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Abstract

A major drawback of the Standard Heston model is that its implied volatility
surface does not produce a steep enough smile when looking at short maturities.
For that reason, we introduce the Stationary Heston model where we replace
the deterministic initial condition of the volatility by its invariant measure
and show, based on calibrated parameters, that this model produce a steeper
smile for short maturities than the Standard Heston model. We also present
numerical solution based on Product Recursive Quantization for the evaluation
of exotic options (Bermudan and Barrier options).

Introduction

Originally introduced by Heston in [Hes93], the Heston model is a stochastic volatility model used
in Quantitative Finance to model the joint dynamics of a stock and its volatility, denoted pSpxqt qtě0

and pvxt qtě0, respectively, where vx0 “ x is the initial condition of the volatility. Historically, the
initial condition of the volatility x is considered as deterministic and is calibrated in the market
like the other parameters of the model. This model received an important attention among
practitioners for two reasons: first, it is a stochastic volatility model, hence it introduces smile
in the implied volatility surface as observed in the market, which is not the case of models with
constant volatility and second, in its original form, we have access to a semi closed-form form
formula for the characteristic function which allows us to price European options (Call & Put)
almost instantaneously using the Fast Fourier approach (Carr & Madan in [CM99]). Yet, a
complaint often heard about the Heston model is that it fails to fit the implied volatility surface
for short maturities because the model cannot produce a steep-enough smile for those maturities
(see [Gat11]).

Noticing that the volatility process is ergodic with a unique invariant distribution ν “ Γpα, βq
where the parameters α and β depend on the volatility diffusion parameters, it has been first
proposed by Pagès & Panloup in [PP09] to directly consider that the process evolves under
its stationary regime in place of starting it at time 0 from a deterministic value. We denote
by pSpνqt qtě0 and pvνt qtě0 the couple asset-volatility in the Stationary Heston model. Replacing
the initial condition of the volatility by the stationary measure does not modify the long-term
behavior of the implied volatility surface but does inject more randomness into the volatility
for short maturities. This tends to produce a steeper smile for short maturities, which is the
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kind of behavior we are looking for. Later, the short-time and long-time behavior of the implied
volatility generated by such model has been studied by Jacquier & Shi in [JS17].

In the beginning of the paper, we briefly recall the well-known methodology used for the
pricing of European option in the Standard Heston model. Based on that, we express the price
I0 of a European option on the asset SpνqT as

I0 “ E
“

e´rT ϕpS
pνq
T q

‰

“ E
“

fpvν0 q
‰

(0.1)

where fpvq is the price of the European option in the Standard Heston model for a given set of
parameters. The last expectation can be computed efficiently using quadrature formulas either
based on optimal quantization of the Gamma distribution or on Laguerre polynomials.

Once we are able to price European options, we can think of calibrating our model to market
data. Indeed the parameters of the model are calibrated using the implied volatility surface
observed in the market. However, the calibration of the Standard Heston model is highly de-
pending on the initial guess we choose in the minimization problem. This is due to an over-
parametrization of the model (see [GR09]). Hence, when we consider the Heston model in its
stationary regime, there is one parameter less to calibrate as the initial value of the volatility
is no longer deterministic. The stationary model tends to be more robust when it comes to
calibration.

In the second part of paper, we deal with the pricing of Exotic options such as Bermudan
and Barrier options. We propose a method based on hybrid product recursive quantization.
The "hybrid" term comes from the fact that we use two different types of schemes for the dis-
cretization of the volatility and the asset (Milstein and Euler-Maruyama). The recursive quan-
tization (also called Markovian quantization) was first introduced in [PPP04] and then studied
extensively by Pagès & Sagna in [PS15] for one dimensional diffusions discretized by an Euler-
Maruyama scheme. They proposed a fast algorithm based on deterministic methods for building
the quantization tree. Then, the fast recursive quantization was extended to one-dimensional
higher-order schemes by [MRKP18] and to higher dimensions using product quantization (see
[FSP18, RMKP17, CFG18, CFG17]). Then, once the quantization tree is built, we proceed
by a backward induction using the Backward Dynamical Programming Principle for the price of
Bermudan options and using the methodology detailed in [Sag10, Pag18] based on the conditional
law of the Brownian Bridge for the price of Barrier options.

The paper is organized as follow. First, in Section 1, we recall the definition of the Standard
Heston model and the interesting features of the volatility diffusion which bring us to define the
Stationary Heston model. In Section 2, we give a fast solution for the pricing of European options
in the Stationary Heston model when there exists methods for the Standard model. Finally, once
we are able to price European options, we can define the optimization problem of calibration on
implied volatility surface. We perform the calibration of both models and compare their induced
smile for short maturities options. Once this model has been calibrated, in Section 3, we propose
a numerical method based on hybrid product recursive quantization for the pricing of exotic
financial products: Bermudan and Barrier options. For this method, we give an estimate of the
L2-error introduced by the approximation.
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1 The Heston Model

The Standard Heston model is a two-dimensional diffusion process pSpxqt , vxt q solution to the
Stochastic Differential Equation

$

’

’

&

’

’

%

dS
pxq
t

S
pxq
t

“ pr ´ qqdt`
a

vxt
`

ρdĂWt `
a

1´ ρ2dWt

˘

dvxt “ κpθ ´ vxt qdt` ξ
a

vxt d
ĂWt

(1.1)

where

• Spxqt is the dynamic of the risky asset,

• vxt is the dynamic of the volatility process,

• Spxq0 “ s0 ě 0 is the initial value of the process,

• r P R denotes the interest rate,

• q P R is the dividend rate,

• ρ P r´1, 1s is the correlation between the asset and the volatility,

• pW,ĂW q is a standard independent two-dimensional Brownian motion,

• θ ě 0 the long run average price variance,

• κ ě 0 the rate at which vxt reverts to θ,

• ξ ě 0 is the volatility of the volatility,

• vx0 “ x ě 0 is the deterministic initial condition of the volatility.

This model is widely used by practitioner for various reasons. One is that it leads to semi-
closed forms for vanilla options based on a fast Fourier transform. The other is that it represents
well the observed mid and long-term market behavior of the implied volatility surface observed
on the market. However, it fails producing or even fitting to the smile observed for short-term
maturities.

