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The implementation of the circular economy is increasingly supported by many governments. It is per-
formed by integrating the activities of reverse supply chain into those of forward supply chain. However,
many companies that traditionally focus on the activities of forward supply chain have decided to collab-
orate with third-party reverse logistics providers to manage the reverse supply chain. This collaboration
motivates the work presented in this paper to propose better decisions for decision makers in the providers
under the fact that integrating decisions of the collection of End-of-Life products and their disassembly
process proposes a reverse supply chain with better performance. In this paper, an integrated problem
concerning those decisions is presented and formalised. It also deals with the uncertainty of the quality
and the quantity of products as well as the demands of the associated components. Two approximate
methods are developed to provide the solutions.

Keywords: Collection; Disassembly; Reverse Supply Chain; Stochastic Programming; Two-Phase
Iterative Heuristic; Sample Average Approximation

1. Introduction

Nowadays, the evolution of the economic framework employed by the companies from the linear
economy towards the circular economy is increasingly supported by many governments. The linear
economy is characterised by ”take-make-dispose” pattern where the raw materials are transformed
into the final products in order to fulfil the demands of the clients and are disposed once they reach
the end of life cycle. Based on the report of World Economic Forum (Forum 2014), the linear econ-
omy is arriving its limits in due to (i) the growth of resource prices and supply disruptions, (ii) the
price volatility of metals, foods and non-agriculture outputs, (iii) the difficulty of creating sufficient
competitive advantage or differentiation, (iv) the unpredicted consequences of the improvement of
energy and resource efficiency, (v) the deceleration of agriculture productivity followed, (vi) the
increasing risk of global supply chain’s supply security and safety and (vii) the difficulties of get-
ting virgin resources (water, land and atmosphere). Therefore, the implementation of the circular
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economy is encouraged due to its advantages in terms of financial, social and environmental fac-
tors. This implementation is carried out by incorporating the activities of reverse supply chain
(RSC) dealing with End-of-Life (EOL) products i.e. reusing, repairing, refurbishing and recycling,
to those of forward supply chain in order to form a closed-loop (circular) supply chain. Xerox,
Hewlett-Packard and Phillips are among success story regarding such implementation (Kumar and
Putnam 2008; Pishvaee, Farahani, and Dullaert 2010; Alumur et al. 2012; Forum 2014).

However, many companies that traditionally focus on the activities of forward supply chain have
decided to collaborate with other specialised companies to manage RSC such as La Fédération
ENVIE (France) since it requires new facilities and activities that are typically costly and manual
labour intensive. This fact motivates this work to propose better decisions for decision makers in
such third-party reverse logistics providers (3PRLPs). In detail, this work has been put in place in
the particular interest of the management of EOL products from the points of collection until the
point of re-manufacturers and/or recyclers.

Habibi et al. (2017a,b) proved that integrating the decisions of the collection and disassembly
processes of RSC leads to optimise and enhance the performance of the RSC in terms of total cost
and the demand satisfaction. However, this work focuses on the deterministic case in which that
the quality and the quantity of the EOL products as well as the demands of their components are
well defined and only single vehicle is considered.

Table 1.: Comparison of Habibi et al. (2017a,b) and this paper

CHARACTERISTIC Habibi et al. (2017a,b) This Paper
Uncertainty No Yes
Parameters Quantity of products returned
affected by No Quantity of components
uncertainty Demand of component

No. of Vehicle Single Multiple

Reverse Supply Chain (RSC) needs to consider the uncertainty notably when it deals with End-
of-Life (EOL) products. Based on McGovern and Gupta (2011), such products are often returned
with imperfect or modified condition such as missing parts, components are replaced with higher
quality ones etc. The quantity returned and the demand of component to sell are also highly
uncertain.

Employing stochastic programming is an effective way to deal with such uncertainties. Managers
of an RSC dealing with EOL products may refer to our work. They are able to optimize the
performance of an RSC by minimizing the total cost containing the expected cost emerged from
the uncertainties.

In this paper, we extend the works of Habibi et al. (2017a,b) in order to approach the field reality
by taking into account the uncertainty of the quality and the quality of EOL products as well as
the demands of their components. The quality of product is assumed equivalent to the quantity
of its components after it is returned to collection centres. We also take into account the case of
multi-vehicle since 3PRLPs often posses more than one vehicle. Figure 1 depicts the contribution
of this paper compared to the previous work.

2. Literature Review

The problem in Habibi et al. (2017a,b), called Collection-Disassembly Problem (CDP), is a version
of Production-Distribution Problem (PDP) or Production-Routing Problem (PRP) in RSC. It
integrates decisions of two well-known and hard combinatorial problems i.e. vehicle routing and
lot-sizing, to deal with the collection of EOL products and their disassembly process, respectively.
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Figure 1.: Network Representations of Collection-Disassembly Problem Habibi et al. (2017a)

PDP differs from Newsvendor Problem. In their basic formulations, PDP concerns with multiple-
period plan whilst Newsvendor Problem considers single period. However, we are aware that
Newsvendor Problem is advanced in multi-period. Newsvendor Problem considers no vehicle rout-
ing whilst it is an important part of PDP. Compared to routing problems, PDP takes into account
decisions on production process. As an adaptation of PDP into RSC, the routing part of CDP con-
cerns about the collection of End-of-Life products and the lot-sizing part lies in their disassembly
process. In this work, we assume that some parameters are under uncertainty and more than one
vehicle are available to use.

To well position our work in the existing literature, relevant papers in PDP are reviewed. The
papers propose models and approximate methods particularly in dealing with large size instances
when the commercial solver is not able to provide optimal solutions in acceptable CPU times.

The majority of PDP works focuses on both production and distribution aspects by incorporating
the decisions of production and routing aspects in tactical level decision. Based on the existing
literature of PDP that mostly deals with continuous products, the objective function minimises
the total cost of production, inventory and routing, simultaneously, by respecting the demands
of retailers, their inventory limits, the production facility’s capacity and its inventory limit. As
CDP, PDP is also a combination of two well-known and hard combinatorial problems i.e. lot-sizing
problem and VRP, to deal with forward supply chain.

