Typical flow result!

Effect increases with mass

Also true for v 2 vs p t p t v 2 increasing mass So : "Flow-like phenomena" are also seen in pp and pA, therefore:

Heavy ion approach = primary (multiple) scattering + subsequent fluid evolution becomes interesting for pp and pA primary interactions providing initial conditions for secondary interactions

Poles, analytical continuation

Even functions f (x) of a real variable x may need to be considered in the complex plane, to understand their properties.

Example

f (x) = ∞ ∑ n=0 a n x n = ∞ ∑ n=0 x 2i n .
The radius of convergence is

ρ = lim n→∞ |a n | -1/n = 2
Which is obvious, since f considered as function of a complex variable z, is (within the radius of convergence) equal to

f (z) = 1 1 -z/(2i)
having a pole at z = 2i,

Im z

Re z 1 1

Blue area: convergence whereas f (x) has no singularity (for x ∈ I R)

Consider again f (x) = ∞ ∑ n=0 a n x n = ∞ ∑ n=0 x 2i n , defined within the radius of convergence, whereas f (z) = 1 1 -z/(2i) is defined in C\{2i} Im z Re z 1 1 Blue: convergence of f 1 1 Re z

Im z

Pink: convergence of f Going from f to f is (a trivial case) of a analytic continuation of a holomorphic function into a new region where an infinite series representation in terms of which it is initially defined becomes divergent.

Holomomorphic function:

complex differentiable in a neighbourhood, infinitely differentiable and locally equal to its own Taylor series (analytic).

Even without an analytical formula for the Taylor series, there is a systematic approach to extend the region:

Proceed via a sequence of discs D k , with centers z k , with

f k (z) = ∞ ∑ n=0 a n (z -z k ) n , being convergent in D k , and f k = f k-1 in the over- lap region.

Re z

Im z

Identity theorem:

For given functions f and g, holomorphic on a domain D, if f = g on some S ⊆ D then f = g on D.

Consequence:

Analytic continuations are unique!

Branch cuts

An example: The logarithm.

The exponential function defines a mapping M M :

C → C w → z = exp(w)
which is well defined in the whole complex plane.

Consider w = x + iy, with x fixed and y going from -π to π.

(Trajectory γ going from 

w 1 = x -iπ to w 2 = x + iπ) x =

Im z

Re z

Doing the inverse mapping

M -1 : z → w = log(z),
we get for z 1 = z 2 two different values w 1 and w 2 !! One has to define log in C -R ≤0 (branch).

The negative real axis is called branch cut.

Im z

Re z

z 2 z 1 x = Re w w w 2 1 y = Im w
The discontinuity at z = -e x : log(z + iǫ)log(ziǫ) = 2πi

Cut diagrams

The scattering operator Ŝ is defined via

|ψ(t = +∞ = Ŝ |ψ(t = -∞ Unitarity relation Ŝ † Ŝ = 1 gives (considering a discrete Hilbert space) 1 = i| Ŝ † Ŝ |i = ∑ f i| Ŝ † | f f | Ŝ |i = ∑ f f | Ŝ |i * f | Ŝ |i
Expressed in terms of the S-matrix:

1 = ∑ f S * f i S f i Using S f i = δ f i + i(2π) 4 δ(p f -p i )T f i dividing by i(2π) 4 δ(0) : 1 i (T ii -T * ii ) = ∑ f (2π) 4 δ(p f -p i ) T f i 2 = 2s σ tot for s → ∞ (see next page) ✬ ✫ ✩ ✪ Be φ le current of incoming particles hitting a target of surface A containing N particles. The transsition rate τ is τ = φA σN A = φ σ N,
The cross section is

σ = τ Nφ = τ V φ ρ = W TV φ ρ ≡ W TV w . The transition probability W = |S f i | 2 is (2π) 4 δ 4 (p f -p i ) 2 |T f i | 2 = TV (2π) 4 δ 4 (p f -p i )|T f i | 2 .
The cross section is then

σ = 1 w |T f i | 2 (2π) 4 δ 4 (p f -p i ). with w = 2E 1 v 1 2E 2 . We need a covariant form of f = E 1 v 1 E 2 .
In the lab frame, we have

f 2 = | p 1 | 2 m 2 2 = (E 2 1 -m 2 1 )m 2 2 , which gives the invariant form f = (p 1 p 2 ) 2 -m 2 1 m 2 2 . With 2p 1 p 2 = s -m 2 1 -m 2 2 , we get 2 f = (s -m 2 1 -m 2 2 ) 2 -4m 2 1 m 2 2
, and thus

w = 4 f = 2 s -(m 1 + m 2 ) 2 s -(m 1 -m 2 ) 2 → 2s for s → ∞ Using 1 i (T ii -T * ii ) = 2ImT ii ,
we get the optical theorem

2ImT ii = ∑ f (2π) 4 δ(p f -p i ) T f i 2 = 2s σ tot Assume:
T ii is Lorentz invariant → use s, t T ii (s, t) is an analytic function of s, with s considered as a complex variable (Hermitean analyticity)

T ii (s, t) is real on some part of the real axis

Using the Schwarz reflection principle, T ii (s, t) first defined for Ims ≥ 0 can be continued in a unique fashion via T ii (s * , t) = T ii (s, t) * .

So:

1 i (T ii (s, t) -T ii (s, t) * ) = 1 i (T ii (s, t) -T ii (s * , t)) Def: disc T = T ii (s + iǫ, t) -T ii (s -iǫ, t)
We have finally

1 i disc T = (2π) 4 δ(p f -p i ) ∑ f T f i 2 = 2s σ tot
Interpretation: 1 i disc T can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell. 

Modified

Cuts in the s-plane

The inelastic cross section, 1 2s

(2π) 4 δ(p f -p i ) ∑ f T f i 2
will be nonvanishing beyond some s threshold allowing massive particles in the final state, and because of

1 i disc T = (2π) 4 δ(p f -p i ) ∑ f T f i 2
we have a non-vanishing discontinuity.

Non-vanishing discontinuity beyond some threshold means:

There is a branch cut along the positive Re s axis

Re s

Im s

On the other hand, analyticity allows to continue T(s, t) from the "physical region" s > 0, t < 0, u < 0 into the "non-physical region":

s < 0, t < 0, u > 0 being the "physical region" for the u-channel reaction

We have also a branch cut in u in the u-channel, and with

s = ∑ m 2 i -t -u
we get in addition a branch cut for negative Re s.

Im s

Re s

Useful (later) for example for doing integrals.

We may have

∞ -∞ ... = C ...

Im s

Re s

C

which may be transformed into

C ′ ...

Im s

C'

Re s

and we get

∞ -∞ f (s)ds = ∞ s thr disc f (s)ds

Dispersion relations

One may write (Cauchy)

T(s, t) = 1 2πi c T(s ′ , t) s ′ -s ds ′
where on may choose C as in the figure

C

Re s

Im s

So we find (assuming the semi-circles do not contribute)

T(s, t) = 1 2πi ∞ s + thr disc T(s ′ , t) s ′ -s ds ′ + 1 2πi -s - thr -∞ disc T(s ′ , t) s ′ -s ds ′
This is called "dispersion relation".

Will be useful later.

Watson-Sommerfeld transform

Consider a reaction (all particles having mass m)

1 + 2 → 3 + 4 in the x -z plane.
In the CMS, we have (P = | p|)

P 1 = P 2 = P 3 = P 4 E 1 = E 2 = E 3 = E 4 (E, p x , p z ) =          ( √ P 2 + m 2 , 0, P) (1) ( √ P 2 + m 2 , 0, -P) (2) ( √ P 2 + m 2 , P sin θ, P cos θ) (3) ( √ P 2 + m 2 , -P sin θ, -P cos θ) (4) which gives s = 4 P 2 + m 2 t = 0 -P 2 sin 2 θ -P 2 (1 -cos θ) 2 = -2P 2 (1 -cos θ) u = 0 -P 2 sin 2 θ -P 2 (1 + cos θ) 2 = -2P 2 (1 + cos θ) Defining z = cos θ we have t = 2( s 4 -m 2 )(z -1) u = 2( s 4 -m 2 )(-z -1)
We now consider a T matrix element as a function T(z, s) of s and z = cos θ and we will analyticly continue to z > 1.

One may always expand (partial wave expansion)

T(s, t) = ∞ ∑ j=0 (2j + 1)T (j, s)P j (z) with T (j, s) = 1 2 1 -1 dz T(s, t)P j (z)
due to the orthogonality property of Legendre polynomi-

als 2n + 1 2 1 -1 dx P n (x)P m (x) = δ mn
We analytically continuate to the unphysical region of the 1 + 2 → 3 + 4 process:

T 1+2→3+4 (s < 0, t > 0)
corresponding to the physical region of the 1 + 3 → 2 + 4 (t-channel) process:

T 1+ 3→ 2+4 (t > 0, s < 0)
and after exchanging s and t :

T 1+ 3→ 2+4 (s > 0, t < 0) ≡ T(s, t).
With this new definition of T, the partial wave expansion reads

T(s, t) = ∞ ∑ j=0 (2j + 1)T (j, t)P j (z) with T (j, t) = 1 2 1 -1 dz T(s, t)P j (z) with z = 1 + 2s t
since we also exchanged s and t in z = 1 + 2t s (neglecting masses).