Remark 1.1 (The volatility). One can notice that the volatility process is autonomous thence
we are facing a one dimensional problem. Moreover, the volatility process is following a Cox-
Ingersel-Ross (CIR) diffusion also known as the square root diffusion. Existence and uniqueness
of a strong solution to this stochastic differential equation has been first shown in [IW81], if
x ě 0. Moreover, it has been shown, see [LL11], that if the Feller condition holds, namely
ξ2 ď 2κθ, for every x ą 0, then the unique solution pvxt qtě0 satisfies

@t ě 0, Ppτx0 “ `8q “ 1 (1.2)

where τx0 is the first hitting time defined by

τx0 “ inftt ě 0 | vxt “ 0u where infH “ `8. (1.3)

Moreover, the CIR diffusion admits, as a Markov process, a unique stationary regime, charac-
terized by its invariant distribution

ν “ Γpα, βq (1.4)

where
α “ θβ and β “ 2κ{ξ2. (1.5)
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Based on the above remarks, the idea is to precisely consider the volatility process under its
stationary regime, i.e., replacing the deterministic initial condition from the Standard Heston
model by a ν-distributed random variable independent of pW,ĂW q. We will refer to this model
as the Stationary Heston model. Our first aim is to inject more randomness for short maturities
(t small) into the volatility but also to reduce the number of free parameters to stabilize and
robustify the calibration of the Heston model which is commonly known to be overparametrized
(see e.g. [GR09]).

This model was first introduced by [PP09] (see also [IW81], p. 221). More recently, [JS17]
studied its small-time and large-time behaviors of the implied volatility. The dynamic of the asset
price pSpνqt qtě0 and its stochastic volatility pvνt qtě0 in the Stationary Heston model are given by

$

’

’

&

’

’

%

dS
pνq
t

S
pνq
t

“ pr ´ qqdt`
a

vνt
`

ρdĂWt `
a

1´ ρ2dWt

˘

dvνt “ κpθ ´ vνt qdt` ξ
a

vνt d
ĂWt

(1.6)

where vν0 „ Lpνq „ Γpα, βq with β “ 2κ{ξ2, α “ θβ. Spνq0 , r and q are the same parameters as
those defined in (1.1) and the parameters ρ, θ, κ, θ and ξ can be described as in the Standard
Heston model.

2 Pricing of European Options and Calibration

In this section, we first calibrate both Stationary and Standard Heston models and then compare
their short-term behaviors of their resulting implied volatility surfaces. For that purpose we relied
on a dataset of options price on the Euro Stoxx 50 observed the 26th of September 2019 (see
Figure 1). This is why, as a preliminary step we briefly recall the well-known methodology for the
evaluation of European Call and Put in the Standard Heston model. Based on that, we outline
how to price these options in the Stationary Heston model. Then, we describe the methodology
employed for the calibration of both models: the Stationary Heston model (1.6) and the Standard
Heston model (1.1) and then we discuss the obtained parameters and compare their short-term
behaviors.

2.1 European options

The price of the European option with payoff ϕ on the asset SpνqT , under the Stationary Heston
model, exercisable at time T is given by

I0 “ E
“

e´rT ϕpS
pνq
T q

‰

. (2.1)

After preconditioning by vν0 , we have

I0 “ E
”

E
“

e´rT ϕpS
pνq
T q | σpvν0 q

‰

ı

“ E
“

fpvν0 q
‰

(2.2)

where fpvq is the price of the European option in the Standard Heston model with deterministic
initial conditions for the set of parameters λpvq “ ps0, r, q, θ, κ, ξ, ρ, vq.

Example 2.1 (Call). If ϕ is the payoff of a Call option then f is simply the price given by
Fourier transform in the Standard Heston model of the European Call Option. The price at time
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0, for a spot price s0, of an European Call Cpλpvq,K, T q with expiry T and strike K under the
Standard Heston model with parameters λpvq “ ps0, r, q, θ, κ, ξ, ρ, vq is

Cpφpvq,K, T q “ E
“

e´rT pS
pvq
T ´Kq`

‰

“ e´rT
´

E
“

S
pvq
T 1

S
pvq
T ěK

‰

´K E
“

1
S
pvq
T ěK

‰

¯

“ s0 e´qT P1

`

λpvq,K, T
˘

´K e´rT P2

`

λpvq,K, T
˘

(2.3)

with P1

`

λpvq,K, T
˘

and P2

`

λpvq,K, T
˘

given by

P1

`

λpvq,K, T
˘

“
1

2
`

1

π

ż `8

0
Re

ˆ

e´iu logpKq

iu

ψ
`

λpvq, u´ i, T
˘

s0 epr´qqT

˙

du

P2

`

λpvq,K, T
˘

“
1

2
`

1

π

ż `8

0
Re

ˆ

e´iu logpKq

iu
ψ
`

λpvq, u, T
˘

˙

du

(2.4)

where i is the imaginary unit s.t. i2 “ ´1, ψ
`

λpvq, u, T
˘

is the characteristic function of the
logarithm of the stock price process at time T . Several representations of the characteristic func-
tion exist, we choose to use the one proposed by [SST04, Gat11, AMST07], which is numerically
more stable. It reads

ψ
`

λpvq, u, T
˘

“ E
“

eiu logpS
pvq
T q | S

pvq
0 , x

‰

“ eiuplogps0q`pr´qqT q

ˆ eθκξ
´2
`

pκ´ρξui´dqT´2 logpp1´g e´dtq{p1´gqq
˘

ˆ ev
2ξ´2pκ´ρξui´dqp1´e´dtq{p1´g e´dtq

(2.5)

with

d “
a

pρξui´ κq2 ´ ξ2p´ui´ u2q and g “ pκ´ ρξui´ dq{pκ´ ρξui` dq. (2.6)

Hence, in (2.2), fpvq can be replaced by C
`

λpvq,K, T
˘

, which yields

I0 “ E
“

e´rT pS
pνq
T ´Kq`

‰

“ E
”

C
`

λpvν0 q,K, T
˘

ı

. (2.7)

Now, we come to the pricing of European options in the Stationary Heston model, using the
expression of the density of vν0 „ Γpα, βq, (2.2) reads

I0 “ E
“

fpvν0 q
‰

“

ż `8

0
fpvq

βα

Γpαq
vα´1 e´βv dv. (2.8)

Now, several approaches exists in order to approximate this integral on the positive real line.