Based on Boudia, Louly, and Prins (2007); Bard and Nananukul (2009, 2010); Armentano, a.L.
Shiguemoto, and Lø kketangen (2011), the decisions of PDP throughout the planning horizon
consist of:

(1) when and how much products to produce
(2) when to visit and how much to deliver to retailers as well as the routing
(3) inventory level for each retailer and the depot

There are four existing models as the main references of PDP with multi-vehicle under Maximum
Level policy. First, the formulation of Boudia, Louly, and Prins (2007) which is completed with
vehicle index. Second, the formulation proposed in Bard and Nananukul (2009, 2010) has no index
regarding the vehicle. Third, the formulation of Armentano, a.L. Shiguemoto, and Lø kketangen
(2011) deals with the case of multi-products where the available vehicles are indexed. Fourth, the
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formulation of Adulyasak, Cordeau, and Jans (2015b) deals with PDP under the uncertainty of
demands of retailers. Adulyasak, Cordeau, and Jans (2015a) and Dı́az-Madroñero, Peidro, and
Mula (2015) provide extensive reviews on PDP. Table 2 contains works on PDP highlighting on its
variants as well as solving methods proposed.

Table 2.: Variants and Solving Methods of Production-Distribution Problem

Problem Authors Solving Methods
PDP Chandra and Fisher (1994) Decomposition

Fumero and Vercellis (1999) Lagrangian Relaxation
Buer, Woodruff, and Olson (1999) Genetic Algorithm
Bertazzi, Paletta, and Speranza (2005) Decomposition
Boudia, Louly, and Prins (2007) GRASP
Chen, Hsueh, and Chang (2009) Decomposition
Çetinkaya et al. (2009) Decomposition
Boudia and Prins (2009) Memetic Algorithm
Bard and Nananukul (2009, 2010) Brand & Price
Solyalı and Süral (2009) Relaxation based Heuristic
Shiguemoto and Armentano (2010) Tabu Search
Archetti et al. (2011) Branch-and-Cut

Mathematical Programming based Heuristic
Armentano, a.L. Shiguemoto, and Lø kketangen (2011) Tabu Search
Calvete, Galé, and Oliveros (2011) Ant Colony
Adulyasak, Cordeau, and Jans (2012) ALNS
Absi et al. (2014) Two-Phase Iterative Heuristics
Adulyasak, Cordeau, and Jans (2014) Branch-and-Cut
Russell (2017) Mathematical Programming Heuristics
Solyalı and Süral (2017) Multi-Phase Heuristic
Qiu et al. (2018c) Variable Neighborhood Search

PDP with Perishable Product Amorim et al. (2013) Branch-and-Bound
PDP under Demand Uncertainty Adulyasak, Cordeau, and Jans (2015a) Benders Decomposition
PDP with Backordering Brahimi and Aouam (2016) Relax-and-Fix Heuristic and Local Search
PDP with Carbon Cap-and-Trade Qiu, Qiao, and Pardalos (2017) Branch-and-Price Heuristic
PDP in Close Loop-Supply Chain Qiu et al. (2018a) Branch-and-Cut guided Search
PDP with Pollution Consideration Kumar et al. (2015) Self-Learning PSO
PDP with Startup Cost Qiu et al. (2018b) Branch-and-Cut
Rich PDP Miranda et al. (2018) Decomposition Heuristic
PDP in Reverse Supply Chain Habibi et al. (2017a) Branch-and-Bound

Habibi et al. (2017b) Two-Phase Iterative Heuristics
PDP in Reverse Supply Chain This Paper SAA and Two-Phase Iterative Heuristics
under Uncertainty

GRASP stands for Greedy Randomized Adaptive Search Procedure
ALNS stands for Adaptive Large Neighborhood Search
PSO stands for Particle Swarm Optimization
SAA stands for Sampling Average Approximation

To the best of our knowledge, there is no work attempting to formalise the integration of decisions
regarding the collection of EOL products and their disassembly process by taking into account the
uncertainty of their quality and the quantity as well as the demands of their components. Also,
there is no work proposing the case of multi-vehicle in such a problem. Therefore, a formulation
filling this research gap is presented. Two methods are developed to provide the solutions to this
problem.

3. Problem Formulation

This problem considers that a single site performs a disassembly process for treating a single type
of EOL products available at dispersed collection centres. Some homogeneous vehicles with fixed
capacity are available for collecting the EOL products.

The products’ nomenclature is known and identical. Each product has several components where
each component has uncertain quantity. The collected products are disassembled in the site in order
to release the components requested. The site has a fixed capacity corresponding to its cycle time.
A penalty cost is occured once the component demand is unmet. The demand of component is
uncertain and assumed following some known distribution. The problem contains multi-period due
to the presence of an inventory to store the collected EOL products. There is no salvage value
or disposal cost for any leftover components. Following its characteristics, the problem is called
as Stochastic Multi-Vehicle Collection-Disassembly Problem and abbreviated as SMCDP. In this
work, the quality of product is assumed equivalent to the quantity of its components after it is
returned to collection centers. We denote the quantity of each component a of the product at period
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t under scenario ω as nωat.
Parameters:
A set of component: a = {1, 2, · · · , |A|}
N set of nodes: i, j = {1, 2, · · · , |N |} where 1 is the depot
Nc set of collection centres: i, j = {2, · · · , |N |}
Ω set of finite scenario: ω = {1, 2, · · · , |Ω|}
T planning horizon: t = {1, 2, · · · , |T |}
K set of vehicles: k = 1, 2, ·|K|
ρω probability of scenario ω
nωat quantity of component a in the product at period t under scenario ω
Sω
it quantity of products available at collection centre i at period t under scenario ω

qωat demand of component a at period t under scenarion ω
Q vehicle capacity

InvCap inventory capacity
DisCap disassembly line capacity imposed from its cycle time
CF fixed vehicle dispatch cost
cij mileage cost from node i to j
CD unit disassembly cost
CH unit holding cost
CPa unit penalty cost of component a.

Figure 2.: Two-Stage Stochastic Problem

The problem is formalised as a two-stage stochastic programming. In this problem, a scenario ω
in period t is a realisation of Sω

it, n
ω
at and qωat into a fixed value coming after the planning stage as

depicted in Figure 2.
The first-stage decisions correspond to the planning of the routing of vehicle k,∈ K for each

period as follows:
zt number of vehicles dispatched at period t
xkijt 1 if node j visited immediately after i by vehicle k at period t. 0 otherwise.

