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A multi observers approach when observability index
is higher than the state dimension - a case study -

Ihab Haidar, Jean-Pierre Barbot and Alain Rapaport

Abstract— We address a family of observation problems that
would classically require the construction of an embedding,
by a different approach which consists in the design of several
estimators in parallel. In principle, for a dynamics in dimension
n with a scalar output y, each estimator uses the knowledge of
only n−1 derivatives of the output, and the further derivatives
are used to discriminate at any time among the estimators.
Estimators are built here by roots tracking technique. We
illustrate our approach on the parameter estimation of a
polynomial dynamics. The simulations show that the final
estimation jumps from one estimator to another when passing
through observability singularities, or when the parameter
suddenly changes, preserving a good estimation error.

I. INTRODUCTION

Consider a dynamics in R2 of the form

ẋ = P(x,c), (1)
ċ = 0, (2)

where P is polynomial, along with the on-line observation

y(t) = x(t). (3)

The objective is to reconstruct the unknown parameter c
with the measurements y(·). The dynamics (1)-(2) can have
several stable and unstable equilibrium, depending on the
parameter c. However, we shall assume that the system is
initialized such that the solution x(·) converges asymptotic
to an equilibrium x?(c). An illustrative example is given by
the following dynamics

ẋ = P(x,c) := x(c− x)
(
(c− x)2− 13

2
(c− x)+11

)
,

with c > 0 and x(0) = x0 ∈ (0,c). One can easily check that
the roots of P are x= 0 and x= c and that one has P(x,c)> 0
for any x ∈ (0,c), whatever is c > 0. Therefore, any solution
with x0 ∈ (0,c) converge asymptotically to x = c. However,
when one studies the differential observability of the system,
one can observe that the value of c cannot be uniquely
determined without the knowledge of the three derivatives of
y. Indeed, as P is a third order polynomial in c, the injectivity
of the map (x,c) 7→ (y, ẏ, · · · ,y(n−1)) (where y( j) denotes the
j-th time derivative of y) requires to take n = 4.

When the observability index n is higher than the dimen-
sion of the state space, one has to consider an immersion in
higher dimension for the observer design (see for instance
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the works [1], [2], [3], [6], [11], [13]). A systematic ap-
proach to obtain an observer in the original coordinates with
an exponential convergence consists in 1) determining an
embedding to write the dynamics in the canonical observer
form [9] in higher dimension, 2) building an observer in this
canonical form, and 3) expressing the estimation back in the
original coordinates (see for instance [12]). However, this
approach presents several difficulties in the construction of
the embedding and the lipschitzian extension of the dynamics
outside the set of its natural existence (cf. [4], [5]).

In this work, we propose another approach in the case of
polynomial dynamics. Instead of a single observer in higher
dimension, we propose a series of observers in the same
dimension (each of them following the roots of a polynomial
whose coefficients depends on the observation) and a test,
based on higher derivative of the observation, which can
discriminate between the observers the one that will give
the right estimate.

For polynomials of small order (2 or 3), the roots can be
determined analytically, but this is generally not possible for
higher order. Here, we propose a roots tracking method to
follow dynamically the roots over the time. The proposed
method is also interesting for order 2 and 3 because it
provides a continuous estimation of the roots (and acts then
as a filter). This approach of parameter reconstruction some-
what generalizes the one proposed in [10] for a particular
dynamics of batch reactors.

II. OBSERVABILITY INDEX CHARACTERIZATION

Let D be a compact subset of R2 positively invariant
by the dynamics (1)-(2). A sufficient condition for the
construction of observers for system (1)-(2) on D is that
the map (x,c) 7→ (y, ẏ) is injective on D (see, e.g. [14]).
When this condition loses to be satisfied somewhere on the
validity domain, the usual constructions of observers in the
system’s dimension is not possible. Nevertheless, one can
check the possibility of overcoming this singularity problem
by considering further derivatives of the output. Indeed, if

z = Φn(x,c) =


y
ẏ
...
y(n−1)


defines an injective immersion on D , for some n ≥ 2, the
extension of system (1)-(2) to Rn is possible (see, e.g., [8],
[12]). In this case, a constructive method allowing the
construction of an exponential observer for (1)-(2) on D in
its original coordinates is proposed in [12].



