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Productivity analysis and non-linear gain scheduling approach for
multi-species bioprocesses with product inhibition

Piotr Skupin and Alain Rapaport

Abstract— Bioprocesses with product inhibition are known
to allow species coexistence. In this work, we first study the
productivity of the different possible equilibria, depending on
the operating conditions, and show that single species offers
the best performances. Then, we propose a control strategy to
stabilize the dynamics about the desired equilibria, in presence
of instability. Based on output feedback linearization, we
propose a family of controllers and a gain-scheduling approach
to adapt the controller. Finally, we illustrate our approach on
numerical simulations, showing that the attraction basin of
the closed-loop system is improved by considering the gain-
scheduling approach.

I. INTRODUCTION

The chemostat is an experimental apparatus for continuous
cultivation of microorganisms that ensures constant environ-
mental conditions. Therefore, the chemostat is an important
tool for studying relationships between several competing
species and is also widely used in biotechnological industry
to produce high-value products at constant inlet flow rates.
It is well-known that in the classical chemostat model with
two competing species for a single nutrient, the coexistence
is not possible (under specific growth rates which are only
resource dependent such as the Monod law, and constant
yield coefficient; see for instance [1], [2]). Many studies
have shown that the coexistence of two competing species is
possible in the presence of internal or external inhibitor in the
system [3], [4], [5]. For instance, in the paper by De Freitas
and Fredrickson (1978) [6], two species were competing for
a single growth limiting substrate in the presence of internal
inhibitor. The inhibitor was produced by both species and
this case is typical for ethanol fermentation processes, where
different strains of yeast produce ethanol that inhibits their
growth. Since the product yield or sensitivity to inhibitory
product can be different for both species, one can observe the
following cases: only one of the species wins the competition
(depending on the operating conditions: dilution rate and
input concentration), both species can coexist or the coex-
istence is not possible, or only one of the species wins the
competition (depending on the initial species concentrations).
In the last case, we deal with multiplicity of steady-states and
the desired product concentration may significantly differ,
depending on which species wins the competition.

In the continuous stirred bioreactor, a typical control task
is the maximization of its productivity, which is defined
as the amount of product produced per unit volume per
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unit time. The control task can be achieved by setting the
dilution rate in a sub-optimal region [7]. This is due to a
fact that the optimal dilution rate is usually located near
a critical dilution rate, above which the washout occurs.
To avoid a risk of washing the biomass out of the reactor
vessel, a closed-loop controller can be designed to stabilize
the productivity directly or indirectly, by stabilizing only
the product or biomass concentrations. Due to the nonlinear
nature of bioprocesses, the classical PI controllers may be
inefficient for this task, especially in the presence of larger
magnitude disturbances [8]. Therefore, more effective control
strategies have been developed for controlling key process
variables in bioprocesses and these include: nonlinear feed-
back controller [9], model predictive control [10], [11] or
input-output linearizing controllers [7], [12], [13], [14].

The linearizing control algorithms can be very efficient,
but the resulting closed-loop system may not be controllable
at every steady-state and the manipulated variable may take
unphysical values [15]. In fact, the manipulated variable is
always constrained and the control signal saturations should
be taken into account in the controller design [14], [16],
[17]. Keeping these facts in mind, our goal is to design a
feedback linearizing controller for stabilization of the product
concentration (thus, the productivity) in continuous culture
with two competing species for a single nutrient. We consider
a chemostat model from [6], where both competing species
secrete a desired product and the product inhibits their
growth. In comparison to the results presented in [6], we
consider more than one coexistence equilibrium point, show
global stability of the chemostat system and perform the
analysis of productivity, leading to a stabilization problem.
Since the product yield is different for each of the species, it
is shown that the best productivity can only be obtained for
a single species case. The proposed controller ensures that
the desired productivity can be achieved, also in the case
of multiplicity of steady-states. Then, we propose a gain-
scheduling approach to increase the convergence rate to a
desired set point product concentration. The effectiveness of
the controller is presented based on numerical simulations,
showing that the attraction basin of the closed-loop system
is improved by the gain-scheduling approach. The rest of the
paper is organized as follows. In Section II the productivity
of the open-loop system is analyzed. Section III presents
the idea of the proposed control algorithm and Section IV
presents simulation results. Finally, Section V concludes the
paper.