Consequently, the second-stage decisions correspond to the load of vehicles and the disassembly
decisions. These decisions will be taken after the realisation of the parameter under uncertainty.
The decisions are:

ykωit load of vehicle k after visiting node i at period t in scenario ω
Iωt inventory level of EOL products at period t in scenario ω
Pω
t quantity of EOL products disassembled at period t in scenario ω
SOω

at unmet demands of component a at period t in scenario ω
Stochastic Integer Linear Programming of SMCDP :

Min
∑
t∈T

(CF · zt +
∑
k∈K

∑
i,j∈N

cij · xkijt +
∑
ω∈Ω

ρω(CH · Iωt + CD · Pω
t +

∑
a∈A

CPa · SOω
at)) (1)

subject to:
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∑
k∈K

∑
j∈N ,i 6=j

xkijt ≤ 1 ∀i ∈ Nc, ∀t ∈ T (2)

∑
i∈Nc

xk1it ≤ 1 ∀k ∈ K,∀t ∈ T (3)

∑
k∈K

∑
i∈Nc

xk1it ≤ zt ∀t ∈ T (4)

∑
i∈N ,i 6=v

xkivt =
∑

j∈N ,j 6=v

xkvjt ∀v ∈ N ,∀k ∈ K,∀t ∈ T (5)

ykωit + (Q− Sω
it) · xk1it ≤ Q ∀i ∈ Nc, ∀k ∈ K,∀t ∈ T ,∀ω ∈ Ω (6)

ykωit − ykωjt +Q · xkijt + (Q− Sω
jt − Sω

it) · xkjit ≤ Q− Sω
jt i 6= j,∀i, j ∈ Nc,∀k ∈ K,∀t ∈ T ,∀ω ∈ Ω

(7)

Iωt = Iωt−1 +
∑
k∈K

∑
i,j∈N ,i 6=j

Sω
it · xkijt − Pω

t ∀t ∈ T ,∀ω ∈ Ω (8)

nωat · Pω
t + SOω

at ≥ qωat ∀a ∈ A, ∀t ∈ T , ∀ω ∈ Ω (9)∑
j∈N ,i 6=j

Sω
it · xkijt ≤ ykωit ≤

∑
j∈N ,i 6=j

Q · xkijt ∀i ∈ N ,∀k ∈ K,∀t ∈ T ,∀ω ∈ Ω (10)

Iωt ≤ InvCap ∀t ∈ T ,∀ω ∈ Ω (11)

Pω
t ≤ DisCap ∀t ∈ T ,∀ω ∈ Ω (12)

zt ≤ |K| ∀t ∈ T (13)

xkijt ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ K,∀t ∈ T (14)

zt, y
kω
it , SO

ω
at, I

ω
t , P

ω
t ∈ Z+ ∀a ∈ A, ∀i ∈ N , ∀k ∈ K,∀t ∈ T , ∀ω ∈ Ω. (15)

The objective function (1) minimises the total cost of the first-stage decision and the expected
cost corresponding to the second-stage decisions. The first and second terms correspond to the
dispatch and mileage vehicle costs. The latter terms consist of the expected costs of inventory,
disassembly and penalty.

Constraints (2) state that a collection centre is visited at most once by any vehicle at period
t. Constraints (3) ensure that vehicle k is dispatched at most once at period t. Constraints (4)
determine number of vehicles dispatched at period t. The flows of visiting and leaving a node are
conserved by constraints (5). The load of vehicle k after visiting a collection centre i in which
it is the first node visited is ensured by constraints (6). Constraint (7) eliminate any subtour.
Constraints (8) are the inventory balance of disassembly site. Constraints (9) impose the demand
fulfilment. Constraints (10), (11), (12) and (13) are the limitation of load of vehicle, inventory level,
disassembly and maximum number of vehicles, respectively. Constraints (14) and (15) define the
decision variables.

4. Solution Methods

As far as our knowledge, Two-Phase Iterative Heuristics (Absi et al. 2014) provides high quality
solutions in PDP. We also experience that this method with the type of Iterative Method with
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Multi-Travelling Salesman Problem (IM-MultiTSP) performs very good in CDP and is also flexible
enough to be adapted. Therefore, it is implemented in SMCDP in the hope that it also proposes
good performance. Apart from that, we also propose an enhanced version of this method since this
enhancements lead to better performance than the original one.

An algorithmic framework is implemented combined with both methods to provide statistical
lower and upper bounds since the proposed formulation is stochastic discrete optimisation problem
with finite number of scenario.

4.1 Two-Phase Iterative Heuristic

In this part, the implementation of this method is demonstrated into PDP and SMCDP, consecu-
tively.

4.1.1 In PDP

This method is originally proposed in Absi et al. (2014) for dealing with PDP with multi-vehicle
and single type of product. It decomposes the problem into two subproblems and solved them
iteratively. The two subproblems are the lot-sizing subproblem with approximate visiting costs
and the routing subproblem.

The lot-sizing subproblem with approximate visiting costs, also called as the first phase, deals
with the decisions of when and how much products to produce, when to visit retailers and how
much products to retailers. Consecutively, this phase provides the set of retailers served in each
period. Also, the vehicle capacity is already taken into account in this subproblem. Accordingly,
the second phase (the routing subproblem) aims to construct the route of vehicle dispatched for
each period corresponding to the set of retailers served.

The approximate visiting costs of a retailer are initialised by multiplying the go-return running
costs and the distance between the retailer and the production facility. For those who are served
in a particular period, a particular procedure is used to update their corresponding approximate
visiting costs (see next part).

A diversification mechanism of the approximate visiting costs are required to permit the method
exploring the unvisited solution space. It is simply done by multiplying the current value of the
costs by the number of retailers visited throughout the planning horizon plus one. One is to avoid
zero multiplication when no retailer is visited. The method is provided in Algorithm 1.