The Watson-Sommerfeld transform amounts to write the partial wave expansion as

T(s, t) = 1 2i C dj 1 sin πj (2j + 1)T (j, t)P j (z)
with a contour integration in the complex j plane

C

Re j

Im j

Opening the contour to integrate along the imaginary axis (Imj = -1 2 )=> one picks up poles of T

at j = α n (t), residue β ′ n (t) Re j Im j C' T(s, t) = 1 2i C ′ dj 2j + 1 sin πj T (j, t)P j (z) + ∑ π 2α n (t) + 1 sin πα n (t) β ′ n (t) β n (t) P α n (t) (z) 2.7
The signature

Problem

The partial wave amplitudes have contributions which alternate in sign, so there is a factor

(-1) j = exp(iπj)
which diverges on the imaginary axis.

Solution

Separate even and odd terms.

We use the dispersion relation

T(z, t) = 1 2πi ∞ z 0 disc T(z ′ , t) z ′ -z dz ′ + 1 2πi -z 0 -∞ disc T(z ′ , t) z ′ -z dz ′ put into T (j, t) = 1 2 1
-1 T(z, t)P j (z)dz :

T (j, t) = 1 2πi ∞ z 0 disc T(z ′ , t) 1 2 1 -1 P j (z) z ′ -z dzdz ′ + 1 2πi -z 0 -∞ disc T(z ′ , t) 1 2 1 -1 P j (z) z ′ -z dzdz ′
We use "Neumanns formula"

1 2 1 -1 P j (z) z ′ -z dz = Q j (z ′ )
with Legendre functions Q j of the second kind, and get

T (j, t) = 1 2πi ∞ z 0 disc T(z ′ , t)Q j (z ′ )dz ′ + 1 2πi ∞ z 0 disc T(-z ′ , t)Q j (-z ′ )dz ′
We use the symmetry property Q j (-z) = (-1) j+1 Q j (z), and

D ± j = 1 2πi ∞ z 0 disc T(±z ′ , t)Q j (z ′ )dz ′ ,
and we get

T (j, t) = D + j + (-1) j+1 D - j = ∑ η∈{-1,1} 1 + η(-1) j 2 D + j + (-1) j+1 D - j ≡ ∑ η∈{-1,1} 1 + η(-1) j 2 T η (j, t)
with a so-called signature η.

There is no (-1) j problem any more.

The Watson-Sommerfeld transform then reads

T(s, t) = ∑ η 1 2i C ′ dj 1+η(-1) j 2 1 sin πj (2j + 1)T η (j, t)P j (z) + ∑ η ∑ n η 1 + η(-1) α n η (t) 2 β n η (t) P α n η (t) (z)
The poles are called even signature Regge poles (η = +1) or odd signature Regge poles (η = -1)

Reggeons and Pomerons

Asymptotically, for s ≫ t, i.e. z = 1 + 2s t ≫ 1, the Legendre polynomial

P j (z) = j ∑ k=0 j k j + k k z -1 2
k is dominated by its leading term,

P j (z) → 2j j z -1 2 j so we have P j (z) = P j (1 + 2s t ) → Γ(2j + 1) Γ 2 (j + 1) s t j .
Contour integration (along j = -1 2 + iy), for s ≫ t vanishes, because of factor (s/t) -1/2 from asymptotic form of P j (z)

Regge pole part (absorbing the Γ functions and t -j into β),

for s ≫ t ∑ η ∑ n η 1 + η(-1) α n η (t) 2 β n η (t) s α n η (t)
with the dominant contribution from the rightmost pole.

With α(t) being the rightmost (leading) pole, in the limit s ≫ t :

T(s, t) = 1 + ηe -iπα(t) 2 β(t) s α(t)
This is the Regge pole expression for the T-matrix, viewed as Reggeon exchange amplitude

Regge trajectories

With t ≪ s (Regge limit), we expect

α(t) = α(0) + α ′ t , i.

e. linear Regge trajectories

Can one determine α(t)?

Considering t-channel processes with t > 0:

α(t) = L(M 2 )
Can be checked: Consider known hadrons Chew, Frautschi, 1961 => α(0) ≈ 0.5

The Pomeron pp cross section via Reggeon exchange:

σ tot = 1 s ImT(t = 0), so σ tot ∝ s α(0)-1
with α(0) = 0.5 : σ tot ∝ s -0.5 cross section decreases with increasing s Pomeranchuk (1956) :

Any exchange of charged hadrons leads asymptotically to vanishing cross section Solution :

Exchange of Pomeron, having vacuuum quantum numbers, α(0) > 1. Like α(0) = 1.08 seems to work. which probes partons with momentum fraction x.

It determines also the approximation scheme to compute the parton cloud.

s -λ Q = x ln Q 2 ln 1/x soft BFKL saturation DGLAP DGLAP: sum- ming to all or- ders of α s ln Q 2 BFKL:
summing to all orders of α s ln 1

x Linear equations BFKL (Balitsky, Fadin, Kuraev, and Lipatov): 

∂ϕ(x, q) ∂ ln 1 x α s N c π 2 d 2 k K(q, k)ϕ(x, k) with xg(x, Q 2 ) = Q 2 0 d 2 k k 2 ϕ(x, k), DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi): ∂g(x, Q 2 ) ∂ ln q 2 = 1 x dz z α s 2π P(z)g( x z , Q 
t → ∞: T(s, t) ∝ s α(t)
with the Regge trajectory 

α(t) = α(0) + α ′ t
T soft ( ŝ, t) = 8πs 0 i γ 2 Pom-parton ŝ s 0 α soft (0) × exp(λ soft t) , with λ soft = 2R 2 Pom-parton + α ′ soft ln ŝ s 0 .
Cut soft Pomeron (Schwarz reflection principle):

1 i disc T soft ( ŝ, t) = 1 i [T soft (ŝ + i0, t) -T soft ( ŝ -i0, t)] = 2Im T soft ( ŝ, t)
Interaction cross section,

σ soft ( ŝ) = 1 2ŝ 2Im T soft (ŝ, 0) , = 8πγ 2 part ŝ s 0 α soft (0)-1
, using the optical theorem (with t = 0), which grows faster than data 

Factorization approach

Hypothesis: The inclusive cross section factorizes:

dσ pp incl dp 2 t = f ⊗ dσ partons dp 2 t ⊗ f with f from DIS F µ 2 Q 2 0 Q 2 0 p t 2 ... ...
Inclusive pp cross section :

dσ pp incl dp 2 t = ∑ mn dxdx ′ dp 2 t dσ kl→mn Born dp 2 t (xx ′ s, p 2 t ) × f k (x, Q 2 0 , µ 2 F ) f l (x ′ , Q 2 0 , µ 2 F ) with µ 2 F = µ 2 F (p 2 t )

Models

For pp scattering 

dP dY = ᾱ 2π d 2 z ( x -y) 2 ( x -z) 2 ( z -y) 2
Multiple color exchange between dipoles i and j with probabilities

α 2 s 4 log ( x i -y j ) 2 ( y i -x j ) 2 ( x i -x j ) 2 ( y i -y j ) 2 2 -> kinky strings
Two "leading" strings

Additional strings from loops

No Remnants

Many strings: Lund strings may overlap

=> color ropes (Larger eff. string tension)

IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r ⊥ =dipole size):

dσ d 2 b = 2 [1 -exp (-F(r ⊥ , x, b)] , F ∝ r 2 ⊥ α s (µ 2 )xg(x, µ 2 )T(b) T(b) : Gaussian profile, µ 2 = 4/r 2 ⊥ + µ 2 0 , xg : DGLAP evolution Saturation scale Q s defined via F r ⊥ , x = 2 Q 2 s , b = 1 2
IP-Glasma: Color charge squared for projectile A and target B :

g 2 µ 2 A = ∑ nucleons g 2 µ 2 i , with g 2 µ 2 i ∝ Q 2 s with Q 2 s from IP-Sat model.
Color charge density ρ A/B generated from Gaussian distribution with variance g 2 µ 2

A (contains DGLAP, saturation)

Current J ν = δ ν± ρ A/B (x ∓ , x ⊥ ) Field from [D µ , F µν ] = J ν Numerical (lattice) solution,
fields can be expressed in terms of initial ones:

A i = A i A + A i B , A η = ig 2 [A i A , A i B ]
Initial configuration

JIMWLK evolution

Single gluon emission A (classical field)

Multiple scattering: Nonlinearity in terms of A: Infinite number of g + g → g processes

Fields→Gluons→Pythia strings

Multiple scattering in factorization approaches

First step: Compute (based on factorization)

σ pp incl = dσ pp incl dp 2 t dp 2 t
Second step: Multiple scattering introduced via eikonal formula for the probability of n scatterings: Let p be the momentum entering the soft part and k the momentum of the first emitted perturbative parton with

Ei(b, n) = σ pp incl (s) T(s, b) n n! exp -σ pp incl (s) T(s, b) with d 2 b ∑ n n × Ei(b, n) = σ pp incl (s)
α s N c Q 2 × 1 N 2 c -1 xG πR 2 = 1
k t ≪ k + ≪ p + , p -≈ 0 soft k p Contribution to the T-matrix from the k-loop: dk + dk -d 2 k t M
On has

s soft = (p -k) 2 ≈ (p + -k + )(p --k -) ≈ -p + k - and so k -= -s soft /p + .
The T-matrix for the soft part has singulatrities (cuts), along the real axis:

s + iǫ for s < 0 for s < -s thr (C = ∞ -∞ ) Im s Re s C Which amounts to a cut for k -: k --iǫ for k -> s thr /p + Im k Re k C So the integral ∞ -∞ dk -M may be transformed into C ′ disc M ∝ C ′ Im M Im s C'

Re s

Working this out (Phys. Rept. 350 (2001) 93-289) one gets

iT sea-sea (s, t) = ∑ jk 1 0 dz + z + dz - z - ×Im T j soft s 0 z + , t Im T k soft s 0 z -, t iT jk hard (z + z -ŝ, t)
Having a purely imaginary T hard , the complete T-matrix remains imaginary.