II. PRODUCTIVITY ANALYSIS IN OPEN-LOOP

We consider the chemostat model with two species, of
density X1, X2 competing for a single resource of concentra-
tion S in the chemostat, subject of dilution rate D > 0 which
constantly brings the resource with concentration Sin:

dS
dt

=− 1
Yx1

µ1(S,P)X1−
1

Yx2
µ2(S,P)X2 +D(Sin−S) (1)

dX1

dt
= µ1(S,P)X1−DX1 (2)

dX2

dt
= µ2(S,P)X2−DX2 (3)

dP
dt

= Yp1µ1(S,P)X1 +Yp2µ2(S,P)X2−DP (4)

Here, the species consume the substrate S with conversion
factor Yx1, Yx2 and produce P with efficiency Yp1, Yp2. The
particularity of this model is that the growth kinetics µ1, µ2
are inhibited by the product P, taking the expressions

µ1(S,P) =
µm1S

Ks1 +S
Kp1

Kp1 +P
, µ2(S,P) =

µm2S
Ks2 +S

Kp2

Kp2 +P
(5)

To analyze the equilibria, one can follow the graphical
method introduced in [6]. From equations (2), (3), one can
see that the presence of species X j ( j = 1,2) at steady state
implies that the pair (S,P) at equilibrium belongs to the curve

Ci := {(S,P) ∈ R2
+ s.t. µi(S,P) = D}

in the (S,P) plane. Moreover, when a species is not present
at steady state, equations (1) and (4) imply that the pair (S,P)
belongs to the line

Li := {(S,P) ∈ R2
+ s.t. P = YxiYpi(Sin−S)}

where i denotes the label of the other species. Then, again
from equations (1) and (4), coexistence is possible only when
P−Yx jYp j(Sin − S) or −(P−YxiYpi(Sin − S)) and YxiYpi −
Yx jYp j with j 6= i have the same signs at steady state.
Therefore, one can conclude about the existence of equilibra
in a graphical way, as follows
• equilibria E? with both species corresponds to intersec-

tions of C1 and C2 that lie in between L1 and L2,
• equilibrium Ei with species i alone corresponds to

intersection of Ci and Li,
• the washout equilibrium E0 always exists as intersection

of L1 and L2, that is at (Sin,0).
Notice that from the expressions (5), the equation µi(S,P) =
D amounts to have P as a rational function of S with degrees
of numerator and denominator both equal to one. Then, the
coexistence condition µ1(S,P) = µ2(S,P) imposes S to be
solution of aS2 + bS+ c = 0, where the coefficients can be
easily determined as

a = µm1Kp1−µm2Kp2 +D(Kp2−Kp1),

b = µm1Ks2Kp1−µm2Ks1Kp2 +D(Kp2−Kp1)(Ks1 +Ks2),

c = D(Kp2−Kp1)Ks1Ks2
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Fig. 1. The four different possibilities when coexistence equilibria exist
(stable equilibrium with filled disk, unstable with empty disk)

leading to the possibility of having one or two coexistence
equilibria. In [6], the possibility to have more than one
coexistence equilibrium was mentioned but not studied.

In addition, the local stability of the equilibria can also be
deduced graphically (see Fig. 1). One can notice that being
above, resp. below Ci in the (S,P) plane implies that Xi is
decreasing, resp. increasing, and then deduce the following
stability rules:
• an equilibrium Ei is stable if the intersection Ci∩Li is

above C j with j 6= i.
• if there exists an unique equilibrium E?, it is stable

exactly when E1 and E2 are unstable, and unstable when
E1 are E2 are stable,

• when there exist two equilibria, one is stable and the
other one unstable. Moreover, among E1, E2, one is
stable and the other one unstable.