Algorithm 1: Two-Phase Iterative Heuristic for PDP

solution ← ∅
Initialise the approximate visiting costs for all retailers and vehicles
while a stopping criteria is not met do

while a stopping criteria is not met do
Solve the lot-sizing subproblem with approximate visiting costs
Get the set of retailers served
Construct the routes to visit the served retailers in the routing subproblem
Update solution (if necessary) and approximate visiting costs

end
Diversify the approximate visiting costs

end

4.1.2 In SMCDP

This part consist of the adaptation of Two-Phase Iterative Heuristic for solving SMCDP. Some
modifications are required due to the uncertainty of several parameters.
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The problem is decomposed into two subproblems: (i) Stochastic Multi-Vehicle Reverse Lot-
Sizing Problem with Approximate Visiting Costs (SMRLP-AVC) and (ii) Routing Problem.

4.1.2.1 SMRLP-AVC. This problem is a simplification of SMCDP by replacing the travelling
cost with so-called approximated visiting cost. It determines how many vehicles to use zt, which
collection centre to visit, how many EOL products to store into the inventory Iωt , how many EOL
products to disassemble Pω

t and how many penalty occurred SOω
at. Instead of using cij , it uses the

approximate visiting costs denoted as SCk
it. These costs are initialised using c0i + ci0 and updated

throughout the method.
The decision variables of SMRLP-AVC are described as follows:

γkit

{
1 if node i is visited by vehicle k at period t
0 otherwise

βkt

{
1 if vehicle k visits any collection centre at period t
0 otherwise

rkωit quantity of EOL products collected from node i by vehicle k at period t under scenario ω

4.1.2.2 Formulation of SMRLP-AVC.

Min
∑
t∈T

(
CF · zt +

∑
k∈K

∑
i∈Nc

SCk
it · γkit +

∑
ω∈Ω

ρω

(
CH · Iωt + CD · Pω

t +
∑
a∈A

CPa · SOω
at

))
(16)

Subject to:

(9), (11), (12)

Iωt = Iωt−1 +
∑
k∈K

∑
i∈Nc

rkωit − Pω
t ∀t ∈ T ,∀ω ∈ Ω (17)

rkωit = Sω
it · γkit ∀i ∈ Nc,∀k ∈ K,∀t ∈ T ,∀ω ∈ Ω (18)

∑
i∈Nc

rkωit ≤ min
{
Q;maxa

{ T∑
t′=t

qωat′

na

}}
∀k ∈ K, ∀t ∈ T , ∀ω ∈ Ω (19)

∑
k∈K

γkit ≤ 1 ∀i ∈ Nc,∀t ∈ T (20)

∑
i∈Nc

γkit ≤ |Nc| · βkt ∀k ∈ K,∀t ∈ T (21)

βkt ≤
∑
i∈Nc

γkit ∀k ∈ K,∀t ∈ T (22)

∑
k∈K

βkt = zt ∀t ∈ T (23)

zt ≤ |K| ∀t ∈ T (24)

γkit, β
k
t ∈ {0, 1} ∀i ∈ Nc, ∀k ∈ K, ∀t ∈ T (25)

SOω
at, I

ω
t , P

ω
t , r

kω
it , zt ∈ Z+ ∀a ∈ A, ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T , ∀ω ∈ Ω. (26)

The objective function (16) is to minimise the total cost consisting of total fixed cost of vehicles
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deployed, total approximate cost and the expected cost of second-stage decisions of inventory,
quantity of EOL products disassembled and unmet demand.

Constraints (17) impose the inventory balance of EOL products. Constraints (18) state all EOL
products belong to collection centre i have to be picked up once it is visited by any vehicle.
Constraints (19) is the maximum limit of rkωit . Constraints (20) guarantee that a collection centre
is visited at most once by any vehicle for each period. Constraints (21) state that βkt is equal to 1
if vehicle k visited at least one collection centre in period t. Otherwise, βkt is equal to 0 as imposed
by constraints (22). Constraints (23) and (24) state that number of vehicles used in each period is
limited to the number of available vehicles. The nature of the decision variables on both stages are
imposed in constraints (25) and (26).

Based on the values of γkit obtained by solving SMRLP-AVC, the route of each vehicle is con-
structed. If necessary, the decision values and SCk

it are updated based on the objective value. Apart
from its initial values, the diversification mechanism of SCk

it is employed in order to move to the
other solution space. The algorithm 2 provides the implementation of the method to SMCDP.

Algorithm 2: Two-Phase Iterative Heuristic for SMCDP

solution ← ∅ ;

Initialise SCk
it, ∀i ∈ Nc, k ∈ K, t ∈ T

while a stopping criteria is not met do
while a stopping criteria is not met do

while a stopping criteria is not met do
Solve SMRLP-AVC and get γkit,∀i ∈ Nc, ∀k ∈ K,∀t ∈ T
Solve Routing Problem
Update solution (if necessary) and SCk

it

end

Diversify SCk
it

end

Multi-start procedure: SCk
it = ρit · (c0i + ci0), ∀i ∈ Nc, k ∈ K, t ∈ T

end

Algorithm 3: Update of approximate visiting costs SCk
it

forall t ∈ T do
forall k ∈ K do

forall i ∈ Nc do
if i ∈ routekt then

SCk
it ← ci−i + cii+ − ci−i+

else
SCk

it ← ∆it

end

end

end

end

4.1.2.3 Routing Problem. The first phase provides the set of nodes served in each period. Thus,
the routing problem becomes multi-TSP. To construct the route, we use the Lin-Kernighan Heuris-
tic Lin and Kernighan (1973) as the the state-of-the-art heuristic of solving TSP.
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4.1.3 Adaptive Two-Phase Iterative Heuristic

In this part, the enhancement of Two-Phase Iterative Heuristic for SMCDP is described. It is
proposed since it leads to faster computational time with good solutions for CDP.

In Algorithm 2, one notes that the problem is decomposed into SMRLP-AVC and routing prob-
lem. The solutions and SCk

it are updated if the corresponding fitness value is better than previous
one. In this enhancement, this step is denoted as the first step. The enhancement expands the
method by putting the second and third additional steps in order to propose a better solution.