And

ImT sea-sea = ∑ jk 1 0 dz + z + dz - z -Im T j soft Im T k soft ImT jk hard
In high energy scattering, momentum transfer is essentially transverse (Phys. Rept. 350 (2001) 93-289), t ≈ -p 2 t Also, we will replace s for the Pomeron by x + x -s, with s now referring to the squared energy of the hadron-hadron collisions. So we use T = T(x + x -s, -p 2 t ) x + and x + are light-cone momentum fractions entering the Pomeron.

Hadronic vertex

To get T-matrix including coupling to incoming hadrons:

Pomeron with soft part connected to hadron: add vertex factor to couple to hadron h:

F h (x ± ) exp -R 2 h p 2 t × T
Pomeron-hadron vertex qq soft part incoming partonic contituents: q q (or qq 2 ) -> First TL emissions -> end partons

Pomeron with val part connected to hadron: consider as well x + of incoming q q, integrate out the additional q

x + 0 dx + v Fj h (x + v , x + -x + v ) exp -R 2 h p 2 t × T(x v ...) with F such that distribu- tion of x v corresponds to given valence quark PDG q i val (x v , Q 2 0 )
q Pomeron-hadron vertex q v val part incoming partonic contituents: q v q q immediately emitted T Pom = complete T-matrix for single Pomeron exchange summed over all 5 contributions, including the hadronic coupling

T Pom = T Pom (x + , x -, s, -p 2 t )
x + , x + = light-cone momentum fractions of incoming q q pairs (also for val-val or val-sea)

Fourier transform:

TPom (x + , x -, s, b 2 ) = 1 4π 2 d 2 p t e -i p t b T Pom (x + , x -, s, -p 2 t )
Profile function:

G(x + , x -, s, b) = 1 x + x -s Im TPom (x + , x -, s, b)
Cross section for single Pom exchange for given x + , x - (with ŝ = x + x -s) (Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001) For pp, pA, AA:

σ 1Pom = 1 2ŝ 2ImT(x + , x -, s, 0) = 1 ŝ Im d 2 b e i 0 b TPom (x + , x -, s, b) so σ 1Pom = d 2 b G(x + , x -, s, b) => G is

Complete result

σ tot = ∑ cut P ∑ uncut P A B uncut -G cut G partial cross section σ K Dotted lines : Cut Pomerons
Graduate School KSETA Karlsruhe April 2019 # Klaus Werner # Subatech, Nantes156

σ tot = d 2 b A ∏ i=1 d 2 b A i dz A i ρ A ( (b A i ) 2 + (z A i ) 2 ) B ∏ j=1 d 2 b B j dz B j ρ B ( (b B j ) 2 + (z B j ) 2 ) ∑ m 1 l 1 . . . ∑ m AB l AB (1 -δ 0Σm k ) AB ∏ k=1 m k ∏ µ=1 dx + k,µ dx - k,µ l k ∏ λ=1 d x+ k,λ d x- k,λ AB ∏ k=1 1 m k ! 1 l k ! m k ∏ µ=1 G(x + k,µ , x - k,µ , s, | b + b A π(k) -b B τ(k) |) l k ∏ λ=1 -G( x+ k,λ , x- k,λ , s, | b + b A π(k) -b B τ(k) |) A ∏ i=1 1 -∑ π(k)=i x + k,µ, -∑ π(k)=i x+ k,λ α B ∏ j=1 1 -∑ τ(k)=j x - k,µ -∑ τ(k)=j x- k,λ α G(x + k,λ , x - k,λ , s, b k ) = N ∑ i=1 α i (x + k,λ x - k,λ ) β i G i , x + i = 1 -∑ π(k)=i x + k,µ , x - j = 1 -∑ τ(k)=j x - k,µ dσ = σ K dK = A ∏ i=1 T A (b A i ) B ∏ j=1 T B (b B j ) AB ∏ k=1 1 m k ! m k ∏ µ=1 G(x + k,µ , x - k,µ , s, b k ) ∑ r 1,1 ...r N,1 • • • ∑ r 1,AB ...r N,AB AB ∏ k=1 (-α 1 ) r 1,k r 1,k ! . . . (-α N ) r N,k r N,k ! A ∏ i=1 (x + i ) α remn ∏ π(k)=i Γ( β1 )(x + i ) β1 r 1,k . . . Γ( βN )(x + i ) βN r N,k Γ(1 + α remn )/Γ(1 + α remn + ∑ π(k)=i r 1,k β1 + . . . + r N,k βN ) B ∏ j=1 (x - j ) α remn ∏ τ(k)=j Γ( β1 )(x - j ) β1 r 1,k . . . Γ( βN )(x - j ) βN r N,k Γ(1 + α remn )/Γ(1 + α remn + ∑ τ(k)=j r 1,k β1 + . . . + r N,k βN A ∏ i=1 d 2 b A i B ∏ j=1 d 2 b B j AB ∏ k=1 m k ∏ µ=1 dx + k,µ dx - k,µ dK σ K : ∑ uncut P A B uncut -G cut G Dotted lines : Cut Pomerons Full lines : Uncut Pomerons
Step 1:

We compute partial cross sections σ K for particular configurations K via analytical integration K is a multi-dimensional variable for example for double scattering in pp with two Pomerons involved:

K = x + 1 , x - 1 , x + 2 , x - 2
Configurations K in AA scattering may be quite complex

Since we are dealing with multidimensional probability distributions, we have to employ very sophisticated

Markov chain techniques

to generate configurations according to Ω. We construct sequences of random configurations

K 1 , K 2 , K 3 , ...K t , ... such that f t (K t ) converges towards f (K) for t → ∞

like a physical process reaching eqilibrium

The law changes step by step ( f t → f t+1 ) :

f t+1 (K) = ∑ K ′ f t (K ′ ) p(K ′ → K) .
The transition probability p has to be chosen properly to assure convergence towards f Sufficient condition: detailed balance

f (K ′ ) p(K ′ → K) = f (K) p(K → K ′ ) ,
In detail : Consider a sequence of multidimensional random numbers (or better random configurations)

x 1 , x 2 , x 3 , ... with f t being the law for x t .

A homogeneous Markov chain is defined as

f t (x) = ∑ x ′ f t-1 (x ′ )p(x ′ → x).
with p(x ′ → x) being the transition probability (or matrix). Normalization :

∑ x p(x ′ → x) = 1.
Let f be the law for x t . The law for x t+1 is

∑ a f (a) p(a → b) .
One defines an operator T (comme Translation)

T f (b) = ∑ a f (a) p(a → b) .
So T f is the law for x t+1 when f is the law for x t .

A law is called stationary if T f = f .

Theorem: If a stationary law T f = f exists, then T k f 1 converges towards f (which is unique) for any f 1 .

So to generate random configurations according to some (given) law f , one constructs a T such that T f = f and then considers

f 1 → T f 1 → T 2 f 1 ...

and constructs the corresponding random configurations

One needs, for a given law f , to find a transition matrix p such that T f = f Sufficient condition (detailed balance):

f (a) p(a → b) = f (b) p(b → a) , Proof : T f (b) = ∑ a f (a) p(a → b) = ∑ a f (b) p(b → a) = f (b) ∑ a p(b → a)
= f (b) .

Metropolis algorithm

One can prove that a p(K → K ′ ) of the form

★ ✧ ✥ ✦ w(K → K ′ ) × min 1 , f (K ′ ) f (K) w(K ′ → K) w(K → K ′ )
with any choice of w fulfills detailed balance!! But still w needs to be chosen in an intelligent way ... even then long iterations, but the method allows to generate very complex configurations according to very complex laws

In detail: We define is solved by

p ab = p(a → b) , f a = f (a) .
u ab = F f b f a w ba w ab ,
with a function F with

F(z) F( 1 z ) = z . Proof : With z ≡ f b f a
w ba w ab one finds :

u ab u ba = F(z) F( 1 z ) = z = f b f a w ba w ab .
The F according to Metropolis is

F(z) = min(z, 1) .
One finds indeed

F(z) F( 1 z ) = min(z, 1) min( 1 z , 1) = z/1 pour z ≤ 1 1/ 1 z pour z > 1 = z .
So one proposes for each iteration a new configuation b according to some w ab , and accepts it with probability

u ab = min f b f a w ba w ab , 1 .
or (in short):

Transition probability: Long iterations, but allows to generate very complex configurations according to very complex laws.

