfaces. Additionally, as discussed in previous publications [9,14,48], while the 

comparison of replicate measurements of a single measured region represents a deeper method of 

understanding surfaces than by generation of ISO 4287 or 25178-2 parameters alone, the method has a 

number of key weaknesses which require development in future studies. Notably, the direct topography 

comparison method relies on an assumption that the quality alignment between surfaces is negligible, 

as any alignment error will unnaturally increase any generated CI width. While the iterative closest point 

algorithm used here is relatively robust, commercial packages that allow researchers and industrialists 

to do this process reliably are not yet available, and algorithms often fail in ways that are only obvious 



to a skilled user. Also, the current CI generation model assumes points to be spatially uncorrelated, 

which is unlikely to be the case. The model, therefore, requires extension to correct for spatial correlation 

and simultaneous estimation of multiple CIs. Further developments to the CI model are currently in 

development, and will be the subject of a future publication. Finally, the CI model currently relies on 

consensus between instruments to provide indications as to the actual topography being measured. In 

the absence of traceable measurements, this method presents a reasonable solution, but is likely to be 

insufficient in applications where traceability is a necessity. Without traceability, it is impossible to 

establish any one technology here as a ‘ground truth’, so we can only make assumptions about the nature 

of the surface topography based on consensus between instruments (e.g. if all instruments see a hill in 

location x, it is likely that there is a hill at location x). As such, incorporation of traceability into the CI 

model is a necessary future development, and also the subject of a future publication. 

 

Finally, it should be again noted that in this work we have limited the investigation to showing that 

differences exist between measurement technologies, as well as how those differences present 

themselves on the polymer LPBF surface when measured using different technologies. What we have 

not examined in this investigation is the problem of why these differences exist or how to correct for 

them; both of these studies represent significant research undertakings and are beyond the scope of this 

particular publication. The solutions to these issues lie in subsequent research projects and represent 

interesting undertakings for future work. 

 

5. Conclusion 

 

Measurements of polymer LPBF surfaces have been performed with using contact stylus, CSI, FV, CM 

and XCT. In all cases, data was acquired with few missing data points and analysis results similar to 

those acquired using other measurement technologies. Statistical discrepancies between instruments 

were found between instruments in all cases, but ISO 4287 or 25178-2 parameters generally provided 

values in similar ballparks for each instrument examined. Examination of local features showed local 

discrepancies between instruments centred on areas of high slopes. This issue was the case for all optical 

instruments, including XCT, which acquires fully volumetric data. Discrepancies between instruments 

were often similar in size to the features on the surface. 

 

This study should be used as a tool to better understand how surface measurement instruments behave 

when measuring polymer surfaces, and as a demonstration of the technologies capable of measuring 

such surfaces. Future work is required in optimisation of measurement technologies for polymer LPBF 

surfaces, and in development of improved methods of comparing surface datasets. 
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