The second step introduces SMRLP-AVC II in order to provide the solution of SMRLP-AVC
serving less periods by introducing the parameter Z indicating number of periods served in SMRLP-
AVC. The variable αt is equal to 1 if period t is served. Otherwise, it is 0. In this step, the
approximate visiting costs SCk

it of the second step are identical to the first step. SMRLP-AVC II
is formalised as follows:

4.1.3.1 SMRLP-AVC II.

Min 16

Subject to:

(9), (11), (12), (17)− (26)

zt ≤ |K| · αt ∀t ∈ T (27)∑
t∈T

αt ≤ Z − 1 (28)

αt ∈ Z+ ∀t ∈ T . (29)

Based on our experiences in the deterministic CDP, the second step of enhancements indeed pro-
vides better optimality gaps but longer CPU times than Two-Phase Iterative Heuristic. Therefore,
an adaptive procedure is required to deal with this issue as follows.

This procedure is carried out by introducing the probability of using the second step denoted as
prob. These value is halved once the step has no contribution to the solution by comparing it with
a random values rand. This method is depicted in Algorithm 4.

The Algorithm 4 provides this enhancement as well as the adaptive procedure. The Algorithm
3 is also used in this enhanced method to update SCk

it.

4.2 Sample Average Approximation

Since SMCDP is stochastic discrete optimization problem, we adapt the Sample Average Approx-
imation (SAA). This Monte Carlo-based sampling method is to tackle a problem having very
large number of scenario denoted as Ω′, which is intractable, by solving the problem with a set of
smaller and tractable scenario Ω where |Ω| � |Ω′| (Adulyasak, Cordeau, and Jans 2015b; Kleywegt,
Shapiro, and Homem-de Mello 2002; Ghilas, Demir, and Woensel 2016).

The following is the procedure of SAA applied to our SMCDP:

1. Set replication M and generate scenario Ω as well as very large scenario Ω′ independently.

The probability of each scenario ω associated with |Ω| is ρω =
1

Ω
.

2. For s = 1→M, do :
2.1. Solve SMCDP. Store the objective value Zs

Ω, the vectors of the first stage solutions
(zsΩ,x

s
Ω) and the vectors of the second stage solutions (IsΩ,P

s
Ω,SO

s
Ω). The average and

10
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Algorithm 4: Adaptive Two-Phase Iterative Heuristic for SMCDP

solution ← ∅ ;

Initialise SCk
it,∀i ∈ Nc, k ∈ K, t ∈ T

while a stopping criterion is not met do
prob = 1
while a stopping criterion is not met do

while a stopping criterion is not met do
FIRST STEP ;

• Solve SMRLP-AVC and get γkit,∀i ∈ Nc,∀k ∈ K,∀t ∈ T
• Solve Routing Problem
• Update solution (if necessary) and SCk

it

SECOND STEP
Generate rand ;
if rand ≤ prob then

• Solve SMRLP-AVC II and get γkit,∀i ∈ Nc,∀k ∈ K,∀t ∈ T
• Solve Routing Problem
• Update solution (if necessary) and SCk

it

if solution is not updated then
prob = prob/2

end
end

end

Diversify SCk
it

end

Multi-start procedure: SCk
it = ρit · (c0i + ci0),∀i ∈ Nc, k ∈ K, t ∈ T

end

the variance of the objective value after s replication denoted as vsΩ and σsΩ
2 are obtained

as follows:

vsΩ =
1

s

s∑
i=1

Zi
Ω

σsΩ
2 =

1

s · (s− 1)

s∑
i=1

(Zi
Ω − vsΩ)2

2.2. To obtain the second stage solutions IsΩ′ , P
s
Ω′ and SOs

Ω′ of a very large scenario Ω′, use
the best first stage solution after replication s denoted as ẑsΩ and x̂s

Ω. The corresponding

objective value (upper bound) is denoted as vΩ′(Ẑ
s) and its variance is obtained as

follows:

σ2
Ω′ =

1

Ω′ · (Ω′ − 1)

Ω′∑
ω=1

(Gω − vΩ′(Ẑ
s))2

11
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where,

Gω =
∑
t∈T

{
CF · ẑt +

∑
k∈K

∑
i,j∈N

cij · x̂kijt + CH · Ĩωt + CD · P̃ω
t +

∑
a∈A

CPa · S̃O
ω

at

}

Note that Ĩωt , P̃ω
t and S̃O

ω

at correspond to the second stage solution for scenario ω ∈ Ω′.
2.3. Calculate the SAA gap ε and its variance σ2

ε as follows:

ε = vΩ′(Ẑ
s)− vsΩ

σ2
ε = σ2

Ω′ + σsΩ
2

3. Return ẑsΩ and x̂s
Ω as the best solution.

5. Numerical Experiments

5.1 Experimental Setup

All formulations and algorithms were implemented in Java using Concert Technology and were
solved by IBM CPLEX 12.6 on a PC with processor Intel R©CoreTMi7 CPU 2.9 GHz and 4 Gb
RAM under Windows 7 Professional.

The Monte Carlo simulation was used for scenario generation of the parameters associated with
uncertainty (Sω

it, n
ω
at and qωat). They were generated independently by multiplying the corresponding

values of deterministic CDP with random value following uniform distribution from 0 to 1.5. The
number of vehicles were set to 1, 3 and 5 while the large scenario Ω′ were set to 1000. To avoid
memory issues, the maximum number of branch nodes of CPLEX for both two SMRLP-AVCs and
large scenario problem of SAA is limited to 75000. The methods were tested using instances 49, 61,
73, 85 and 97 of Data Sets of Random 1, Random 2, Cluster 1 and Cluster 2 presented in Habibi
et al. (2017b). Their characteristic is provided in Table 3.

Table 3.: The Characteristic of Instances in All Data Sets

Instance
Characteristic

|N | |T | |A| Demand DisCap
49 10 10 10 U(40% : 60%) · S ∞
61 10 5 10 U(40% : 60%) · S ∞
73 5 25 10 U(40% : 60%) · S ∞
85 5 10 10 U(40% : 60%) · S ∞
97 5 10 5 U(40% : 60%) · S ∞

U(a : b) indicates that the corresponding parameter was generated with uniform
distribution with parameter a and b
S is the average of supply of EOL products for all collection centres and all

periods.

The three stopping criteria in Algorithms 2 and 4 are as follows:

(1) standard deviation of last ten fitness values, maximum iteration and CPU time are less than
5 %, 100 and 7200 seconds, respectively

(2) maximum number of diversification mechanism is 5
(3) maximum number of multi-start procedure is 5.