✬ ✫ ✩ ✪ w(K → K ′ ) proposal × min 1 , f (K ′ ) f (K) w(K ′ → K) w(K → K ′ )

Glauber and Gribov Regge

Glauber approach (essentially geometry)

Nucleus-nucleus collision A + B :

Sequence Define integral over nuclear density for each nucleus:

T A/B (b ′ ) = ρ A/B (b ′ , z)dz,
and the "thickness function"

T AB (b) = T A (b ′ )T B (b ′ -b)d 2 b ′ x y b b' b'-b
Probability of interaction (for ρ A and ρ B normalized to 1) P = T AB (b) σ N N Having AB possible pairs: probability of n interactions :

P n = AB n P n (1 -P) AB-n
Probability of at least one interaction (given b):

AB ∑ n=1 P n = 1 -P 0 = 1 -(1 -P) AB
And correspondingly the AB cross section :

σ AB = 1 -(1 -P) AB d 2 b.
(called optical limit).

Probability of an interaction explicitely:

dσ AB d 2 b = 1 -(1 -T AB (b) σ N N ) AB .
Glauber MC formula (with

σ N N = f (b)d 2 b): dσ AB d 2 b = 1- A ∏ i=1 d 2 b A i T A (b A i ) B ∏ j=1 d 2 b B j T B (b B j ) AB ∏ k=1 (1 -f ) .
In the MC version, one extracts N coll , N particip , and one usually employs a "wounded nucleon approach" Does this make sense? 

Gribov Regge for pp, no energy sharing

In the GR framework, we obtain (neglecting energy sharing)

dσ pp d 2 b = ∑ m>0 ∑ l W(b) m m! {-W(b)} l l! = ∑ m>0 W(b) m m! e -W(b) = ∑ m W(b) m m! e -W(b) -e -W(b) So dσ pp d 2 b = 1 -e -W(b) = f (b)
with f (b) being the probability of an interaction at given b.

Gribov Regge for A+B scattering

In the GR framework, defining

dT AB := A ∏ i=1 d 2 b A i T A (b A i ) B ∏ j=1 d 2 b B j T B (b B j ),
we obtain (neglecting energy sharing): b) being the probability of an interaction in pp (with

dσ AB d 2 b = dT AB ∑ m 1 ... ∑ m AB ∑ m i =0 AB ∏ k=1 W(b k ) m k m k ! e -W(b k ) ) dσ AB d 2 b = dT AB ∑ m 1 ... ∑ m AB ∑ m i =0 AB ∏ k=1 W(b k ) m k m k ! e -W(b k ) ) = dT AB ∑ m 1 ... ∑ m AB AB ∏ k=1 W(b k ) m k m k ! e -W(b k ) ) - AB ∏ k=1 e -W(b k ) = dT AB AB ∏ k=1 ∑ m k W(b k ) m k m k ! exp(W(b k ) e -W(b k ) ) - AB ∏ k=1 e -W(b k ) So σ AB d 2 b = 1 -dT AB AB ∏ k=1 e -W(b k ) With f = 1 -e -W(
σ pp = f (b)d 2 b),
we get the Gribov-Regge result

σ AB d 2 b = 1 - dT AB AB ∏ k=1 (1 -f )
which corresponds to "Glauber Monte Carlo".

So everything OK?

Even if the cross section formulas in GR and GMC are the same, particle production is done in a fundamentally different fashion

In Glauber -one has (usually) a hard component (∼ N coll )

and a soft one (∼ N part , wounded nucleons)

In GR (EPOS)

-remnants contribute only at large rapidities, -otherwise everything is coming from "cut Pomerons" associated to N N scatterings.

Gribov-Regge and Factorization

Factoriztion says that the pp inclusive cross section can be written as

∑ kl dxdx ′ dp 2 ⊥ f k (x, M 2 F ) f l (x ′ , M 2 F ) dσ kl Born dp 2 ⊥ (xx ′ s, p 2 ⊥ ),
with "parton distribution functions" obtained from DIS (ep scattering).

Not obvious in the EPOS GR framework, but one can prove that in the basic approach factorization holds (Phys. Rept.

(2001) p93)

Electron-proton scattering

F 2 vs x Q 2 =1.5 Q 2 =2.5 Q 2 =3.5 Q 2 =5 Q 2 =6.5 Q 2 =8.5 Q 2 =12 Q 2 =15 Q 2 =20 Q 2 =25 Q 2 =35 Q 2 =45 Q 2 =60 Q 2 =90 Q 2 =120 Q 2 =150 Q 2 =200 Q 2 =250 Q 2 =350 Q 2 =500 10 -4 10 -1 x Q 2 =650 10 -4 10 -1 x Q 2 =800 10 -4 10 -1 x Q 2 =1200 10 -4 10 -1 x Q 2 =2000 10 -4 10 -1 x Q 2 =5000
We can compute

F 2 = ∑ k e 2 k x f k (x, Q 2 ) with x = x B = Q 2 2pq
in the EPOS framework

Compare with parton model calculation using CTEQ PDFs for pp at 7 TeV 

Why does factorization work ?

Easy to see in the GR picture without energy conservation, using simple assumptions.

Consider multiple scattering amplitude iT = ∑ ∏ iT P cross section: sum over all cuts.

+ + +

For each cut Pom:

1 i discT P = 2ImT P ≡ G
For each uncut one:

iT P + {iT P } * = i (i ImT P ) + {i (i ImT P )} * = -2ImT P ≡ -G + + +
Inclusive particle production cross section σ incl : Assume that each cut Pomerons produces N particles, an uncut one nothing.

Contribution to the inclusive cross section for n Pomerons (k refers to the cut Pomerons):

σ (n) incl ∝ n ∑ k=0 kN G k (-G) n-k n k ∝ n ∑ k=0 (-1) n-k k × n k ∑ n k=0 (-1) n-k k × n k : For n = 2 : +0 × 1 -1 × 2 + 2 × 1 = 0

No contribution !

For n = 3 :

-0 × 1 + 1 × 3 -2 × 3 + 3 × 1 = 0
No contribution either ! simple diagram even in case of multiple scattering corresponds to factorization:

σ incl = f ⊗ σ elem ⊗ f
The F 2 discussed earlier: Half of this diagram

Since it is known that factorization works, the ansatz

σ incl = f ⊗ σ elem ⊗ f
may be used as starting point, with f taken from DIS (electron-proton).

To generate partons, for a Pomeron with given x + , x -, s , and b and given "incoming partonic constituents" f proj and f targ ( f = q q or q q 2 ) Consider G = ∑ G i and generate the Pomeron type i accordingly

(using G = G(x + , x -, s, b))
If i=soft => two simple strings, with end partons f proj and f targ In all other cases we have (with known g ± i/j )

G i = dz + dz -g + i (z + )g - j (z -) 1 ŝ ImT ij ladder (ŝ)
with ŝ = x + x -z + z -s being the total energy of the ladder.

The integrand provides the probability distribution to generate z + , z -, i, and j, and then we know the energy squared ŝ as well as the end partons i, j of the ladder

Parton saturation

The arguments Q 1 and Q 2 in σ hard represent lower limits for the parton evolutions.

Taking 

Q 1 = Q 2 = Q 0 = const (

The parton ladder cross section

Key part of the approach: compute the inclusive partonparton scattering cross section

σ ij hard (s, Q 2 1 , Q 2 
2 ), which contains a parton evolutions from both sides from Q 2 i to µ 2 F , and an elementary Born process 1 + 2 → 3 + 4, with the outgoing momenta being integrated over

Kinematic variables:

the total center of mass energy s lad of the ladder the virtualities Q 2 1 and Q 2 2 at the ends, the Mandelstam variables s and t concerning the Born process, the factorization scale µ 2 F , and (related to the latter) the transverse momentum squared p 2 t of one of the outgoing partons. 

Partial ladders:

These cross sections not only used for the complete ladder but also for partial ladders, corresponding to the situation where several partons have already been emitted on either side.

Important for parton generation

Q 2 s p t t 2 F lad ... ... Q' 2 s' µ 2
Ladder cross section:

σ ij hard (s, Q 2 1 , Q 2 2 ) = ∑ kl ∑ mn dxdx ′ dp 2 t ×E ik QCD (x, Q 2 1 , µ 2 F ) E jl QCD (x ′ , Q 2 2 , µ 2 F ) × dσ kl→mn Born,K dp 2 t (xx ′ s, p 2 t ) ×Θ(µ 2 F -max{Q 2 1 , Q 2 2 }) ... ... Q 2 1 Q 2 2 F µ 2 p t 2 i j k l m n
DGLAP evolution function:

E ik QCD x, Q 2 1 , µ 2 F = µ 2 F Q 2 1 dQ 2 Q 2 ∆ i (Q 2 1 , Q 2 ) ∑ a dz z α s 2π P a i (Q 2 , z) E ak QCD x z , Q 2 , µ 2 F +∆ i (Q 2 1 , µ 2 F )δ(1 -x)δ ik F µ 2 Q 2 1 ... k i a Q 2 with E ik QCD x, Q 2 1 , Q 2 1 = δ ik δ(1 -x)
Sudakov:

∆ i (Q 2 1 , Q 2 2 ) = exp -∑ j Q 2 2 Q 2 1 dq 2 q 2 1-ǫ ǫ dz α s 2π P j i (q 2 , z)
probability of no emission of resolvable partons between Q 2 1 and Q 2 2 .