• Quantization based quadrature formulas. One could use a quantization-based cubature formula
with an optimal quantizer of vν0 with the methodology detailed in Appendix D. Given that optimal
quantizer of size N , pvN0 , we approximate I0 by pIN0

pIN0 “ E
“

fppvN0 q
‰

“

N
ÿ

i“1

fpvN0,iqP
`

pvN0 “ vN0,i
˘

. (2.9)
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Remarks 2.2. In one dimension, the minimization problem consists in building an optimal
quantizer is invariant by linear transformation, hence applying a linear transformation to an
optimal quantizer preserves its optimality. For example, if we consider an optimal quantization
pXN of a standard normal distribution N p0, 1q then µ`σ pXN is an optimal quantizer of a normal
distribution N pµ, σ2q and the associated probabilities of each Voronoï centroid stay the same.

In our case, noticing that if we consider a Gamma random variableX „ Γpα, 1q then the rescaling
of X by 1{β yields X{β „ Γpα, βq. Hence, for building the optimal quantizer pvN0 of vν0 , we can
build an optimal quantizer of X „ Γpα, 1q and then rescale it by 1{β, yielding pvN0 “ pXN{β. Our
numerical tests showed that it is numerically more stable to use this approach.

In order to build the optimal quantizer, we use Lloyd’s method detailed in Appendix D to
X „ Γpα, 1q with the cumulative distribution function FX pxq “ PpX ď xq and the partial first
moment KX pxq “ ErX 1Xďxs given by

@x ą 0, FX pxq “
1

Γpαq
γpα, xq, KX pxq “ αFX pxq ´

xα e´x

Γpαq
,

otherwise, FX pxq “ 0, KX pxq “ 0,

(2.10)

where γpα, xq “
şx
0 t

α´1 e´t dt is the lower gamma function. And the associated probabilities of
the optimal quantizer pvN0 are given by (D.10)

P
`

pvN0 “ vN0,i
˘

“ P
`

pXN “ xNi
˘

“ FX
`

xNi`1{2

˘

´ FX
`

xNi´1{2

˘

(2.11)

where @i P J2, NK, xNi´1{2 “
xNi´1`x

N
i

2 and xN1{2 “ 0 and xNN`1{2 “ `8.

• Quadrature formula from Laguerre polynomials. One could also use an algorithm based on
fixed point quadratures for the numerical integration. Indeed, noticing that the density we are
integrating against is a gamma density which is exactly the Laguerre weighting function (up to
a rescaling). Then, I0 rewrites

I0 “

ż `8

0
fpvq

βα

Γpαq
vα´1 e´βv dv “

βα

Γpαq

ż `8

0
fpvqωpvqdv (2.12)

where ωpvq “ vα´1 e´βv is the Laguerre weighting function. Then, for a fixed integer n ą 0, I0

is approximated by

rIn0 “
βα

Γpαq

n
ÿ

i“1

ωifpviq (2.13)

where the ωi’s are the Laguerre weights and the vi’s are the associated Laguerre nodes.

2.2 Calibration

Now that we are able to compute the price of European options, we define the problem of
minimization we wish to optimize in order to calibrate our models parameters. Let PSH be the
set of parameters of the Stationary Heston model that needs to be calibrated, defined by

PSH “
 

pθ, κ, ξ, ρq P R`ˆR`ˆR`ˆr´1, 1s
(

(2.14)

and let PH be the set of parameters of the Standard Heston model that needs to be calibrated,
defined by

PH “
 

px, θ, κ, ξ, ρq P R`ˆR`ˆR`ˆR`ˆr´1, 1s
(

. (2.15)
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Figure 1: Implied volatility surface of the Euro Stoxx 50 as of the 26th of September 2019.
(S0 “ 3541, r “ ´0.0032 and q “ 0.00225) The expiries T are given in days and the strikes K
in percentage of the spot.

The others parameters are directly inferred from the market: we get S0 “ 3541, r “ ´0.0032
and q “ 0.00225. In our case, we calibrate to option prices all having the same maturity. The
problem can be formulated as follows: we search for the set of parameters φ‹ P P that minimizes
the relative error between the implied volatility observed on the market and the implied volatility
produced by the model for the given set of parameters, such that P “ PSH for the Stationary
Heston model and P “ PH for the Standard Heston model. There is no need to calibrate the
parameters s0, r and q since they are directly observable in the market.

Being interested in the short-term behaviors of the models, it is natural to calibrate both
models based on options prices at a small expiry. Once the optimization procedures have been
performed, we compare their performances for small expiries. For that, we calibrate using only
the datas on the volatility surface in Figure 1 with expiry 50 days (T “ 50{365) and then we
compare both models to the market implied volatility at expiry 22 days which is the smallest
available in the data set.

Remark 2.3. The calibration is performed using the randomized version of the simplex algo-
rithm of [NM65] proposed in the C++ library GSL. This algorithm is a derivative-free optimiza-
tion method. It uses only the value of the function at each evaluation point.

2.2.1 Optimization withtout penalization

We want to find the set of parameter φ‹ that minimizes the relative error between the volatilities
observed in the market and the ones generated by the model, hence leading to the following
minimization problem

min
φPP

ÿ

K

ˆ

σMarket
iv pK,T q ´ σModel

iv pφ,K, T q

σMarket
iv pK,T q

˙2

(2.16)

where T is the expiry of the chosen options chosen a priori and K are their strikes. The quan-
tities σMarket

iv pK,T q and σModel
iv pφ,K, T q are the implied volatilities deduced from the European
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Call/Put Mark-to-Market prices and the prices computed with a given model (Standard Heston
or Stationary Heston) for the set of parameters φ respectively.

In all the following figures, the strike K is given in percentage of the spot S0.
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Figure 2: Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days without penalization.