12
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5.2 Results

For the sake of simplicity, H and H∗ refer to Two-Phase Iterative Heuristic and Adaptive Two-
Phase Iterative Heuristic, respectively. The summary of all solutions obtained is provided in Table
4. The details of all solutions are provided in Tables 7 - 9.

Table 4.: Results of All Data Sets

Data Sets
H H∗

µ σ CPU Time µ σ CPU Time
Random 1 539.53 26.90 1782.00 541.04 27.81 2030.58
Random 2 539.71 27.54 2162.05 540.76 27.87 2369.33
Cluster 1 539.27 27.61 1485.28 539.70 26.95 1423.26
Cluster 2 539.16 27.68 1438.43 540.13 26.73 1465.40

µ is average
σ is standard deviation
CPU time is in seconds

According to Table 4, both methods provide solutions with no significant difference in terms of
average and standard deviation. In terms of CPU times, H requires longer time in solving the data
set of Random 1 rather than H∗ as shown by Figures 3 and 4.

Based on Figure 3, one notes that both methods are stable to solve the instances although there
is a variation of scenario M. However, the increase of the number of available vehicles K causes
longer CPU times for both methods.

In order to further elaborate the results obtained, we conducted a sensitivity analysis on instance
61 of Random 2 data set. The analysis was conducted by varying the distribution of parameters
under uncertainty and the multiplier value of increasing the penalty cost CPa. We tested three types
of distribution (Normal, Poisson and Uniform) and three values of penalty multiplication (3, 5 and
10). For normal distribution, the mean and standard deviation of each parameter under uncertainty
were set to the corresponding deterministic value in CDP and 50 % of that value, respectively. For
Poisson distribution, the only parameter was set to the corresponding deterministic value in CDP.
For uniform distribution, it was set equally as mentioned in the previous section. We also define
the small and large scenarios of SAA, Ω and Ω′, as 100 and 1100, respectively.

In this regard, we add information regarding the two means for evaluating the stochastic solutions
proposed by both solving methods called the Expected Value of Perfect Information (EVPI) and
the Value of Stochastic Solutions (VSS). According to Birge and Louveaux (2011), EVPI and VSS
measure the amount paid by a decision maker in return for a perfect information and is the cost
incurred for ignoring the uncertainty, respectively. In practice, EVPI is the difference between
the average objective value of solutions obtained for each scenario solved independently and the
objective value of stochastic solution. Meanwhile, VSS is the difference between the objective value
of stochastic solution and the objective value obtained using the average values of parameters under
uncertainty. In our work, we obtain the two values based on SAA’s very large set of scenarios Ω′.

Tables 5 and 6 depict the results obtained. EVPI and VSS are provided in % against their
corresponding objective function for SAA’s very large set of scenario. One can see that the increase
of penalty multiplier follows to the increase of SAA’s average and standard deviation. It is also
noticed that the value of EVPI (in %) is following the increase of the penalty multiplier. Concerning
the variation on the distribution type, the Poisson distribution proposes the lowest SAA’s average
and the Uniform distribution has the lowest EVPI (in %).

Table 5.: Average Results on Penalty Multiplier Changes

Penalty H H∗

Multiplier µ σ CPU Time EVPI % VSS % µ σ CPU Time EVPI % VSS %
3 1405.2 55.1 1315.9 54.1 3.1 1438.2 54.7 1921.3 53.7 4.1
5 2779 63.7 1332.1 46.8 2.8 1376.6 72.9 1662.4 51.8 9
10 6118 169 1257.9 40.5 1.4 6287.2 137 1828.6 40.8 1.4
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Table 6.: Average Results of Distribution Type Change

Distribution
H H∗

µ σ CPU Time EVPI % VSS % µ σ CPU Time EVPI % VSS %
Normal 3715.1 250.3 1038.3 53.3 0 3820 221.3 1421.1 53.2 0
Poisson 3014.4 17.8 1515.1 49 3.7 1697.1 24.4 1975.1 54.2 10.6
Uniform 3572.7 19.7 1352.6 39.1 3.7 3584.8 18.9 2016.1 38.9 3.9

Figure 3.: Average CPU Times (in seconds) for All M

Figure 4.: Average CPU Times (in seconds) for All K

14
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6. Conclusions and Future Works

In this paper, the Stochastic Multi-Vehicle Collection-Disassembly Problem is formalised. It deals
with the uncertainty of the quality and the quantity of EOL product as well as the demands of
the associated components. The uncertain parameters are the number of components in each EOL
product collected, the availability of EOL products at collection centres and their demands.

The problem is formalised as two-stage stochastic programming model in which the first-stage
decisions have to be taken during the planning stage before any realisation of the uncertain pa-
rameters. The second-stage decisions are taken consecutively.

The first-stage decisions correspond to the number of vehicles dispatched and their routing
decisions. Whilst, the second-stage decisions correspond to the inventory level, the number of
disassembled and the unmet demands.

Accordingly, two approximate methods are developed to deal with i.e. Two-Phase Iterative
Heuristic (H) and Adaptive Two-Phase Iterative Heuristic (H∗). H decomposes the problem into
two subproblems: the stochastic reverse lot-sizing problem with approximate visiting costs and the
routing problem. Then, the two subproblems are solved iteratively. H∗ is an enhanced version of
H through additional steps and an adaptive procedure to improve the solution provided by both
subproblems. In deterministic problem, H∗ outperforms H.

Both methods are combined with the algorithmic framework of Sample Average Approximation
(SAA). This framework allow to solve a problem having very large scenario, which is intractable,
by solving the problem with smaller and tractable scenario. Also, the scenario generation of each
uncertain parameter is carried out using a Monte Carlo-based simulation.

Four data sets were tested in order to demonstrate the applicability of the methods to provide
feasible solutions. A sensitivity analysis was conducted to evaluate the performance of both methods
for different penalty costs and for various distribution types of parameters under uncertainty.

The realisation of the parameters under uncertainty in a such problem comes right after the
planning stage. It is also possible that such realisation related to the second-stage decision variables
might also occurs in each period following the multi-stage stochastic programming. To formalise
the problem, the formulation of SMCDP can be extended with additional constraints related to the
second-stage decisions e.g. the inventory level, products disassembled and unmet demands. These
constraints ensure the consistency of the decisions between scenarios.