Parton flavors: gluons (g), light quarks (q), charm quarks (c), botton quarks (b) q, c, b refer to quarks or antiquarks, the notion q means in the following antiparticle to q ... gg, gq,qg,qq,q q,qq ′ gc,cg,...,qc,cq, ...,cc,c c,... 

σ
p 2 t = Fac(µ 2 F ) = κ F µ 2 F -λ F M 2 with M being the largest mass involved in the Born process ... ... Q 2 1 Q 2 2 F µ 2 p t 2 i j k l m n
The DGLAP evolution provides limits:

µ 2 F ≥ Q 2 min = max Q 2 1 , Q 2 2 which amounts to p 2 t ≥ p 2 t min = Fac Q 2 min
depending on the masses involved in the Born (not depending on i, j)

... Many quantities depend on the Born process masses, like the Mandesstam t expressed in terms of p 2 t :

|t| = 1 2 W + 4m 2 1 W ′ + 4m 2 3 -2(m 2 1 + m 2 3 ) ∓ √ W W ′ -4p 2 t with W = 4| p| 2 = s -2 (m 2 1 + m 2 2 ) + 1 s (m 2 1 -m 2 2 ) 2 , W ′ = 4| p ′ | 2 = s -2 (m 2 3 + m 2 4 ) + 1 s (m 2 3 -m 2 4 ) 2 .
Or (very important) the limits

|t| min = 1 2 W + 4m 2 1 W ′ + 4m 2 3 -2(m 2 1 + m 2 3 ) - √ W W ′ -4p 2 t min
and

|t| max = 1 2 W + 4m 2 1 W ′ + 4m 2 3 -2(m 2 1 + m 2 3 ) ,
used for the t integrations, depend on the masses.

Need to be treated (and simplified) for each class.

The cross section can then be written as

σ ij hard (s, Q 2 1 , Q 2 2 ) = ∑ K ∑ kl ∑ mn dxdx ′ dp 2 t ×E ik QCD (x, Q 2 1 , µ 2 F ) E jl QCD (x ′ , Q 2 2 , µ 2 F ) × dσ kl→mn Born,K dp 2 t (xx ′ s, p 2 t )Θ(µ 2 F -max{Q 2 1 , Q 2 2 })
Within {...}, we can use known kinematic relations for the corresponding class. 

σ ij hard (s, Q 2 1 , Q 2 2 ) = ∑ K ∑ kl ∑ mn dxdx ′ dp 2 t dσ kl→mn Born,K dp 2 t (xx ′ s, p 2 t ) ×E ik QCD (x, Q 2 1 , µ 2 F ) E jl QCD (x ′ , Q 2 2 , µ 2 F ), σ ij ord (s, Q 2 1 , Q 2 2 ) = ∑ K ∑ k ∑ mn dxdp 2 t dσ kj→mn Born,K dp 2 t (xs, p 2 ⊥ ) ×E ik QCD (x, Q 2 1 , µ 2 F ) ∆ j (Q 2 2 , µ 2 F ), σ ij Born (s, Q 2 1 , Q 2 2 ) = ∑ K ∑ mn dp 2 t dσ ij→mn Born,K dp 2 t (s, p 2 ⊥ ) ∆ i (Q 2 1 , µ 2 F ) ∆ j (Q 2 2 , µ 2 F ),
Inserting the integral equation for E QCD into the σ hard formula, we get

σ ij hard (s, Q 2 1 , Q 2 2 ) = ∑ m Q 2 ≥Q 2 1 dQ 2 Q 2 dz ×∆ i (Q 2 1 , Q 2 ) α s 2π P m i (Q 2 , z) ×σ mj hard (zŝ, Q 2 , Q 2 2 ) +σ ji ord (s, Q 2 1 , Q 2 2 ) Q 2 2 F µ 2 p t 2 ... j k l m n ... i Q 2 m Q 2 1
Emission probability (if there is still an emission)

dQ 2 Q 2 dz ×∆ i (Q 2 1 , Q 2 ) α s 2π P m i (Q 2 , z) ×σ mj hard (zŝ, Q 2 , Q 2 2 ) Q 2 2 F µ 2 p t 2 ... j k l m n ... i Q 2 m Q 2 1 σ mj hard

takes care of appropriate evolution, relating factorization scale and transverse momenta

To decide if there is still an emission (or the cascade is finished), we need σ ord .

If we define: emission on the upper side are forward (FW) emissions, emissions on the other side are backwards (BW) emissions, we have :

σ ij ord (ŝ, Q 2 1 , Q 2 2 ) referring to FW emissions, no BW emissions σ ji ord (ŝ, Q 2 2 , Q 2 1 ) referring to BW emissions, no FW emissions
Correspondingly there is still a FW emission to be done, with the probability

prob(FW) = σ ij hard (s, Q 2 1 , Q 2 2 ) -σ ji ord (ŝ, Q 2 2 , Q 2 1 ) σ ij hard (s, Q 2 1 , Q 2 2 )
, otherwise the FW space-like cascade is finished, no more emission, and one turns to the BW emissions.

To get the law for ordered (here FW) parton emissions, we insert the integral equation for E QCD into the σ ord formula, and we get

σ ij ord (s, Q 2 1 , Q 2 2 ) = ∑ m Q 2 ≥Q 2 1 dQ 2 Q 2 dz ×∆ i (Q 2 1 , Q 2 ) α s 2π P m i (Q 2 , z) ×σ mj ord (zŝ, Q 2 , Q 2 2 ) +σ ij Born (s, Q 2 1 , Q 2 2 ) F µ 2 p t 2 j k l m n ... i Q 2 m Q 2 1 Q 2 2
The corresponding formula for BW emissions

σ ji ord (s, Q 2 2 , Q 2 1 ) = ∑ m Q 2 ≥Q 2 2 dQ 2 Q 2 dz ×∆ j (Q 2 2 , Q 2 ) α s 2π P m j (Q 2 , z) ×σ mi ord (zŝ, Q 2 , Q 2 1 ) +σ ji Born (s, Q 2 2 , Q 2 1 ) i k l m n ... j Q m Q 2 1 2 2 2 p µ 2 F 2 t

Q

So after having finished the FW emissions, the emission probability for BW emissions is (if there is still an emission)

dQ 2 Q 2 dz ×∆ j (Q 2 2 , Q 2 ) α s 2π P m j (Q 2 , z) ×σ mi ord (zŝ, Q 2 , Q 2 1 ) i k l m n ... j Q m Q 2 1 2 2 2 p µ 2 F 2 t Q σ mi ord

takes care of appropriate evolution, relating factoriztion scale and transverse momenta

Correspondingly there is still a BW emission to be done, with the probability

prob(BW) = σ ji ord (s, Q 2 2 , Q 2 1 ) -σ ij Born (ŝ, Q 2 1 , Q 2 2 ) σ ji ord (s, Q 2 2 , Q 2 1 )
otherwise the BW space-like cascade is finished, no more emission, and one turns to the Born process.

Heavy quark kinematics

Condition in TLC splitting:

g → Q Q requires Q 2 > (2m Q ) 2
Condition in SLC splitting:

p q k 4-momenta: H Q p a i r
Energy-momentum conservation: q = pk Technicalities: We suppose p = (E, 0, 0, E).

We define

n = (1/2E, 0, 0, -1/2E), k t = (0, k x , k y , 0).
We get

p 2 = n 2 = pk t = nk t = 0, pn = 1. → k = x p + k 2 -k 2 t 2x n + k t .
We define

Q 2 = -k 2 .
The virtuality of the TL parton is assumed to be m 2 Q , so

q 2 = k 2 -2pk = -Q 2 + Q 2 + k 2 t x = m 2 Q (using Q 2 = -k 2 ) → -k 2 t =Q 2 -xQ 2 -xm 2 Q > 0 which implies x < Q 2 Q 2 + m 2 Q , suppressing large x.
As starting virtuality of the TLC, we use

Q 2 ini = (αp t ) 2 with a coefficient α in the range 1-2.
Our favorite value is α = 2 which is compatible with e + e -.