We recall, from [9], the definition of strong differential
observability of (1)-(2) over D :

Definition 2.1: System (1)-(2) is said to be differentially
observable of order n over D , if Φn is an injective mapping
and to be strongly differentially observable, if Φn is an
injective immersion.

Observe that the injectivity index of system (1)-(2), which
is defined by the smallest positive integer n such that the
map Φn is injective, could be smaller than the degree of P
in the parameter c. For example, in the case when

P(x,c) = x(c− x)5, (4)

the injectivity index of system (1)-(2) is n = 2. This injec-
tivity index may also be not finite, as we can show in the
case when

P(x,c) = xc2. (5)

This motivates the following assumption.

Assumption 2.1: Let p be the degree of P in the parameter
c. There exists an integer 2≤ n≤ p+1 such that the mapping
Φn is injective on D .

Thus, under Assumption 2.1, a necessary condition for the
strong differential observability is that ∇Φn, the Jacobian
matrix of Φn, has a full rank over D .

Let us introduce the following subsets of D

D? = {(x,c) ∈D : P(x,c) = 0}, (6)

and

Sn = {(x,c) ∈D :
∂P
∂c

=
∂P′

∂c
= · · · , ∂P(n−2)

∂c
= 0}, (7)

for n≥ 2.
Proposition 2.1: Suppose that Assumption 2.1 holds. If

Sn\(D?∩S2) = /0 then system (1)-(2) is strongly differen-
tially observable of order n over D\(D?∩S2).

Proof: Let (x̄, c̄) ∈D . Observe that we have

∂

∂c
Li

Ph =
∂

∂c

(
∂Li−1

P h
∂x

)
P+

∂Li−1
P h

∂x
∂P
∂c

, i≥ 2, (8)

we distinguish three different cases:
• (x̄, c̄) ∈D?∩S2: in this case we have ∂

∂c Li
Ph(x̄, c̄) = 0,

for every i≥ 2. By consequence, the rank of ∇Φn is at
most equal to one at (x̄, c̄).

• (x̄, c̄) /∈S2: in this case ∇Φn is of full rank at (x̄, c̄).
• (x̄, c̄) /∈D?: if ∂P

∂c (x̄, c̄) 6= 0 then ∇Φn, is of full rank at
(x̄, c̄). Otherwise, if ∂P

∂c (x̄, c̄) = 0, from (8) we obtain the
following

∂

∂c L2
Ph(x̄, c̄) = ∂

∂x

(
∂h
∂x

∂P
∂c

)
P(x̄, c̄) = ∂P′

∂c (x̄, c̄)P(x̄, c̄).

Using an induction reasoning, the proof that ∇Φn is of
full rank at (x̄, c̄) derives straightforwardly from the fact
that Sn\(D?∩S2) = /0.

According to Proposition 2.1, the map Φn cannot define
an injective immersion on D? ∩S2, for any n ≥ 2. This
motivates the following assumption.

Assumption 2.2: The forward solutions of system (1)-(2)
do not converge asymptotically to S2.

Concluding this section, the construction of an exponential
observer for (1)-(2) on D\(D?∩S2) is possible. However, as
mentioned in the introduction, this requires the construction
of an embedding in higher dimension which present some
technical difficulties (cf. [4], [5], [12]). In the next section, a
different approach based on the design of several estimators
in parallel is proposed.

III. A MULTI-OBSERVERS APPROACH

Let s= c−x, and let the polynomial Q defined by Q(y,s)=
P(y,s+y). The value of c is equivalently determined through
the knowledge of s. More precisely, we have c = s(t)+ y(t)
at any t ≥ 0. The solution s of the following equation

Q(y(t),s(t)) = ẏ(t), t ≥ 0, (9)

is in general not uniquely determined. But, since Q is
polynomial in s of degree p, there exist at most p solutions
sectors s1, · · · ,sp such that

F(z,si) := Q(z1,si)− z2 = 0, ∀i = 1, · · · , p. (10)

Notice that the number of such solutions could depend on
z(t) (it depends on the number of real roots s of the equation
(9)). At any time t, there exists at least one solution sector si
such that si(t) = s(t). The multi-observers approach that we
propose consists in computing in parallel p estimators ŝi(t)
of these roots, at any time t. If there are less than p exact
solutions of F(z(t),s) = 0 at time t, then some estimators
ŝi(t) would be (temporarily) irrelevant. The way to determine
these estimators will be addressed in the next section. The
final task to provide a single estimation of s(t) is to determine
among the p estimators ŝi(t) which one is the right one.
For this purpose, we use the further derivatives of y and the
injectivity of the map Φp+1 to build the following test