Furthermore, companies commonly deals with more than one type of products. It indicates that
extending SMCDP by dealing with multi-products is highly possible. Consequently, additional
index related to EOL products needs to be incorporated in term of formulation. Due to its flexibility
and performance, the Two-Phase Iterative Heuristic of (Absi et al. 2014) combined with the rollout
algorithm of Bertsekas, Tsitsiklis, and Wu (1997) may also be implemented to tackle such problem.
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Table 7.: Results of Random 1

Instance |K| |Ω| |M| H H∗
µ σ CPU Time µ σ CPU Time

49 1 5 200 497.6 20.8 1094.5 493.5 20.3 1150.9
10 100 487.4 20.2 847.7 500.8 19.6 1011
20 50 480.1 20.3 804.8 493.4 21.9 1087.9
50 20 486.3 24.2 753.3 500.3 20.6 818.4

3 5 200 494.9 21.3 2266.1 495 22 2189.7
10 100 494.4 20.7 2044.9 501 21.1 2033.4
20 50 496.8 20.8 1846.7 491.1 19.3 1863.5
50 20 496.2 28.2 1631.6 499.2 21.6 1915.6

5 5 200 496.1 21.2 3165.3 501.6 22.3 3020.1
10 100 491.4 21 2620.7 492.4 21.9 2740.7
20 50 495 21.8 2787.3 500.3 23.3 2762.9
50 20 501 19.9 3898.2 506.1 21.3 2741.1

61 1 5 200 239.4 10.3 505.1 246.1 10 435.2
10 100 239.5 10.3 380.7 247.3 9 378.8
20 50 247.2 9.6 362.5 239.7 9.2 351.3
50 20 241 11.5 333.8 242.1 8.9 283.8

3 5 200 242.1 9.8 722.7 245.3 9.6 681.3
10 100 240.1 9.3 686.1 241.9 10.2 589
20 50 245.2 9.8 403.9 235.8 9.8 568
50 20 236.5 9.1 500.7 245.5 13 485.2

5 5 200 241.8 10.5 869.3 244.7 9.5 779.5
10 100 238.1 10.3 733.1 242 11 651.4
20 50 242 9.6 636.4 241.3 9.3 596.2
50 20 242 10.9 751.4 239.4 9.6 565.1

73 1 5 200 1223.9 50.6 1882.6 1222.8 51.1 1767.2
10 100 1233.4 48.1 1509.5 1210.2 55 1530.6
20 50 1220.6 47.2 1568.4 1232 48 1503.8
50 20 1217.4 49.1 1493.9 1234.2 40.7 1550.9

3 5 200 1227 51.4 3304.9 1225.2 49.3 3690.6
10 100 1224.4 50.5 3470.4 1216.3 55 3962.8
20 50 1219.4 42.3 3150.9 1218.8 57.5 4160.3
50 20 1216.9 54.2 3578.6 1236.1 47 4497.5

5 5 200 1225.7 47.2 4285 1243.6 54.4 6365.8
10 100 1225.3 50.2 4272 1221.9 48.9 6288.2
20 50 1221.5 46.2 5372.5 1230.5 48.4 7675.5
50 20 1226.3 41.6 5667.6 1224.5 67.5 9996.3

85 1 5 200 498.8 20.3 566.2 501.4 21.7 784.4
10 100 504.9 22.6 501.3 491.7 20.2 643.7
20 50 499.4 20.1 489.5 488.8 20.9 519.2
50 20 494.2 19.5 394.4 491.8 18.9 516.4

3 5 200 495.2 21.1 919.5 501.7 22.3 1468.9
10 100 498.8 20.7 898.2 497 23.5 1237.7
20 50 496.7 21.2 770.6 494.7 20.9 1038
50 20 494.2 18.3 728.1 500.1 27.9 931.1

5 5 200 490.6 22.9 1184.6 498.6 20.8 1678.3
10 100 492.9 21 1056.6 494 18 1413.2
20 50 499.2 19.9 1027.3 495.5 21.2 1284.2
50 20 497 21.3 886.6 495.2 20.1 1195.1

97 1 5 200 243.7 9.5 340.3 242.5 10.1 432.4
10 100 244.5 9.3 329.8 243.1 10.2 421
20 50 239.3 11.9 248.2 241.1 10.6 338.7
50 20 244.6 8.5 260.3 245.7 9.8 387.9

3 5 200 242.2 10 417.7 240.9 10.2 728.2
10 100 242.1 10 391.4 245.1 10.9 536.9
20 50 236.8 9.8 377.5 247.8 11 423.9
50 20 240.8 10.7 370.2 243.4 10.4 440.4

5 5 200 242.2 9.6 598.1 241.6 9.6 763.5
10 100 238 10.3 409.2 245.4 9.8 571.9
20 50 241.9 9.2 455.5 246.4 9.4 542.2
50 20 248.2 9.8 292.5 243.9 9 524.1

µ is average
σ is standard deviation
CPU time is in seconds
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Table 8.: Results of Random 2

Instance |K| |Ω| |M| H H∗
µ σ CPU Time µ σ CPU Time

49 1 5 200 493.5 21 1083.2 495.2 21 986.7
20 50 491.2 23.8 1045.2 496.9 21.6 872.6
5 200 493.5 21 1083.2 495.2 21 986.7
50 20 495.4 20.4 835.8 498 22 781.6

3 10 100 498.2 21.3 1806.3 492.7 19.5 1678.9
20 50 491.1 22.3 1647.2 505.4 19.9 1478.9
5 200 490.6 20.8 2187.7 498.9 21.2 2161.6
50 20 492 28.9 1929.7 496.3 23.4 1637.6

5 10 100 493.2 22.5 5976.1 502.4 21.5 2500
20 50 492 24.8 6545.2 505.4 20 2482.6
5 200 493.8 21.9 6001 493.1 21.2 2983.3
50 20 497.6 21.2 4535.5 499.2 19.5 2642.6

61 1 10 100 243 9.1 278.5 242.9 10.4 307.2
20 50 244.1 9.3 243.6 243.4 10.6 288.8
5 200 247.3 9.5 341.1 241 10.1 309.5
50 20 240.2 8.9 245.6 246.6 9 246.6