In particular B-meson data in pp favor α = 2, otherwise there is little production during the TLC, and spectra are too low compared to data. Two kinky relativistic strings (at least) Theoretical framework: Classical string theory Nambu, Scherk, Rebbi ... 1969-1975reviewed in PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001 String: two-dimensional surface

Final remark: In EPOS all Pomerons are "equal"

Q Q Q Q Q Q Born SLC TLC SLC TLC

HF production may occor in any of the ladders during SLC

Q Q Q Q Q Born SLC Q
x(σ, τ) in Minkowski space Action S = Ldτdσ
The Lagrangian is obtained by demanding gauge invariance of the action => Nambu-Goto Lagrangian:

L = -κ |det g|
with κ being the string tension, and with the metric

g ij = ∂x µ ∂ξ i ∂x µ ∂ξ j (using ξ 1 = σ, ξ 2 = τ).
Gauge invariance:

g ij = ∂x µ ∂ξ i ∂x µ ∂ξ j = ∂ξ ′m ∂ξ i ∂x µ ∂ξ ′m ∂x µ ∂ξ ′n
∂ξ ′n ∂ξ j so (with M being Jacobien of ξ ′ (ξ)):

g ij = M mi g ′ mn M nj → g = M T g ′ M So which gives | det g| = | det g ′ || det M| Using | det g| = | det g ′ || det M| and in addition d 2 ξ ′ = | det M|d 2 ξ, we get | det g|d 2 ξ = | det g ′ |d 2 ξ ′ = gauge invariance!!
With "dot" and "prime" referring to the partial derivatives with respect to σ and τ :

g = x ′ x ′ x ′ ẋ ẋx ′ ẋ ẋ we get L = -κ |det g| = -κ (x ′ ẋ) 2 -x ′2 ẋ2
Euler-Lagrange equations of motion:

∂ ∂τ ∂L ∂ ẋµ + ∂ ∂σ ∂L ∂x ′ µ = 0.
We use the gauge fixing

x ′2 + ẋ2 = 0 and x ′ ẋ = 0, which provides a very simple equation of motion, namely a wave equation,

∂ 2 x µ ∂τ 2 - ∂ 2
x µ ∂σ 2 = 0, with the boundary conditions:

∂x µ /∂σ = 0, σ = 0, π. Solution x µ (σ, τ) = 1 2 f µ (σ + τ) + f µ (σ -τ) + σ+τ σ-τ g µ (ξ)dξ .
We have

x µ (σ, τ = 0) = f µ (σ) and ẋµ (σ, τ = 0) = g µ (σ)
Strings are classified according to the functions f and g. We take f µ = 0 (no initial extension)

We also consider only strings with a piecewise constant initial velocity g, which are called kinky strings.

This string is characterized by a sequence of σ intervals [σ k , σ k+1 ], and the corresponding constant values (say v k ) of g in these intervals.

An electron-positron event (or a parton ladder) represents a sequence of partons of the type qg...gq, with soft "end partons" q and q, and hard inner gluons g.

The mapping "partons →string" is done such that we identify a parton sequence with a kinky string by requiring "parton = kink", with σ k+1σ k = energy of parton k and v k = momentum of parton k / E k .

In the following figure, we show the evolution of a string generated in electron-positron annihilation (4 internal kinks). τ σ τ = 0 q g q dA A string break is realized via quark-antiquark or diquark-antidiquark pair production with probability

p i(j) = 1 Z exp -π M 2 i(j) κ with M ij = M i + M j + c i c j M 0
Transverse momenta p t andp t are generated at each breaking, according to

f (k) ∝ e -| p t |/2 pt , (1) 
with a parameter pt .

which expand and break via the production of quark-antiquark pairs (Schwinger mechanism) the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently Some string pieces will constitute bulk matter, others show up as jets Four equations concerning energy-momentum conservation:

∂ ν T µν = 0.
The energy-momentum tensor T µν is the flux of the µth component of the momentum vector across a surface with constant ν coordinate (using fourvectors)

We have 4 + n f equations, so we should express T in terms of 4 quantities (unknowns)

and/or find additional equations which means additional assumptions

Beyond ideal (viscous hydro):

The energy-momentum tensor may be expressed via a systematic expansion in terms of gradients (of ln ε and u):

T µν = T µν (0) + T µν (1) + T µν (2) + ...,
with the "equilibrium term" T µν (0)

Mueller-Israel-Steward (MIS) approach (second order + shear stress tensor and bulk pressure dynamical quantities, governed by relaxation equations)

Freeze out happens at a hypersurface Σ (constant energy density).

Cooper-Frye hadronization amounts to calculating

E dn d 3 p = dΣ µ p µ f (up),
f is the Bose-Einstein or Fermi-Dirac distribution (in case of ideal hydro).

Hypersurface defined by T = T H (for given T H ).

Hyper-surface: x µ = x µ (τ, ϕ, η):

x 0 = τ cosh η, x 1 = r cos ϕ, x 2 = r sin ϕ, x 3 = τ sinh η, with r = r(τ, ϕ, η).
The hypersurface element is

dΣ µ = ε µνκλ ∂x ν ∂τ ∂x κ ∂ϕ ∂x λ ∂η dτdϕdη, (with ε 0123 = 1)
Computing the derivatives, one gets: Momentum and charges are conserved :

dΣ 0 = -
Σ FO dP µ = P µ ini , Σ FO dQ A = Q A ini r τ
These effective masses we decay microcanonically:

dP = C vol C deg C ident × δ(E -ΣE i ) δ(Σ p i ) ∏ A δ Q A ,Σq A i n ∏ i=1 d 3 p i , C vol = V n (2πh) 3n , C deg = n ∏ i=1 g i , C ident = ∏ α∈S 1 n α ! ,
(n α is the number of particles of species α, S is the set of particle species)

Different from decay rate of a massive particle (using LIPS), where asymptotic states are defined over an infinitely large volume 

Hagedorn integral method, optimized

The phase-space integral:

φ NRPS (M, m 1 , . . . , m n ) = (4π) n n ∏ i=1 p 2 i δ(E - n ∑ i=1 E i ) W(p 1 , . . . , p n ) n ∏ i=1 dp i ,
with the "random walk function" W given as

W(p 1 , . . . , p n ) := 1 (4π) n δ n ∑ i=1 p i × p i p i n ∏ i=1 dΩ
We obtain (Werner, Aichelin 94)

φ(M, m 1 , . . . , m n ) = 1 0 dr 1 . . . 1 0 dr n-1 ψ(r 1 , ..., r n-1 ) ψ = (4π) n T n-1 (n -1)! n ∏ i=1 p i E i W (p 1 , . . . , p n ), with z i = r 1/i i , x i = z i x i+1 , s i = x i T, t i = s i -s i-1 , E i = t i + m i , T = M -∑ n i=1 m i

Suitable for MC

Approximation is stricly true for small λ, but for large n it provides a good approximation over the whole range of λ => estimate W ≈ 4πP 2 -3/2

In order to get more precise results, we define With only six nodes we get excellent results.

Grand canonical limit

For very large M we should recover the "grand canonical limit" for single particle spectra:

f k = g k V (2πh) 3 exp - E k T ,
The average energy is

Ē = g k V (2πh) 3 ∑ k ∞ 0 E k exp - E k T 4π p 2 dp
Changing variables via E k dE k = pdp, and using More and more diagrams/combinations contribute, the coefficients grow, the series diverge There are tools to deal with that: Resurgence theory => go beyond the case of "small gradients" (close to equilibrium) Systematic treatment of divergent power series, methods to include exponential corrections ("instantons").

K 1 (z) = z ∞ 1 exp(-zx) √ x 2 -1dx, and 3 K 2 (z) = z 2 ∞ 1 exp(-zx) √ x 2 -1 3 dx, => Ē = 4πg k V ( 

Covariant derivative

Symbol ∂ ;i (normal partial derivative ∂ i ) Scalar function:

∂ ;i f = ∂ i f
Basis vectors e j : ∂ ;i e j = Γ k ij e k Any vector (using product law): ∂ ;i u j e j = ∂ ;i u j e j + u j ∂ ;i e j = ∂ i u j e j + u j Γ k ij e k ∂ i u j + Γ j ik u k e j ∂ ;i u j 

Milne coordinates

Four-vectors (x 0 , x 1 , x 2 , x 3 ) may be written as (τ cosh η, x 1 , x 2 , τ sinh η)

defining Milne coordinates τ, x 1 , x 2 , η.

The natural basis vectors e λ (with components being ∂x µ /∂x ′λ ):

    cosh η 0 0 sinh η     ,     0 1 0 0     ,     0 0 1 0     ,     τ sinh η 0 0 τ cosh η    
The Christoffel symbols with exponential corrections e -maz , sometimes referred to as "instantons", and with perturbative series f m , whose coeficients are obtained by substituting the trans-series into the DE. This gives first a series of DEs,

f ′ 0 -a f 0 = - 1 z , f ′ 1 + 2 z 2 f 0 f 1 = 0, f ′ 2 + a f 2 + 2 z 2 f 0 f 2 = - f 2 1 z 2 ,
which are then solved one by one.

The inverse Borel transform will be unique.

In general, the inverse Borel transform is not known in closed form, we only know the coefficients of the power series, nevertheless convergent within some radius.

But usually one need an anlytical continuation of the Borel transform f B (x) = ∑ ∞ n=0 B n x n . A standard procedure is the use of Padé approximants

f PB = N(x) D(x) = ∑ K/2 i=0 c i x i 1 + ∑ K/2 i=1 d i x i
, where the coefficients are determined via

f B (x) D(x) = N(x),
order by order, up to order K.

Example

f B = 1 + x/2 1 + 2x = 1 - 3 4
x + 39 32 x 2 + ... The Padé approximant for K = 2:

f PB = 7x/8 1 + 13x/8 .