However, the global stability analysis was not made in [6].
Consider the variables

Z1 = S+
1

Yx1
X1 +

1
Yx2

X2, Z2 = P−Yp1X1−Yp2X2

One can straightforwardly check that Z1, Z2 are solutions of
the scalar dynamics

dZ1

dt
= D(Sin−Z1),

dZ2

dt
=−DZ2 (6)

from which one deduces that Z1(t) and Z2(t) converge
asymptotically to Sin and 0, respectively. As the solutions
are bounded, one can study without loss of generality, the
reduced dynamics on the set Z1 = Sin, Z2 = 0, that is

dX1

dt
= µ1

(
Sin−

X1

Yx1
− X2

Yx2
,Yp1X1 +Yp2X2

)
X1−DX1 (7)

dX2

dt
= µ2

(
Sin−

X1

Yx1
− X2

Yx2
,Yp1X1 +Yp2X2

)
X2−DX2 (8)

First, determine the Jacobian matrix at the wash-out equilib-
rium E0

J(E0) =

[
µ1(Sin,0)−D 0

0 µ2(Sin,0)−D

]
Under the condition

D < min{µ1(Sin,0),µ2(Sin,0)} (9)

E0 is a repulsive node and equilibria E1 and E2 both exist,
which corresponds to the most interesting case in view of



production of P. We shall assume that this condition is
fulfilled in the following.

On the positive domain D =R+\{0}×R+\{0}, consider
now the variables ξ1 = lnX1, ξ2 = lnX2. One has then

dξ1

dt
= F1(ξ ) = µ1

(
Sin−

eξ1

Yx1
− eξ2

Yx2
,Yp1eξ1 +Yp2eξ2

)
−D

dξ2

dt
= F2(ξ ) = µ2

(
Sin−

eξ1

Yx1
− eξ2

Yx2
,Yp1eξ1 +Yp2eξ2

)
−D

Then, one obtains

divF = eξ1

(
−∂Sµ1

Yx1
+Yp1∂Pµ1

)
+ eξ2

(
−∂Sµ2

Yx2
+Yp2∂Pµ2

)
which is negative on D . From Dulac criterion, we deduce
that the dynamics does not have periodic solution.

Notice that when the equilibria E1, E2 are unstable, their
stable manifold belongs to the axis x1 or x2. Notice also that
the Jacobian matrix of the system (7)-(8) at a coexistence
equilibrium E? is

J(E?) =


(
− ∂Sµ1

Yx1
+Yp1∂Pµ1

)
X1

(
− ∂Sµ1

Yx2
+Yp2∂Pµ2

)
X1(

− ∂Sµ1
Yx1

+Yp1∂Pµ1

)
X2

(
− ∂Sµ1

Yx2
+Yp2∂Pµ2

)
X2


and its trace is negative. Hence, when E? exists and is
unstable, it is necessarily a saddle point and as it is the only
unstable positive equilibrium and there exist exactly two sta-
ble equilibria (either E1 and E2 if E? is the only equilibrium,
or the other positive equilibrium and one among E1,E2),
its stable manifold is the separatrix in the (X1,X2) plane
between the attraction basins of the two stable equilibria.
Therefore, in any case, the system does not have any poly-
cycle. Finally, we conclude by Poincaré-Bendixon Theorem,
that any solution converges to an equilibrium point.

Let us now analysis the situation with respect to the
productivity, which is defined, at steady state, by the quantity
π := DP. From the expressions (5) and the implicit function
theorem, one obtain that the the curves Ci can be described
as the graphs of functions S 7→ Pi(S) in the (S,P) plane with

P′i =−
∂Sµi

∂Pµi
> 0

Therefore the functions Pi(·) are increasing. We deduce
that any intersection of C1 with C2 that lies between L1
and L2 has necessarily a value of P between the ones of
the intersections L1 ∩ C1 and L2 ∩ C2. Furthermore, the
intersection Li∩Ci (i = 1,2) that possesses the largest value
of P is the one with the largest number YxiYpi. This amounts
to say that any coexistence equilibrium E?, if it exists, has a
value of P smaller than the equilibrium Ei with the largest
number YxiYpi. Consequently, the best productivity is nec-
essarily reached with this species i alone. The productivity
associated to the equilibrium Ei can be written as a function
of S:

πi(S) = µi(S,YxiYpi(Sin−S))YxiYpi(Sin−S)

=
µmiKpiYxiYpiS

(Ksi +S)(Kpi +YxiYpi(Sin−S))
(Sin−S)

This function is well defined on the interval [0,Sin] with
πi(0) = 0, π(Sin) = 0 and is positive on (0,Sin). Therefore it
admits a maximum. A straightforward calculation gives

π
′(S) =−µmiKpiYxiYpi

AiS2 +2BiS−Ci

(Ksi +S)2(Kpi +YxiYpi(Sin−S))2

with Ai = Kpi−KsiYxiYpi, Bi = Ksi(Kpi + SinYxiYpi) and Ci =
KsiSin(Kpi +SinYxiYpi). Then, the maximum of πi on (0,Sin)
is unique and reached for

S†
i =
−Bi + sign(Ai)

√
∆i

Ai

where ∆i = KpiKsi(Ksi + Sin)(SinYxiYpi + Kpi) > 0, and the
corresponding value of the dilution rate is

D†
i = µi(S

†
i ,YxiYpi(Sin−S†

i ))

However, this equilibrium E†
i is not stable when

µ j(S
†
i ,YxiYpi(Sin− S†

i )) > D†
i , where j denotes the label of

the other species. If it is stable, there exists another stable
equilibrium (either E j or a coexistence equilibrium E?). In
both cases, a feedback law is required to stabilize or enlarge
its attraction basin. This is the matter of the next section.

III. A GAIN-SCHEDULING APPROACH

As shown in the previous section, the productivity un-
der constant control depends on which species wins the
competition or whether or not the coexistence is possible.
Therefore, the control goal is to stabilize the product con-
centration (thus, the productivity) at the desired level Psp.
Since the considered system is highly nonlinear, we propose
a controller that is based on output feedback linearization
[7]. The idea is to find a control law so that the equation
governing the concentration of product P in closed-loop is
linear exponentially stable. If the process variable is the
product concentration P and the manipulated variable u is the
dilution rate D, then is clearly seen that the relative degree
of system (1)-(4) is equal to r = 1 for P > 0, and from (4)
we have

dP
dt

=−uP+µ1(S,P)Yp1X1 +µ2(S,P)Yp2X2

Assuming that the specific growth rates are known and that
the state variables are measured at every time instant t, the
manipulated variable u = D is chosen as follows

u =
µ1(S,P)Yp1X1 +µ2(S,P)Yp2X2− k(Psp−P)

P
(10)

Then, by substituting (10) into (4) we have

dP
dt

= k(Psp−P) (11)

where k > 0 is the only controller parameter that determines
the convergence rate of P to the set point product concen-
tration Psp. Let us underline that the proposed controller can
be easily implemented for a biological wastewater treatment
plant, where, as shown in [16], the precise knowledge of
the functions µi is not required when P and the output gas
flow rate are the only measurements (as this later one is
proportional to µ1(S,P)Yp1X1 +µ2(S,P)Yp2X2).



When implementing the control law (10), we must take
into account that the manipulated variable D has to take
values within a prescribed interval [Dmin,Dmax], while the
expression of u may give values outside this physical interval.
Indeed, if Psp > P and k is sufficiently large, then the
expression of u is negative. If the numerator in (10) is
positive, but the product concentration P is close to zero,
then u may take very large values. In practice, one uses a
saturated expression of u.

Moreover, the control law (10) does not ensure the global
stability of the closed-loop system, but it is possible to find
the largest positively invariant set that includes the desired
product concentration Psp.