3 10 100 243.6 10.7 474.8 239.5 10.7 591.8
20 50 237.8 10.8 484.2 241.8 9.6 532.2
5 200 243.7 10.5 535.5 246.1 9.6 525.8
50 20 237.8 9.5 376.4 242.4 10.8 398.9

5 10 100 242.9 10.3 644 237.5 9.3 675.3
20 50 244.9 9.2 502.1 240 10 631.3
5 200 249.3 9.7 708.7 244.2 9.2 779.5
50 20 240.2 9.8 561.4 237.6 8.4 595.1

73 1 10 100 1225.5 47.7 2844.3 1223.4 50.2 2742.8
20 50 1231 58.2 2422 1237 52.3 2533.2
5 200 1209.4 53.1 2806 1231.8 54.8 3201.2
50 20 1218.7 48.6 2403.6 1221.4 55.2 3031

3 10 100 1232.8 51 5773.8 1233.6 47 7329.7
20 50 1220.2 47.7 6601.9 1228.6 57.1 8286.1
5 200 1224.3 47.1 5757 1214 50.6 7632.9
50 20 1218.7 46 6751.6 1221.4 54.5 10630.4

5 10 100 1227.7 49.9 8989 1238.6 50.2 11097.4
20 50 1223.1 57.4 8883.3 1217.1 53.7 14068.7
5 200 1226.1 50.3 8530 1221.7 53.2 11650.8
50 20 1219.4 56.8 11522.3 1217.1 53.8 15947.8

85 1 10 100 497.7 23.6 619.7 499.3 21.1 658
20 50 501.6 17.6 610.7 495.1 21.6 555.6
5 200 501.9 19.7 770.4 492.6 19.3 819.7
50 20 499.3 24.9 528.7 501.1 27.6 492.7

3 10 100 497.5 19.3 985.1 495.8 22.2 1271.1
20 50 497.5 21.5 1021.5 494.1 20.3 943.7
5 200 496.7 22.2 1199.6 497.7 20.9 1227
50 20 491.7 24.3 846.6 492.7 24.1 827.5

5 10 100 490.4 21.5 1313 501.4 20.2 1296.2
20 50 500 22.3 1173.1 496.9 18.2 1235.6
5 200 502.1 20.3 1378 495 20.2 1708.2
50 20 500.2 16.8 1159.8 489.5 20.4 1318.6

97 1 10 100 236.6 10.4 292.9 236.6 9.6 349.6
20 50 240.5 9.1 272.8 241.5 9.3 297.6
5 200 239.2 10 363.9 243.4 10 343.2
50 20 242.2 8.7 276.6 243.6 10.1 276.6

3 10 100 248 9.9 399.3 239.8 10.2 448.1
20 50 240.9 9.5 270.8 242.5 9.9 438.3
5 200 236.3 9.3 444.5 242.5 10 510.7
50 20 237.9 9.6 418 243.6 9.3 364.8

5 10 100 241.6 9.8 561.9 237.9 9.4 335.4
20 50 246.2 11.3 424.4 239.1 10.2 425.3
5 200 242.4 10.6 618.8 253.5 9.5 452.4
50 20 240.9 11 416.3 242.8 10.3 336.4

µ is average
σ is standard deviation
CPU time is in seconds
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Table 9.: Results of Cluster 1

Instance |K| |Ω| |M| H H∗
µ σ CPU Time µ σ CPU Time

49 1 10 100 493.2 22.1 790.5 496.1 19 614.3
20 50 489.9 22.3 782.6 500 20.4 692
5 200 489.7 19.8 1008.6 497.4 20.6 668.3
50 20 503.9 17.7 725.3 497.2 20.6 706.1

3 10 100 493.9 21.1 1288.5 487.7 20.4 1227
20 50 500.7 18.4 1314.7 492.9 23.3 1207.5
5 200 497.7 22 1528.8 499.5 20.2 1450.4
50 20 489.1 16.9 1383 505.3 25.9 1214.8

5 10 100 498 21 5431.5 496.7 19.7 1888.1
20 50 501.4 19.5 4459.2 480.5 20.7 2099.5
5 200 480.7 21.4 5917 484.7 21.3 2155.5
50 20 489.9 22 2969.9 495.5 20.1 2245.9

61 1 10 100 239.1 10.4 315.2 243 9.9 308.7
20 50 240.5 9.5 329.9 239.4 10.7 256.3
5 200 243.4 9.7 267.5 246.6 10.5 333.6
50 20 244.3 10 400.2 247 10.2 309.3

3 10 100 239.7 11.5 494.1 234.1 9.6 439.9
20 50 241.2 11 463.4 243.6 9.2 410.7
5 200 242.8 10.4 495.4 241.4 9.3 566.7
50 20 237.6 9.6 364.2 241.3 11.5 440.7

5 10 100 241 10 803.8 236.4 10.7 701.1
20 50 237.5 9 701.2 243 9 566.6
5 200 241.7 10.1 895.1 241.7 9.9 680.5
50 20 246.6 10.7 660.8 236.6 10.5 507.1

73 1 10 100 1214.1 57.6 1681.3 1224.6 55.9 1432.6
20 50 1207.3 47.7 1344.7 1229.2 50.4 1501.9
5 200 1220.1 51.6 1740.5 1230.2 52.3 1602.8
50 20 1236.6 61 1326 1220 43.8 1515.1

3 10 100 1229.2 55.3 3065.3 1224.2 47.7 3009.2
20 50 1224.8 48.6 3516.6 1217.7 45 4726.1
5 200 1223.1 50.8 3612.4 1222 49 3155.6
50 20 1225.6 55.3 3870.4 1211.9 51.8 4366.4

5 10 100 1225 49.1 4431.5 1228.4 48.9 5279.9
20 50 1224.1 53 5325.7 1222.2 51.5 7561
5 200 1217.3 51.3 5139.9 1239.1 53 5021.3
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Table 10.: Results of Cluster 2

Instance |K| |Ω| |M| H H∗
µ σ CPU Time µ σ CPU Time

49 1 10 100 486.2 19.9 704.4 503.6 19.8 595
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