It is clear in Figure 2 (right) that both models fit really well to the market data and more
precisely, the Stationary model succeeds to calibrate with the same precision as the Standard
one with one less parameter. Moreover, one notices that even for 22 days maturity options, the
Standard Heston model tends to over-estimate the implied volatility and fails to produce the
right smile whereas the Stationary Heston model is closer to the market observations.

Now, we extrapolate the implied volatility surfaces, given by the two models, for even smaller
maturities (7 and 14 days) in order to analyze the behavior of each model for short-term expiries.
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Figure 3: Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at
50 days without penalization.

It is clear in Figure 3 that the Standard Heston model fails at producing the desired smile
for very small maturities when the Stationary model meets no difficulty to generate it. The next
graphics, Figure 4 reproduces the term-structure of the implied volatility in function of T both
models.
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Figure 4: Term-structure of the volatility in function of T and K of both models (left: Standard
Heston and right: Stationary Heston) after calibration at 50 days without penalization.

Now, we investigate how these models behave for longer maturities. Do they succeed in
preserving the general shape of the market volatility surface or are they only correctly fitting the
maturity on which we calibrated them?

Figure 5 represents the relative error between the implied volatility given by the market and
the one given by the models calibrated models at 50 days. Clearly, one notices that the Standard
Heston model only fits at this expiry. Indeed, when looking at the expiry 22 days or for long-term
maturities, the relative error explodes. The term-structure of the implied volatility surface of
the market is not preserved when using the Standard Heston model. However, the Stationary
Heston model does fit well at both short and long term expiries. The Stationary model produces
a steep smile for very short maturities and flattens correctly to the appropriate mean for long
expiries.

φ‹ ρ v0 θ κ ξ

Standard Heston ´0.74 0.152584 0.01487 80.05 5.22

Stationary Heston ´0.75 0.02744 593.46 36.80

Table 1: Parameters obtained for both models after calibration without penalization for options
with maturity 50 days (S0 “ 3541, r “ ´0.0032 and q “ 0.00225).

However, looking closely at the parameters obtained after calibration (which are summarized
in Table 1), one notices that both sets of calibrated parameters are far from satisfying the Feller
condition. And we have to keep in mind that the calibration procedure is performed in order to
price path-dependent or American style derivatives using Monte-Carlo simulation or alternative
numerical methods, as developed in the next Section. Hence, the Feller condition has to be
satisfied, this is the reason why we add a constraint to the minimization problem in order to
penalize the sets of parameters not satisfying the condition.
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Figure 5: pK,T q ÝÑ |σMarket
iv pK,T q´σModel

iv pφ‹,K,T q|

σMarket
iv pK,T q

for both models after calibration at 50 days
without penalization. The expiries T are given in days and the strikes K are in percentage of the
spot. (left: Standard Heston and right: Stationary Heston).

2.2.2 Optimization with penalization using the Feller condition

The minimization problem becomes

min
φPP

ÿ

K

ˆ

σMarket
iv pK,T q ´ σModel

iv pφ,K, T q

σMarket
iv pK,T q

˙2

` λmaxpξ2 ´ 2κθ, 0q (2.17)

where λ is the penalization factor to be adjusted during the procedure. The obtained parameters
after calibration are summarized in Table 2. The Feller condition is still not fulfilled for both
models but it is not far from being satisfied. We choose λ “ 0.01 which seems to be right the
compromise in order to avoid underfitting the model because of the constraint.

φ‹ ρ v0 θ κ ξ

Standard Heston ´0.83 0.0045 0.17023 2.19 1.04

Stationary Heston ´0.99 0.02691 19.28 1.15

Table 2: Parameters obtained for both models after calibration with penalization (λ “ 0.01) for
options with maturity 50 days (S0 “ 3541, r “ ´0.0032 and q “ 0.00225).

Figure 6 displays the resulting implied volatility curves at 50 days and 22 days for both
calibrated models and observed in the market with calibration at 50 days. Adding a penalization
term deteriorates the calibration results compared to the non-penalized case (see Figure 2 (right))
but the results are still acceptable.
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Figure 6: Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days with penalization.

Now, again, we extrapolate the implied volatility of both models for very short term maturities
in Figure 7. The Stationary Heston model produces the desired smile, however the Standard
Heston model fails to produce prices sensibly different than 0 for strikes higher than 105 with
this set of parameters, this is why there is no values in implied volatility curves.
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Figure 7: Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at
50 days with penalization.

Figure 8 represents, as in the non-penalized case, the relative error between the implied
volatility given by the market and the one given by the models calibrated models at 50 days using
a penalization. The Standard Heston model completely fails to preserve the term-structure while
being calibrated at 50 days. In comparison, the Stationary Heston behaves much better and the
relative error does not explodes for long-term expiries, meaning that the long run average price
variance is well caught.
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Figure 8: pK,T q ÝÑ |σMarket
iv pK,T q´σModel

iv pφ‹,K,T q|

σMarket
iv pK,T q

for both models after calibration at 50 days with
penalization. The expiries T are given in days and the strikes K are in percentage of the spot.
(left: Standard Heston and right: Stationary Heston).

3 Toward the pricing of Exotic Options

In this Section, we evaluate first Bermudan options and then Barrier options under the Stationary
Heston model. For both products, the pricing rely on a Backward Dynamical Programming
Principle. The numerical solution we propose is based on a two-dimensional product recursive
quantization scheme. We extend the methodology previously developed by [FSP18, CFG18,
CFG17], where they considered an Euler-Maruyama scheme for both components. In this paper,
we consider a hybrid scheme made up with an Euler-Maruyama scheme for the log-stock price
dynamics and a Milstein scheme for the (boosted) volatility process. Finally, we apply the
backward algorithm that corresponds to the financial product we are dealing with (the Quantized
Backward Dynamical Programming Principle for Bermudan Options, see [BP03, BPP05, Pag18]
and the algorithm by [Sag10, Pag18] for Barrier Options based on the conditional law of the
Brownian motion).

3.1 Discretization scheme of a stochastic volatility model

We first present the time discretization schemes we use for the asset-volatility couple pSpνqt , vνt qtPr0,T s.
For the volatility, we choose a Milstein on a boosted version of the process in order to preserve
the positivity of the volatility and we select an Euler-Maruyama scheme for the log of the asset.