As shown previously with (6), S = Sin−X1/Yx1−X2/Yx2
and P=X1Yp1+X2Yp2 define a global attractor for the system
(1)-(4). Hence, the manipulated variable (10) can be ex-
pressed as a function of X1 and X2 for the reduced dynamics
in the plane (X1,X2) and it is possible to determine the
borders u(X1,X2)=Dmin and u(X1,X2)=Dmax corresponding
to lower and upper bounds of the manipulated variable (10).

The closed-loop system (7)-(8), (10) with Psp > 0 has the
following equilibrium points: Ec

1 with a single species X1 and
P = Psp =Yp1X1, Ec

2 with a single species X2 and P = Psp =
Yp2X2, and Ec

? with two coexisting species and P = Psp =
Yp1X1 +Yp2X2. Please note that in the closed-loop system,
there is at most one equilibrium point corresponding to the
coexistence case. Let R := µ1− µ2, then at the equilibrium
point Ec

? we have

R =
µm1S

S+Ks1
·

Kp1

Kp1 +Psp
− µm2S

S+Ks2
·

Kp2

Kp2 +Psp
= 0 (12)

and (12) has at most one solution S ∈ (0,Sin). The corre-
sponding species concentrations at Ec

? are found from (1)
and (4).

The Jacobian matrix determined at Ec
1 is

J(Ec
1) =

 ∂

∂X1
(µ1−D) ·X1

∂

∂X2
(µ1−D) ·X1

0 µ2−D


and the closed-loop system is locally asymptotically stable
at Ec

1 , when

∂

∂X1
(µ1−D) |Ec

1
=
−kYp1

Psp
< 0, µ2−D =−R|Ec

1
< 0

If R < 0 at Ec
1 , then Ec

1 is a saddle-point. Similarly, the
Jacobian matrix determined at Ec

2 is

J(Ec
2) =

 µ1−D 0

∂

∂X1
(µ2−D) ·X2

∂

∂X2
(µ2−D) ·X2


and the closed-loop system is locally asymptotically stable
at Ec

2 , when

∂

∂X2
(µ2−D) |Ec

2
=
−kYp2

Psp
< 0, µ1−D = R|Ec

2
< 0
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Fig. 2. Trajectories in the closed-loop system with unstable coexistence
point Ec

? (red star) for Psp =8.0[g/L] and k =0.001[1/h]

If R > 0 at Ec
2 , then Ec

2 is a saddle-point. Finally, at the
coexistence equilibrium point Ec

? , the Jacobian matrix is as
follows

J(Ec
?) =

 ∂

∂X1
(µ1−D) ·X1

∂

∂X2
(µ1−D) ·X1

∂

∂X1
(µ2−D) ·X2

∂

∂X2
(µ2−D) ·X2


and the corresponding characteristic equation is

(λ + k)(λ +W ) = 0

where W = (∂X2R · Yp1 − ∂X1R · Yp2)X1X2/Psp. Then, the
closed-loop system is locally asymptotically stable at Ec

? if
W > 0, unstable if W < 0 and Ec

? is a saddle-point.
If all the equilibrium points exist and the closed-loop

system (7)-(8) with (10) is asymptotically stable at Ec
? , then

Ec
1 and Ec

2 are saddle-points. When the closed-loop system
is unstable at Ec

? , then it is locally asymptotically stable at
Ec

1 and Ec
2 , and the control goal Psp is obtained. As shown

in Section II, the largest value of product concentration is
obtained for a single species Xi with the largest number YxiYpi
(i = 1,2). Fig.2 shows the case, where the desired product
concentration Psp can only be obtained for a single species
X1 and the closed-loop system is unstable at the coexistence
point Ec

? . The red line defines a subset in (X1,X2) with non-
negative substrate concentrations. Since Ec

? is the saddle-
point (red star), there exist a stable manifold (separatrix
trajectories - black curves) that allow us to define the largest
invariant subset including the equilibrium point Ec