Exact function (red dashed line), its Padé approximant (triangles), and the second order power series (squares).

Crucial are the singularities of f PB (x) for computing the inverse Borel transform. The function f PB (x) has typically singular terms like

(a -x) γ
The inverse Borel transform of such a term is

f iPB (z) = ∞ 0
e -zx+iπγ+γ ln(x-a) dx.

For x > a the integrand is e -zx+iπγ+γ ln(x-a)+γk2πi , with k depending on the Riemann sheet the integration is performed.

So we have an ambiguity of the form e (2k+1)iπγ ∞ a e -zx (xa) γ dx.

For large z, the ambiguity is given as e (2k+1)iπγ Γ(γ + 1) × e -za z -γ-1 . This means, that terms of the form e -za z -γ-1 are missing, not captured by a simple power series => Need more general ansatz ( f 0 power series in 1 z )

f (z) = c e -za z -γ-1 f 0 (z)

The inverse Borel transform is 

f iB (w) = w

  Gribov-Regge Theory of multiple scattering. pp = multiple exchange of "Pomerons" (with amplitudes based on Regge poles) 1980-1990: pQCD processes added into GRT scheme (Capella) 1990: M.Braun, V.A.Abramovskii, G.G.Leptoukh: problem with energy conservation (not done consistently) 2001: H.J.Drescher, M.Hladik, S.Ostapchenko, T. Pierog, and K. Werner, Phys. Rept. 350, p93: Marriage pQCD + GRT, with energy sharing (NEXUS) s versus pT (high compared to low multiplicity) in pPb (left) similar to PbPb (right) ALICE (2013) arXiv:1307.6796 ALICE (2013) arXiv:1307.5530 Phys. Rev. Lett. 111, 222301 (2013) ∆φ = 0 and ∆φ = π (even for big ∆η) ∆φ = 0, and ∆φ = 2 3 π, and ∆φ = 4 3 π (even for large ∆η) In general, superposition of several eccentricities ε n , ε n e inψ PP n = -dxdy r 2 e inφ e(x, y) dxdy r 2 e(x, y) Particle distribution characterized by harmonic flow coefficients v n e inψ EP n = dφ e inφ f (φ) At φ = 0: Here, v 2 and v 3 non-zero The ridge ∝ 1 + 2v 2 cos(2φ) + 2v 3 cos(3φ) in simulations in pPb (and even pp) Central -peripheral (to remove jets) Phys. Lett. B 726 (2013) 164-177

  The mapped trajectory γ ′ = M(γ) is given as z = exp(w) = exp(x) exp(iy) => A circle with start and end point z 1 = z 2 = -e x

=

  Feynman rules : Draw a dashed line from top to bottom Use "normal" Feynman rules to the left Use the complex conjugate expressions to the right For lines crossing the cut: Replace propagators by mass shell conditions 2πθ(p 0 )δ(p 2m 2 ) Cutting a diagram representing elastic scattering corresponds to inelastic scattering 2 Cutting diagrams is useful in case of substructures: products of cut/uncut subdiagrams => Gribov-Regge approach of multiple scattering What are the blocks, called Pomerons? = Pomeron = parton ladders cut Pomerons => open ladder => kinky string

Donnatchie-

  photon splits into q-qbar

  Very small ln Q 2 : No perturbative treatment! => use general features of the T-matrix. Let α(s) be the rightmost Regge pole of the partial wave amplitude :

  models with assumed initial conditionsIg Cascade means: Successive scatterings a + b → c + d according to known cross sections The Gribov-Regge approach as implemented in EPOS will de discusses in very much detail later ... first some remarks about the others DIPSY (from Christian Bierlich) Initial nucleon: Three dipoles LL BFKL in b-space + corrections: A dipole ( x, y) can emit a gluon at position z with probability (P) per unit rapidity (Y)

  And for symmetry reasons we have of course a sea-val PomeronT val-sea (s, t) Details later ... but one important remark:

  probability of interaction at given b (if ≤ 1) If > 1 : unitarity problem => multiple scattering 4.3 Multiple scattering Be T the elastic (pp,pA,AA) scattering T-matrix => 2s σ tot = 1 Pom × ... × iT Pom } using "cutting rules" : A "cut" multi-Pomeron diagram amounts to the sum of all possible cuts + + + Example: Two sea-sea (parton ladder + soft), we have (first diagram) notation for "cut" and "uncut" Pomeron one gets ...

  Take p ab = w ab u ab . (a = b) . with w ab : proposal matrix (∑ b w ab = 1) u ab : acceptance matrix (u ab ≤ 1) This is NOT the simple acceptance-rejection method!! Detailed balance: f a p ab = f b p ba amounts to f a w ab u ab = f b w ba u ba ,

  Configuration lattice, define w ab such that b changes w.r.t. a only on one lattice site (like Ising model Metropolis)

  of independent binary nucleon-nucleon collisions Nucleons travel on straight-line trajectories The inelastic nucleon-nucleon cross-section σ N N is independent of the number od NN collisions Monte Carlo version: Two nucleons collide if their transverse distance is less than √ σ N N /π . Analytical formulas for A + B scattering: Be ρ A and ρ B the (normalized nuclear densities), and b = (b x , b y ) the impact parameter x y b

  1 m 2 m 3 m 4 ", referring to the four masses involved in the Born process 1 + 2 → 3 + 4 : m 0 m 0 m 0 m 0 , m 0 m c m 0 m c , m 0 m 0 m c m c , ... (using m 0 = 0 for light partons)

  Need to be more specific now: σ hard : Possible emissions on both sides σ ord : Possible emissions on proj side, none on target side σ Born : No emissions on either side

  high pt escape => corona, the others form the core = initial condition for hydro depending on the local string density

  x µ (τ,ϕ, η) :x 0 = τ cosh η, x 1 = r cosϕ, x 2 =r sinϕ, x 3 = τ sinh η with r = r(τ, ϕ, η), representing the FO condition.

F

  

  of an object of mass M and volume V should converge (for M → ∞) to the GC sin-get the equations of relativistic hydrodynamics is via a formal gradient expansion of T µν (in terms of gradients (of ln ε and u)The hydrodynamic gradient expansion has (probably) a vanishing radius of convergence Typical situation (in different fields):

  µ g ρν + ∂ ν g ρµ -∂ ρ g µν being non-zero: 0 + 0 -∂ τ g ηη = τWe get for T µν = (ǫ + p)u µ u νpg µν :T ττ = (ǫ + p)p = ε, T xx = T yy = -p, T ηη = p τ 2Consider equation for µ = τ:∂ ;ν T τν = ∂ ν T τν + Γ τ νλ T νλ + Γ ν νλ T τλ = ∂ τ T ττ + τT ηη + -maz f m (z)

  x)e -wx dx.Analytic continuation of f B via Padé approximants having a sequence of singularities f PB (x) = h 0 (x) + (ax) γ h 1 (x) + (2ax) 2γ h 1 (x) + ... These branch-cut singularities => ambiguities (for large w) of the form w -mγ e -maw

  

  

  

Theoretical justification? ... based on relativistic quantum mechanical scattering theory, compatible with QCD => Gribov-Regge approach

  

as in earlier versions) leads to a power law increase of cross sections vs energy (=> wrong) because non-linear effects like gluon fusion are not taken into account
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	Solution:
	nucleon
	ladder partons

Instead of a constant Q 0 , use a dynamical saturation scale for each Pomeron: Q

  

s = Q s (N IP , s

IP ) with N IP = number of Pomerons connected to a given Pomeron (whose probability distribution depends on Q s ) s IP = energy of considered Pomeron nucleons nucleons

  

	Parton distributions	
	dn/dp t	
	small Q s	
	large Q s	
	p	t
	=> Increase of p t with multiplicity

variation of proton spectra => flow helps ALICE: compare pt spectra for identified particles in different mul
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	ratio ratio	8 1 1.2 1.4 1.6 pt p EPOS3.074 CMS (in 2.8 < η lab < 5.1) From R. Preghenella, ALICE, talk Trento workshop 2013 dn/dptdy tiplicity classes: 0-5%,...,60-80% Useful : ratios (K/pi, p/pi...) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ratio K / π pPb 5.02TeV data ALICE 0-5% 60-80% 0.2 0.4 0.6 0.8 1 1.2 ratio Λ / Ks pPb 5.02TeV data ALICE 0-5% 60-80% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 p t (GeV/c) K / π pPb 5.02TeV data ALICE QGSJETII04 0-5% 60-80% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 p t (GeV/c) ratio K / π pPb 5.02TeV data ALICE AMPT 0-5% 60-80% 0.2 0.3 0.4 0.5 0.6 0.7 K / π pPb 5.02TeV data ALICE EPOS LHC 0.2 0.3 0.4 0.5 0.6 0.7 ratio K / π pPb 5.02TeV data ALICE EPOS3.074 Strong -0 0 1 2 3 4 5 6 p t (GeV/c) 0 0 1 2 3 4 5 6 Significant variation of lambda/K -like in PbPb 0 0 1 2 3 4 5 6 p t (GeV/c) 0 1 2 3 4 5 p t (GeV/c) 6 0 p t (GeV/c) 0.1 0-5% 60-80% 0-5% 0.1 60-80%