The boosted volatility. Based on the discussion in Appendix A, we will work with the
following boosted volatility process: Yt “ eκt vνt , t P r0, T s for some κ ą 0, whose diffusion is given
by

dYt “ eκt κθdt` ξ eκt{2
a

YtdĂWt. (3.1)

The Milstein discretization scheme of Yt is given by

sYtk`1
“M

rb,rσ

`

tk, sYtk , Z
2
k`1

˘

(3.2)

12



with tk “ Tk
n and rb and rσ are given by

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x eκt{2 and rσ1xpt, xq “

ξ eκt{2

2
?
x

(3.3)

andM
rb,rσ
pt, x, zq defined by

M
rb,rσ
pt, x, zq “ x´

rσpt, xq

2rσ1xpt, xq
` h

ˆ

rbpt, xq ´
prσrσ1xqpt, xq

2

˙

`
prσrσ1xqpt, xqh

2

ˆ

z `
1

?
hrσ1xpt, xq

˙2

(3.4)
We made this choice of scheme because, under the Feller condition, the positivity of M

rb,rσ
is

ensured, since

M
rb,rσ
pt, x, zq “ h eκt

´

κθ ´
ξ2

4

¯

` h
ξ2 eκt

4

ˆ

z `
2
?
x

?
hξ eκt{2

˙2

(3.5)

and
ξ2 ď 2κθ ď 4κθ.

Other schemes could have been used, see [Alf05] for an extensive review of the existing
schemes for the discretization of the CIR model, but in our case we needed one allowing us to
use the fast recursive quantization, i.e., where we can express explicitly and easily the cumulative
distribution function and the first partial moment of the scheme, which is the case of the Milstein
scheme (we give more details in Subsection 3.2).

Hence, as our time-discretized scheme is well defined because its positivity is ensured if
the Feller condition is satisfied, we can start to think of the time-discretization of our process
pS
pνq
tk
qkPJ0,nK.

The log-asset. For the asset, the standard approach is to consider the process which is the
logarithm of the asset Xt “ logpStq. Applying Itô’s formula, the dynamics of Xt is given by

dXt “

´

r ´ q ´
vt
2

¯

dt`
?
vtdWt. (3.6)

Now, using a standard Euler-Maruyama scheme for the discretization of Xt, we have
#

sXtk`1
“ Eb,σ

`

tk, sXtk ,
sYtk , Z

1
k`1

˘

sYtk`1
“M

rb,rσ

`

tk, sYtk , Z
2
k`1

˘ (3.7)

where Z1
k`1 „ N p0, 1q, Z2

k`1 „ N p0, 1q, CorrpZ1
k`1, Z

2
k`1q “ ρ and

Eb,σpt, x, y, zq “ x` bpt, x, yqh` σpt, x, yq
?
h z (3.8)

with

bpt, x, yq “ r ´ q ´
e´κt y

2
and σpt, x, yq “ e´κt{2

?
y. (3.9)

3.2 Hybrid Product Recursive Quantization

In this part, we describe the methodology used for the construction of the product recursive
quantization tree of the couple log asset- boosted volatility in the Heston model.

In Figure 9, as an example, we synthesise the main idea behind the recursive quantization
of a diffusion vt which has been time-discretized with F0pt, x, zq. We start at time t0 “ 0 with
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a quantizer pv0 taking values in the grid Γt0 “ tv0
1, . . . , v

0
10u of size 10, where each point is

represented by a black bullet (‚) with probability p0
i “ Pppv0 “ v0

i q is represented by a bar. In
the Stationary Heston model, pv0 is an optimal quantization of the Gamma distribution given
by (1.4) and (1.5). Then, starting from this grid, we simulate the process from time t0 to time
t1 “ 5 days with our chosen time-discretization scheme F0pt, x, zq, yielding rv1 “ F0pt0, pv0, Z1q,
where Z1 is a standardized Gaussian random variable. Each trajectory starts from point v0

i

with probability p0
i . And finally we project the obtained distribution at time t1 onto a grid

Γt1 “ tv
1
1, . . . , v

1
10u of cardinality 10, represented by black triangles (Ĳ) such that pv1 is an optimal

quantizer of the discretized and simulated process starting from quantizer pv0 at time t0 “ 0.

Remark 3.1. In practice, for low dimensions, we do not simulate trajectories. We use the
information on the law of rv1 conditionally of starting from pv0. The knowledge of the distribution
allows us to use deterministic algorithms during the construction of the optimal quantizer of rv1

that are a lot faster than algorithms based on simulation.
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t

0.00

0.05
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0.20
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0.30

v t ̂v0

̃v1= F0(t0, ̂v1,Z1)

̂v1

v1
i

p1
i =ℙ( ̂v1= v1

i )
v0
i

p0
i =ℙ( ̂v0= v0

i )

Figure 9: Example of recursive quantization of the volatility process in the Heston model for one
time-step.

In our case, we consider the following stochastic volatility system
#

dXt “ bpt,Xt, Ytqdt` σpt,Xt, YtqdWt

dYt “ rbpt, Ytqdt` rσpt, YtqdĂWt

(3.10)

where Wt and ĂWt are two correlated Brownian motions with correlation ρ P r´1, 1s, b and σ are
defined in (3.9) and rb and rσ are defined in (3.3). Our aim is to build a quantization tree of the
couple pXt, Ytq at given dates tk, k “ 0, . . . , n based on a recursive product quantization scheme.
The product recursive quantization of such diffusion system has already been studied by [CFG17]
and [RMKP17] in the case case where both processes are discretized using an Euler-Maruyama
scheme.

One can notice that building the quantization tree ppYkqkPJ0,nK approximating pYtqtPr0,T s is a
one dimensional problem as the diffusion of Yt is autonomous. Hence, based on our choice of
discretization scheme, we will apply the fast recursive quantization (detailed above in Figure 9)

14



that was introduced in [PS15] for one dimensional diffusion discretized by an Euler-Maruyama
discretization scheme and then extended to higher order schemes, still in one dimension, by
[MRKP18]. The minor difference with existing literature is that, in our problem, the initial
condition y0 is not deterministic.