T (z,s) :=

 L2
Qh(z,s)− z3

...
Lp

Qh(z,s)− zp+1

= 0, (11)

from which we know that there exists only one solution
among the (exact) solutions si(t) at any time. In practice, we
shall choose the estimation ŝ(t) = ŝi?(t)(t) for which ŝi?(t)(t)
minimizes the norm of T (z(t), ŝi(t)) among the estimators
{ŝi(t)}i=1···p.

Remark 3.1: From Assumption 2.1, n− 1 estimators (or
equivalently n − 1 further derivatives of the output) are
needed in order to estimate s(t) at any t ≥ 0. By consequence,
the test given by equation (11) could be excessif when n≤ p.
For example, in the case when P is given by equation (4)
(we have n = 2 and p = 5) the test (11) is even not needed.
In order to simplify the presentation, the complet test (11)
is considered in the rest of this paper.



IV. A ROOTS TRACKING METHOD

When the degree of P in the parameter (or equivalently in
s) is less than 4, there exist exact analytical expressions of
the roots of F(z, ·). For higher degrees, we propose to use
a roots tracking method to determine the p estimators ŝi(·),
as solutions of a dynamical system. Indeed, even for lower
degrees, the roots tracking method presents some advantages,
the estimations ŝi(·) being provided as continuous functions
of the time.

For each time t ≥ 0, we consider the polynomial

s 7→ F(z(t),s),

where F is defined by equation (10). Let us denote the shift
p× p matrix

D =


0 1

. . .
1

0 0


and define the singularity set

S := {(z,s) ∈ Rp×R, ∂sF(z,s) = 0} ,

with the vector fields defined outside this set:

G(z,s) =−∂zF(z,s)Dz
∂sF(z,s)

,

GK(z,s) = G(z,s)−K
F(z,s)

∂sF(z,s)
,

(z,s) ∈ Rp×R\S ,

where K is a positive parameter. Let

M := {t ≥ 0, s 7→ F(z(t),s) has multiple roots}.

In addition to Assumptions 2.2, we add the following one.

Assumption 4.1: The set M is of null measure i.e. M is
composed of isolated times of singularity.

Assumption 4.1 supposes that the solutions of (10) crossing
the singularity set S do not say in it. This is needed for the
well-posedness of our roots tracking method.

At each time t, we consider the roots si(t) of s 7→F(z(t),s)
of multiplicity one. We consider a root numbering such that

1) si(·) is defined on a union of time intervals of positive
measure, denoted Ii

2) for any t ∈ Ii∩ I j with i > j, one has si(t)> s j(t).
Then, as long as t belongs to Ii, one has ∂sF(z(t),si(t)) 6= 0,
and the dynamics of si is well defined:

ṡi(t) = G(z(t),si(t)).

Notice that as F(z(t),si(t)) = 0 at any t ∈ Ii then si is also
solution of the dynamics

ṡi(t) = GK(z(t),si(t))

for any K > 0. Consider this later dynamics for ŝi which is
not an exact root:

˙̂si(t) = GK(z(t), ŝi(t)), t ∈ Ii such that (z(t), ŝi(t)) /∈S

and the function

V (z,s) =
1
2

F(z,s)2.

One can straightforwardly check that one has

d
dt

V (z(t), ŝi(t))=−2KV (z(t), ŝi(t)), t s.t. (z(t), ŝi(t)) /∈S .

Consider now that at time t0 ∈ Ii, ŝi(t0) is such that

(z(t0), ŝi(t0)) /∈S and

|ŝi(t0)− si(t0)|< |ŝi(t0)− s j(t0)|, ∀ j s.t. t0 ∈ I j.