1 (blue
point) with the desired product concentration Psp. If the
trajectories (blue curves) start inside the invariant set, the
control goal is achieved. For a given set point product
concentration Psp, the size of the invariant set depends on
the controller parameter k. Moreover, according to (11) the
convergence rate of P to Psp is strictly determined by k.
Figs. 3 and 4 show the invariant sets for two different
values of the parameter k. To achieve the desired product
concentration Psp for a larger basin of attraction, we propose
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Fig. 3. Trajectories in the closed-loop system with unstable coexistence
point Ec
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to design a family of feedback linearizing controllers for
different values of k. Then, if the trajectory enters the region
with a larger k, the controller parameter k is switched to a
new value. Since the invariant regions can overlap, the largest
possible value of k is always chosen. Hence, the proposed
idea is similar to the well-known gain-scheduling approach.
When constructing the invariant regions for different values
of k, constraints for the manipulated variable can be easily
included. The violet lines in Figs. 3 and 4 represent the
subsets in the (X1,X2) plane where u = 0, which are the
boundaries of the regions for which u is negative. The
effectiveness of the proposed control algorithm is presented
in the next section.

IV. NUMERICAL ILLUSTRATIONS

The simulations are obtained for (7)-(8) with (10) and the
following parameters: µm1 = 0.3[1/h], µm2 = 0.25[1/h], Ks1 =
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Fig. 5. Trajectories in the closed-loop system with (blue line) and without
gain-scheduling (dashed magenta line) approach

2.7[g/L], Ks2 = 1.5[g/L], Kp1 = 3.0[g/L], Kp2 = 3.5[g/L],
Yx1 = 0.5[g/g], Yx2 = 0.4[g/g], Yp1 = 2.0[g/g], Yp2 = 0.5[g/g],
Sin = 35.0[g/L], and Psp = 8.0[g/L]. In this case, the desired
product concentration Psp can only be achieved for a sin-
gle species X1 corresponding to equilibrium point Ec

1 . For
Psp = 8.0[g/L] the equilibrium point Ec

2 does not exist and
the closed-loop system at the coexistence equilibrium Ec

?

is unstable. Hence, a family of three feedback linearizing
controllers is designed for k ∈ {0.001,0.005,0.1}[1/h] and
the lower and upper bounds for the manipulated variable are
equal to Dmin = 0.001[1/h] and Dmax = 0.3[1/h], respectively.
Fig. 5 shows trajectories in the closed-loop system with con-
stant k = 0.001[1/h] and for the proposed controller, where
the parameter k is switched depending on which invariant
region is active. It is clearly seen that the basin of attraction
can be significantly enlarged, if the parameter k is modified.
Fig. 6 is a close-up view of the trajectories near a saddle
equilibrium point Ec

? . The corresponding time courses of
the product concentration P(t) and the manipulated variable
(dilution rate D(t)) are shown in Figs. 7 and 8. Starting
from the same initial conditions in (X1,X2), the convergence
rate to the desired product concentration Psp is significantly
increased for the proposed controller in comparison to the
feedback linearizing control with a constant parameter k =
0.001[1/h]. Moreover, in each case the manipulated variable
is never saturated.

V. CONCLUSION

In the present paper we have proposed a family of feed-
back linearizing controllers for a chemostat system with two
competing species for a single growth limiting substrate, but
in the presence of an internal inhibitor. The inhibitor was
a product P secreted by both microbial species X1 and X2.
The control goal was to achieve the desired productivity by
controlling the product concentration P at a desired level
Psp. First, depending on the dilution rate D, we have shown
that the open-loop system can have up to five equilibrium
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Fig. 8. Time courses of manipulated variable D(t) in the closed-loop
system with and without gain-scheduling approach

points (including two coexistence equilibria) and we have
derived conditions for the global stability at the coexistence
equilibrium point. Moreover, we have shown that the best
productivity is always obtained with a single species. Then,
we have analyzed the possible equilibrium points in the
closed-loop system, with an output feedback linearizing
controller. Finally, we showed that for the proposed con-
troller, the domain of attraction can be enlarged and the set
point product concentration Psp can be quickly achieved. We
believe that the gain-scheduling approach that we propose
here could be applied in more general cases, which could be
the matter of a future work.
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