Then, using the quantization tree of ppYkqkPJ0,nK we will be able to build the tree p pXkqkPJ0,nK
following ideas developed in [FSP18, RMKP17, CFG18, CFG17]. Indeed, once the quantization
tree of the volatility is built, we are in a one-dimensional setting and we are able to use fast
deterministic algorithms.

3.2.1 Quantizing the volatility (a one-dimensional case)

Let pYtqtPr0,T s be a stochastic process in R and solution to the stochastic differential equation

dYt “ rbpt, Ytqdt` rσpt, YtqdĂWt (3.11)

where Y0 has the same law than the stationary measure ν: LpY0q “ ν. In order to approximate
our diffusion process, we choose a Milstein scheme for the time discretization, as defined in 3.4
and we build recursively the Markovian quantization tree ppYtkqkPJ0,nK where pYtk`1

is the Voronoï
quantization of rYtk`1

defined by

rYtk`1
“M

rb,rσ

`

tk, pYtk , Z
2
k`1

˘

, pYtk`1
“ ProjΓYN2,k`1

`

rYtk`1

˘

(3.12)

and the projection operator ProjΓYN2,k`1

p¨q is defined in (D.2), ΓYN2,k`1
“

 

yk`1
1 , . . . , ykN2,k`1

(

is

the grid of the optimal quantizer of rYtk`1
and Z2

k`1 „ N p0, 1q. In order alleviate the notations,
we will denote rYk and pYk in place of rYtk and pYtk .

The first step consists of building pY0, an optimal quantizer of size N2,0 of Y0. Noticing that
Y0 “ vν0 , we use the optimal quantizer we built for the pricing of European options. Then, we
build recursively ppYkqk“1,...,n, where the N2,k-tuple are defined by yk

1:N2,k
“

`

yk1 , . . . , y
k
N2,k

˘

, by
solving iteratively the minimization problem defined in the Appendix D in (D.6), with the help
of Lloyd’s method I. Replacing X by rYk`1 in (D.6) yields

yk`1
j “

E
”

rYk`1 1Yk`1 PCj

`

ΓYN2,k`1

˘

ı

P
´

rYk`1 P Cj
`

ΓYN2,k`1

˘

¯

“

E
”

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

1
M

rb,rσ

`

tk,pYk,Z
2
k`1

˘

PCj

`

ΓYN2,k`1

˘

ı

P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯ .

(3.13)

Now, preconditioning by pYk in the numerator and the denominator and using pki “ P
`

pYk “ yki
˘

,
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we have

yk`1
j “

E

„

E
”

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

1
M

rb,rσ

`

tk,pYk,Z
2
k`1

˘

PCj

`

ΓYN2,k`1

˘ | pYk

ı



E

„

P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

| pYk

¯



“

N2,k
ÿ

i“1

E
”

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

1
M

rb,rσ

`

tk,y
k
i ,Z

2
k`1

˘

PCj

`

ΓYN2,k`1

˘

ı

pki

N2,k
ÿ

i“1

P
´

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯

pki

“

N2,k
ÿ

i“1

´

Kk
i

`

yk`1
j`1{2

˘

´Kk
i

`

yk`1
j´1{2

˘

¯

pki

N2,k
ÿ

i“1

´

F ki
`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

¯

pki

(3.14)

where Cj
`

ΓYN2,k`1

˘

“
`

yk`1
j´1{2, y

k`1
j`1{2

‰

is defined in (D.1). F ki and Kk
i are the cumulative distri-

bution function and the first partial moment function of Uki „ µki ` κ
k
i pZ

1
k`1 ` λ

k
i q

2 respectively
with

κkj “
prσrσ1xqptk, y

k
j qh

2
, λkj “

1
?
hrσ1xptk, y

k
j q
,

and µkj “ ykj ´
σptk, y

k
j q

2rσ1xptk, y
k
j q
` h

ˆ

rbptk, y
k
j q ´

prσrσ1xqptk, y
k
j q

2

˙

.

(3.15)

The functions F ki andKk
i can explicitly be determined in terms of the density and the cumulative

distribution function of the normal distribution.

Lemma 3.2. Let U “ µ` κpZ ` λq2, with µ, κ, λ P R, λ ě 0, κ ą 0 and Z „ N p0, 1q then the
cumulative distribution function FX and the first partial moment KU of U are given by

FU pxq “
`

FZ px`q ´ FZ px´q
˘

1xąµ

KU pxq “

ˆ

FU pxq
`

µ` κpλ2 ` 1q
˘

`
κ
?

2π

´

x
´

e´
x2
`
2 ´x

`
e´

x2
´
2

¯

˙

1xąµ
(3.16)

where x
`
“

b

x´µ
κ ´ λ, x

´
“ ´

b

x´µ
κ ´ λ and FZ is the cumulative distribution function of Z.

Finally, we can apply the Lloyd algorithm defined in Appendix D.9 with FX and KX defined
by

FX pxq “

N2,k
ÿ

i“1

pki F
k
i pxq and KX pxq “

N2,k
ÿ

i“1

pki K
k
i pxq. (3.17)

In order to be able to build recursively the tree quantization ppYkqk“0,...,n, we need to have
access to the weights pki “ P

`

pYk “ yki
˘

, which can be themselves computed recursively, as well
as the conditional probabilities pkij “ P

`

pYk`1 “ yk`1
j | pYk “ yki

˘

.

Lemma 3.3. The conditional probabilities pkij are given by

pkij “F
k
i

`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

. (3.18)
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And the probabilities pk`1
j are given by

pk`1
j “

N2,k
ÿ

i“1

pki p
k
ij . (3.19)

Proof. The
pkij “P

`

pYk`1 “ yk`1
j | pYk “ yki

˘

“P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

| pYk “ yki

¯

“P
´

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯

“F ki
`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

and

pk`1
j “P

`

pYk`1 “ yk`1
j

˘

“

N2,k
ÿ

i“1

P
`

pYk`1 “ yk`1
j | pYk “ yki

˘

P
`

pYk “ yki
˘

“

N2,k
ÿ

i“1

pki p
k
ij .