No multiplicity dependence (not trivial to get the peripheral right)

  

				2				
	ratio	1 1.2 v 2 in PbPb Λ / Ks pPb 5.02TeV data ALICE	v	0.2	ratio	1 1.2		data ALICE Λ / Ks pPb 5.02TeV 0-10%	10-20%
		0.4 0.6 0.8 with EPOS QGSJETII04 from central to peripheral simulations	v 2	0.2 0		0.4 0.6 0.8		AMPT 20-30%	30-40%
		0.2	0-5% 60-80%				0.2		0-5% 60-80%
	ratio	0 0.4 0.6 0.8 1 1.2 Changes 0 1 2 Λ / Ks pPb 5.02TeV 3 4 p t (GeV/c) 5 6 data ALICE EPOS LHC 2 v 0.2 0 smoothly towards Flow is peripheral 0 v 2 needed	ratio	0 0.4 1 1.2 0.8 0.6	0	1 Λ / Ks pPb 5.02TeV 2 3 4 p t (GeV/c) 5 6 data ALICE EPOS3.074 40-50% 50-60% 60-70%
		0 0.2 even for 0 1 => peripheral 2 smoothly Significant multiplicity dependence. Flow helps 3 4 5 6 p t (GeV/c) 0-5% 60-80% 0 0.2 0 1 2 0.2 p t (GeV/c) 3 physics changes 0 0 10 0 collisions!	4	5 0-5% 60-80% p t (GeV/c) ATLAS 6 p t (GeV/c) 10

(see Becattini et al, EPJC35:243-258,2004). But E i = p 2 i + m 2 i Hagedorn integral method can be made very efficient at

  

	large n, but becomes VERY time consuming at small
	n
	LIPS method very fast for small n,
	gets time consuming at large n

around n ≈ 30 -40 both methods work (=> checks)

  

  Tensor rank 2 : ∂ ;i (t mn e m e n ) = (∂ ;i t mn ) e m e n + t mn (∂ ;i e m ) e n + t mn e m (∂ ;i e n ) = (∂ i t mn ) e m e n + t mn Γ k im e k e n + t mn e m Γ k in e k = ∂ i t mn + Γ m ik t kn + Γ n ik t mk e m e n ∂ ;i t nm

Introduction ---------------------

energy density [GeV/fm

T-matrix properties and Pomerons---------------------
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Pomerons and pQCD parton ladders---------------------
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The Pomeron structure in EPOS ---------------------

Elegant realization, making use of the dynamics of strings with piecewise constant initial conditions.

Collectivity in EPOS---------------------

Corresponding elastic diagram referred to as "(uncut) parton ladder" Nonlinear effects in QGSJET

Pomeron-Pomeron coupling + + + ...

Summing of all orders

No energy conservation (in EPOS full energy conservation, but effective treatment of nonlinear effects)

---------------------4 Multiple Pomeron exchange in EPOS --------------------- Complicated due to strict energy sharing => 10,000,000-dimensional intergrals, not separable but doable -Parameterizations for G(x + , x -, s, b)

Step 2:

The partial cross sections σ K can be Reminder:

The Pomeron profile function is a sum of five terms,

This G is used to compute weights for the "multiple scattering configurations", the basis of the Monte Carlo method to generate these configurations.

The same formulas will be used a second time, for the parton generation.

The parton ladder T-matrix

Main building block in EPOS: The parton ladder, characterized by the energy squared s, the parton types i and j , and the virtualities Q 2 1 and Q 2 2 at the ends.

The elastic scattering amplitude is given as

hard ≈ 0, where σ hard is an inclusive parton-parton scattering cross section.

What finally enters into the multiple scattering formulas, is the imaginary part of T (representing a cut ladder), i.e. the inclusive cross section

To decide if there is still an emission (or the cascade is finished), we need σ Born .

We have

2 ) referring to no FW emissions, no BW emissions Side effect of all the restructuring:

We replaced several approximate formulas 1) by exact ones, compensated by more rejections Makes the code somewhat slower, but safer ----------------for example to restrict the ranges for proposals of emission variables to avoid rejections due to forbidden configurations after the emission

From partons to strings

Electron-positron annihilation q q

Color field between two color charges => relativistic string High pt gluon emission in e + e - q q g Kinky relativistic string

String evolution completely determined

Mapping partons => string initial conditions 5.7 Hadron production is finally realized via string breaking, such that string fragments are identified with hadrons.

Hypothesis: the string breaks within an infinitesimal area dA on its surface with a probability which is proportional to this area, dP = p B dA, where p B is the fundamental parameter of the procedure. Core:

(we use α and β rather than σ and τ )

We split each string into a sequence of string segments, corresponding to widths δα and δβ in the string parameter space Picture is schematic: the string extends well into the transverse dimension, correctly taken into account in the calculations

Energy momentum tensor and the flavor flow vector at some position x at initial proper time τ = τ 0 : (α,β) ∂α δβ : four-momenta of the segments.

g: Gaussian smoothing kernel with a transverse width σ ⊥

The Lorentz transformation into the comoving frame provides the energy density ε and the flow velocity components v i .

Hydrodynamic evolution

The evolution of the system for τ ≥ τ 0 treated macroscopicly, solving the equations of relativistic hydrodynamics:

Three equations concerning conserved currents:

with N ν q = n q u ν and n q (q =u ,d, s) representing (net) quark densities, u ν is the velocity four vector.

T 00 : Energy density dE/dx 1 dx 2 dx 3 (x 0 const)

The equation

is very general, no need for thermal equilibrium, no need for particles.

The energy-momentum tensor is the conserved Noether current associated with space-time translations.

First approach: Ideal Fluid

In the local rest frame of a fluid cell:

T 0i = 0 (no energy flow)

In arbitrary frame:

=> 4 equations for 4 unknowns (ε, velocity)

Cooper-Frye hadronization amounts to calculating

with u being the flow four-velocity in the global frame, related to Milne fram via

Similarly p expressed in terms of p in the Milne frame.

f is the Bose-Einstein or Fermi-Dirac distribution.

Hadronic afterburner: UrQMD

After "hadronization" hadrons follow straight and may still interact via

We use "UrQMD". We will compare EPOS3 with data and also with

EPOS LHC

LHC tune of EPOS1.99, : same GR, but uses parameterized flow The random walk function may be written as

For small λ :

Sampling via Markov chains

To generate K = {h 1 , . . . , h n ; r 1 , ...r m } (m = 3n -1 or m = 3n -4) according to Ω(K), consider random configurations

with Ω t being the law for K t . Per def

Convergence in case of detailled balance:

with a so-called proposal matrix w and an acceptance matrix u. Detailed balance now reads

which is fulfilled for

(more generally using some function

We consider a complete (?) set of hadrons (≈ 400, PDG list) -Implementation to do hadronization for "flowing" plasma ---------------------7 New trends on the foundations of hydrodynamics

How can it be that hydro works for very small systems? giving a metric

and

Christoffel symbols are given as

The only non-zero derivative is ∂ τ g ηη = -2τ.

Bjorken hydrodynamics

The equations of relativistic hydrodynamics:

Bjorken hydrodynamis implies u = (1, 0, 0, 0) in Milne coordinates.

Truncated conformal Bjorken hydrodyn.

The equations of relativistic hydrodynamics:

Systematic expansion in terms of gradients (of ln ε and u):

is the projector orthogonal to u µ . One often writes 

with φ = -π y y being representing shear stress.

Using ǫ = T 4 , τ π = C τπ /T, λ 1 = C λ 1 η/T, η = C η s, and defining w and f via

one gets an equation for f (w)

To get some idea about the meaning of the variable w:

For ideal hydro (φ = 0), we have ǫ ∼ τ -4/3 so T ∼ τ -1/3 , so w = τ 2/3 represents a time evolution. For ideal hydro, we have

Solving the equation numerically => attractor well defined solutions even at small w (small times), contrary to the perturbative expansion.

=> well defined solutions "far off equilibrium"

Picture from Heller, M. Spalinski.

Divergent series, Borel transforms, trans-series

Even if the solution of a differential equation (DE) is given as a divergent power series, it is possible to get useful information.

Starting from a formal solution of some DE, of the form

with coefficients showing factorial growth at large n, one performs a Borel transform which (in many cases) converges:
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Perform then the inverse Borel transform. We have

Consider for example the divergent series

Pole at x = a : the Laplace transform gives two different solutions, depending on the integration path (above ou below the x axis), the difference between the two being the residue of e -zx /(xa),

-2πie -az .

The power series is not complete.

Adding a non-linear term,

one finds an asymptotic series (Dorigone, eq.6.7) of the form

with factorially increasing coefficients. One can do the Borel transform, having a sequence of poles, a, 2a, 3a, ... .

The inverse Borel transform again has ambiguities.

For non-linear DE, one often finds a sequence of singularities

where we need the "trans-series"

with f 0 being a power series in 1 z .

The coefficients are determined from the DE, the coeffiecient c has to be chosen to cancel the ambiguity.

This will provide a unique function f iPB (z), often referred to as "resummation result". Frequently asked question: "Why do small systems thermalize so quickly?" Maybe they simply don´t ...