Then, for an arbitrary large value of K, the solution ŝi(·) will
be arbitrarily closed to si(·) in an arbitrary short of time,
and remains arbitrarily close to si(·) as long as t ∈ Ii with
(z(t), ŝi(t)) /∈S .
We propose now to approximate the dynamics ˙̂si =
GK(z(t), ŝi) in the neighborhood of the singularity set S such
that it is well defined for any t ≥ 0 and any i ∈ {1, · · · , p}.
For this, we consider the following vector field:

G̃K,M(z,s) =− ∂zF(z,s)Dz
satM(∂sF(z,s))

−K
F(z,s)

satM(∂sF(z,s))
,

where the satM function is defined as follows

satM(ξ ) = min(max(ξ ,−M),M)

with M a positive real number. Finally, to ensure that the

solutions ŝi, i ∈ {1, · · · , p} leave the cone

P =
{
(s1, · · · ,sp) ∈ Rp, s1 > s2 > · · ·> sp

}
invariant in the neighborhood of the singularity, we make
another approximation coupling the vector fields as follows

G̃K,M,α,β ,i(z,s1, · · · ,sp) =

G̃K,M(z,si)(1−σiαe−β |si−−si|)(1+σiαe−β |si−si+|)

where σi = sign(G̃K,M,(z,si)) and

si− =

{
si−1, i > 1
+∞, i = 1 si+ =

{
si+1, i < p
−∞, i = p

where α and β are positive parameters. Notice that choosing
large values of β implies that the correcting multiplicative
terms modify the original dynamics only in small neighbor-
hoods of multiple roots, which according to Assumption 4.1
occurs only at isolated times, while the parameter α deter-
mines the amplitude of this dynamics perturbation. Observe
also that the sign functions σi are in such a way that solutions
of

˙̂si = G̃K,M,α,β ,i(z(t), ŝ1, · · · , ŝp), i = 1, · · · , p, (12)

estimating different roots of (10) are pushing between each
other in the neighborhood of singularities in order to keep
P invariant.
We show in simulations that the solution of the dynam-
ics (12) with initial condition in P can follow the exact
roots si(·) over the time, provided it is well initialized. This
method implies that the estimators ŝi are initialized such that



Fig. 1. Left: the function f . Right: the exact solutions of equation (14).

after a short period of time (due to the fast convergence of
the function V to 0), one of them has a norm of the test vector
T (·) sufficiently small, at almost any future time. However, at
initial time, one has no information at all about the location
of the roots si. Either, some a priori information is available
or one has to reinitialize, regularly on a short period of time,
theses estimators in the very first initial stage. Such situation
could also occur when the number of real roots increase.
This last point will be discussed in further detail in a future
work.

V. EXAMPLE

Let us consider the following dynamics in R2{
ṡ = −x f (s)
ẋ = x f (s), (13)

where f : R→ R is given by

f (s) = s(s2−6.5s+11),

along with the online observation

y = x.

Observe that ṡ(t)+ ẋ(t) = 0,∀t ≥ 0. Consequently, we have

s(t)+ x(t) = s(0)+ x(0), ∀t ≥ 0.

Let c = s(0)+x(0). The analysis of system (13) can then be
equivalently reduced to that of system (1)-(2) where, in this
case, the polynomial function P is given by

P(x,c) = x f (c− x).

As presented in the introduction, we shall consider the
compact positively invariant domain

D = {(x,c) ∈ R2, 0≤ x≤ c}.

In the case of this system, we have

D? = {(x,c) ∈D : x = 0 or x = c}.

Fig. 2. Left: the estimated solutions of equation (14). Right: the constructed
parameter ĉ superposed with the exact parameter c.

In order to verify the conditions in the statement of Proposi-
tion 2.1, let us first calculate the derivative of P with respect
to x

P′(x,c) = f (c− x)− x f ′(c− x),

and the derivative of P and P′ with respect to c

∂P
∂c

= x f ′(c− x),
∂P′

∂c
= f ′(c− x)− x f ′′(c− x).

One can easily verify, with the expression of the function
f , that S3\{0} = /0. Knowing that Φ4 is injective over
D then, thanks to Proposition 2.1, system (13) is strongly
differentially observable of order 4 over D\{0}. Observe
also that x = 0 is a repulsive equilibrium point in the case of
system (13), which is in conformity with Assumption 2.2.

In this example, following Section III, we have that the
manifold

F(z,s) = z1 f (s)− z2 = 0 (14)

is composed by three solutions sectors over which the test
procedure is given by

T (z,s)=

[
z2 f (s)− z1z2 f ′(s)− z3

z3 f (s)− (2z2
2 + z1z3) f ′(s)+ z1z2

2 f ′′(s)− z4

]
= 0.