As an illustration, we display in Figure 10 the rescaled grids obtained after recursive quan-
tization of the boosted-volatility, where pvk “ e´κtk pYk and ppYkqk“1,...,n are the quantizers built
using the fast recursive quantization approach.

3.2.2 Quantizing the asset (a one-dimensional case again)

Now, using the fact that pYtqt has already been quantized and the Euler-Maruyama scheme of
pXtqt, as defined (3.8), we define the Markov quantized scheme

rXtk`1
“ Eb,σ

`

tk, pXtk ,
pYtk , Z

1
k`1

˘

, pXtk`1
“ ProjΓXN1,k`1

`

rXtk`1

˘

(3.20)

where the projection operator ProjΓXN1,k`1

p¨q is defined in (D.2), ΓXN1,k`1
is the optimal N1,k`1-

quantizer of rXtk`1
and Z1

k`1 „ N p0, 1q. Again, in order to simplify the notations, rXtk and pXtk

are denoted in what follows by rXk and pXk.
Note that we are still in an one-dimensional case, hence we can apply the same methodology

as developed in Appendix D and build recursively the quantization
`

pXk

˘

k“0,...,n
as detailed above,
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Figure 10: Rescaled Recursive quantization of the boosted-volatility process with its associated
weights from t “ 0 to t “ 60 days with a time step of 5 days with grids of size N “ 10. The
recursive quantization methodology is applied to pYk and then we display the rescaled volatility
pvk “ e´κtk pYk.

where the N1,k-tuple are defined by xk
1:N1,k

“
`

xk1, . . . , x
k
N1,k

˘

. Replacing X by rXk in (D.6) yield

xk`1
j1

“

E
”

Eb,σ
`

tk, pXtk ,
pYtk , Z

1
k`1

˘

1
Eb,σ

`

tk, pXtk ,
pYtk ,Z

1
k`1

˘

PCj1

`

ΓXN1,k`1

˘

ı

P
´

Eb,σ
`

tk, pXtk ,
pYtk , Z

1
k`1

˘

P Cj1
`

ΓXN1,k`1

˘

¯

“

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

E
”

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

1
Eb,σ

`

tk,x
k
i1
,yki2

,Z1
k`1

˘

PCj1

`

ΓXN1,k`1

˘

ı

pkpi1,i2q

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P Cj1
`

ΓXN1,k`1

˘

¯

pkpi1,i2q

“

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

´

Kk
pi1,i2q

`

xk`1
j1`1{2

˘

´Kk
pi1,i2q

`

xk`1
j1´1{2

˘

¯

pkpi1,i2q

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

´

F kpi1,i2q
`

xk`1
j1`1{2

˘

´ F kpi1,i2q
`

xk`1
j1´1{2

˘

¯

pkpi1,i2q

(3.21)

where pk
pi1,i2q

“ P
`

pXk “ xki1 ,
pYk “ yki2

˘

and F k
pi1,i2q

and Kk
pi1,i2q

are the cumulative distribution
function and the first partial moment function of the normal distribution µk

pi1,i2q
` Z1

k`1σ
k
pi1,i2q
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and they are defined by

F kpi1,i2qpxq “ FZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

Kk
pi1,i2q

pxq “ µkpi1,i2qFZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

` σkpi1,i2qKZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

(3.22)

with
µkpi1,i2q “ xki1 ` bptk, x

k
i1 , y

k
i2qh and σkpi1,i2q “ σptk, x

k
i1 , y

k
i2q
?
h (3.23)

and FZ and KZ are the cumulative distribution function and the first partial moment of the
standard normal distribution.

Finally, we apply the Lloyd method defined in Appendix (D.9) with FX and KX defined by

FX pxq “

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

pkpi1,i2q F
k
pi1,i2q

pxq and KX pxq “

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

pkpi1,i2qK
k
pi1,i2q

pxq. (3.24)

The sensitive part concerns the computation of the joint probabilities pk
pi1,i2q

. Indeed, they
are needed at each step in order to be able to design recursively the quantization tree.

Lemma 3.4. The joint probabilities pk
pi1,i2q

are given by the following forward induction

pk`1
pj1,j2q

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

pkpi1,i2qP
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

(3.25)

where the joint conditional probabilities P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

are
given by the formulas below, depends on the correlation

• if CorrpZ1
k`1, Z

2
k`1q “ ρ “ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2

”

N
`

xki1,i2,j1,`
˘

´N
`

xki1,i2,j1,´
˘

ı

,

(3.26)
where pki2j2 is defined in (3.18) and

xki1,i2,j1,´ “
xk`1
j1´1{2 ´ µ

k
pi1,i2q

σk
pi1,i2q

, xki1,i2,j1,` “
xk`1
j1`1{2 ´ µ

k
pi1,i2q

σk
pi1,i2q

, (3.27)

with µk
pi1,i2q

and σk
pi1,i2q

defined in (3.23).

• if CorrpZ1
k`1, Z

2
k`1q “ ρ ‰ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

´
b

yki2,j2,´ ´ λ
k
i2 ,

b

yki2,j2,` ´ λ
k
i2

ı¯

` P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

”

´

b

yki2,j2,` ´ λ
k
i2 ,´

b

yki2,j2,´ ´ λ
k
i2

¯¯

(3.28)
where

yki2,j2,´ “ 0_
yk`1
j2´1{2 ´ µ

k
i2

κki2
, yki2,j2,` “ 0_

yk`1
j2`1{2 ´ µ

k
i2

κki2
, (3.29)

with µki2, κ
k
i2

and λki2 defined in (3.15).
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Remark 3.5. The probability in the right hand side of (3.28) can be computed using the
cumulative distribution function of a correlated bivariate normal distribution1. Indeed, let

Fρpx1, x2q “ PpX1 ď x1, X2 ď x2q

the cumulative distribution function of the correlated centered Gaussian vector pX1, X2q with
unit variance and correlation ρ, we have

P
`

X1 P ra, bs, X2 P rc, ds
˘

“ Fρpb, dq ´ Fρpb, cq ´ Fρpa, dq ` Fρpa, cq (3.30)

with a, c ě ´8 and b, d ď `8.

Proof.

pk`1
pj1,j2q

“P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

˘

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

P
`

pXk “ xki1 ,
pYk “ yki2

˘

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

pkpi1,i2qP
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

.