In practice we choose at time t the estimator ŝi(t) that
gives the minimal value of |T1(z(t), ŝi)|. Indeed, we do not
consider T2(z(t), ŝi) because the set of times t for which
‖T (z(t),si(t))‖= 0 is of null measure. Therefore we do not
need to use z4, the third derivative of the output.

To show the effectiveness of our method to reconstruct the
parameter c corresponding to system (13), we have chosen
x0 = 1 and c = 6. The parameters K, M, αi and βi relative
to the estimators (12) have been chosen as follows

K = 100, M = 100, αi = 2, βi = 5, i = 1,2,3.

The initial conditions of the estimators have been chosen
as ŝ1(0) = 6, ŝ2(0) = 3, ŝ3(0) = 0. The simulations was



Fig. 3. Left: the function f . Right: the exact solutions of equation (14)
with piecewise constant c.

performed with Scilab software with the classical Euler
scheme and a dicretization step equal to h = 10−5.

Assuming the perfect knowledge of z(t) at any time t, that
is the perfect knowledge of the derivative of the output y(·),
we can reconstruct the parameter c. On Figure 1-right we
show the exact roots s1,s2 and s3 solutions of (14) together
with s the solution of system (13). On Figure 2-left we show
the estimated solutions ŝ1, ŝ2 and ŝ3 together with s. Figure 2-
right shows the performance of our method to construct the
parameter c. Let us underline that the number of the exact
roots (corresponding to real roots) is changing with time:
one, three and one again (see Figure 1-right), while our
method always determine three estimators, but only a valid
one is selected by the test function, at almost any time. One
can observe on Figure 2 that the unknown parameter c has
been reconstructed before passing the singularity. To test the
robustness of our method, we have simulated sudden changes
of the parameter c, as a piecewise constant function:

c(t) =
{

4 t ∈ [t0, t1]
6 elsewhere, (15)

with t0 = 0.07, t1 = 0.12 (with the same conditions of the
previous simulations), so that the estimator has to change
the choice of ŝi over time, which illustrates the interest of
our method that consists in computing estimations of all the
roots at any time. Figure 3-left shows the estimated solutions
ŝ1, ŝ2 and ŝ3 corresponding to equation (14) together with
s. Figure 4-right shows the performance of our method to
construct the piecewise constant parameter given by (15).

Here, we have assumed the perfect knowledge of the
vector z(t) at any time t, which is hardly accessible in
practice. We have then simulated our observer with ẑ(·)
given by a numerical differentiate instead of z(·). In the
initial stage, we have also considered a short delay before
computing the estimators ŝi(·), for the differentiator ẑ(·) to
converge. A simple high-gain differentiator is considered in

Fig. 4. Left: the estimated solutions of equation (14), with piecewise
constant parameter c. Right: the constructed parameter ĉ superposed with
the exact parameter c.

order to compute z2 and z3

˙̂z1 = ẑ2−
k1

ε
(ẑ1− y)

˙̂z2 = ẑ3−
k2

ε2 (ẑ1− y) (16)

˙̂z3 = − k3

ε3 (ẑ1− y)

with ε = 10−3, k1 = 3, k2 = 3, k3 = 1. On Figure 7 we
depict the output and its first two derivatives together with the
estimated ones given by system (16). Similarly, as in the case
of exact derivatives of the output, we depict on Figures 5 and
6 the performance of our method to reconstruct the parameter
c with estimated output’s derivatives.

VI. CONCLUSION

In this paper we deal with the problem of parameter
reconstruction when observability index is higher than the
state dimension. We treat the case of planar polynomial
dynamics and give an alternative approach compared to
what exist in the literature, based on multiple observers.
The parameter reconstruction problem we have studied is
equivalent to an observer design problem for systems that
are observable but with singularities of the observability map.
Our method can be easily extended to the cases for which
P(x,c) is a rational fraction without pole in the invariant
considered domain. This could be the matter of a future work.
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Fig. 5. Left: the estimated solutions of equation (14), with constant param-
eter c in the case of estimated output’s derivatives. Right: the constructed
parameter ĉ superposed with the exact parameter c.

Fig. 6. The estimated first two derivatives of the output.
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