• if CorrpZ1
k`1, Z

2
k`1q “ ρ “ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2 P
`

pXk`1 “ xk`1
j1

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2 P
´

sXk`1 P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

| pXk “ xki1 ,
pYk “ yki2

¯

“ pki2j2 P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

¯

“ pki2j2

”

N
`

xki1,i2,j1,`
˘

´N
`

xki1,i2,j1,´
˘

ı

,

• if CorrpZ1
k`1, Z

2
k`1q “ ρ ‰ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

,M
rb,rσ

`

tk, y
k
i2 , Z

2
k`1

˘

P
`

yk`1
j2´1{2, y

k`1
j2`1{2

‰

¯

“ P
´

µkpi1,i2q ` σ
k
pi1,i2q

Z1
k`1 P

`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

, µki2 ` κ
k
i2pZ

2
k`1 ` λ

k
i2q

2 P
`

yk`1
j2´1{2, y

k`1
j2`1{2

‰

¯

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, pZ2
k`1 ` λ

k
i2q

2 P
`

yki2,j2,´, y
k
i2,j2,`

‰

¯

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

´
b

yki2,j2,´ ´ λ
k
i2 ,

b

yki2,j2,` ´ λ
k
i2

ı¯

` P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

”

´

b

yki2,j2,` ´ λ
k
i2 ,´

b

yki2,j2,´ ´ λ
k
i2

¯¯

.

1C++ implementation of the upper right tail of a bivariate normal distribution can be found in John Burkardt’s
website https://people.sc.fsu.edu/~jburkardt/cpp_src/toms462/toms462.html.
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Remark 3.6. Another possibility for the quantization of the Stationary Heston model could be
to use optimal quantizers for the volatility at each date tk in place of using recursive quantization.
Indeed, the volatility pvtqt being stationary and the fact that we required the volatility to start
at time 0 from the invariant measure, we could use the grid of the optimal quantization pv0 of size
N of the stationary measure with its associated weights for every dates, hence setting pvk “ pv0.
We need as well the transitions from time tk to tk`1 defined by

P
`

pvk`1 “ vk`1
j2

| pvk “ vki2
˘

. (3.31)

These probabilities can be computed using the conditional law of the CIR process described
in [CIJR05, And07], which is a non-central chi-square distribution. Then, we would build the
recursive quantizer of the log-asset at date pXk`1 with the standard methodology of recursive
quantization using the already built quantizers of the volatility pvk and the log-asset pXk at time
tk, i.e.

rXk`1 “ Eb,σ
`

tk, pXk, pvk, Z
1
k`1

˘

and pXk`1 “ ProjΓXN1,k`1

`

rXk`1

˘

(3.32)

where, this time, the Euler scheme is not defined in function of the boosted-volatility but directly
in function of the volatility and is given by

Eb,σ
`

t, x, v, z
˘

“ x` h
´

r ´ q ´
v

2

¯

`
?
v
?
hz. (3.33)

However, the difficulties with this approach come from the computation of the couple tran-
sitions

P
`

pXk`1 “ xk`1
j1

, pvk`1 “ vk`1
j2

| pXk “ xki1 , pvk “ vki2
˘

. (3.34)

Indeed, these probability weights would not be as straightforward to compute as the methodology
we adopt in this paper, namely using time-discretization schemes for both components. Our
approach allows us to express the conditional probability of the couple as the probability that
a correlated bi-variate Gaussian vector lies in a rectangle domain and this can be easily be
computed numerically.

3.2.3 About the L2-error

In this part, we study the L2-error induced by the product recursive quantization approximation
pUk “ p pXk, pYkq of sUk “ p sXk, sYkq, the time-discretized processes defined in (3.2) and (3.7) by

sUk “ Fk´1psUk´1, Zkq (3.35)

where Zk “ pZ1
k , Z

2
kq is a standardized correlated Gaussian vector and the hybrid discretization

scheme Fkpu, Zq is given by

Fkpu, Zq “

˜

Eb,σ
`

tk, x, y, Z
1
k`1

˘

M
rb,rσ

`

tk, y, Z
2
k`1

˘

¸

. (3.36)

We recall the definition of the product recursive quantizer pUk “ p pXk, pYkq. Its first component
pXk is the projection of rXk onto ΓXN1,k

and the second component pYk is the projection of rYk onto
ΓYN2,k

, i.e.,
pXk`1 “ ProjΓXN1,k`1

`

rXk`1

˘

and pYk`1 “ ProjΓYN2,k`1

`

rYk`1

˘

(3.37)

where rXk and rYk are defined in (3.12) and (3.20), respectively. Moreover, if we consider the
couple rUk “ p rXk, rYkq, using the above notations we have

rUk “ Fk´1ppUk´1, Zkq. (3.38)
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It has been shown in [FSP18, PS18] that if, for all k “ 0, . . . , n´ 1, the schemes Fkpu, zq are
Lipschitz in u, then there exists constants j “ 1, . . . , n, Cj ă `8 such that

}pUk ´ sUk}2 ď
k
ÿ

j“1

Cj
`

N1,j ˆN2,j

˘´1{2 (3.39)

where pUk and sUk are the processes defined in (3.37) and (3.38). The proof of this result is based
on the extension of Pierce’s lemma to the case of product quantization (see Lemma 2.3 in [PS18]).

In our case, the diffusion of the boosted volatility in the CIR model does not have Lipschitz
drift and volatility components, hence the above result from [FSP18, PS18] does not apply in our
context. Even if we can hope to obtain similar results by applying the same kind of arguments,
the results we obtain have to considered carefully. Indeed, when we take the limit in n Ñ `8,
the number of time-step, the error upper-bound term goes to infinity. However, in practice, we
consider h “ kT {n fixed and then study the behavior of pUk in function of N1,j and N2,j for
j ě k. The proof of the following proposition is given in Appendix C.

Proposition 3.7. Let b, σ, rb and rσ, defined by (3.3) and (3.9), the coefficients of the log-asset
and the boosted-volatility of the Heston model. Let, for every k “ 0, . . . , n, pUk the hybrid recursive
product quantizer at level N1,k ˆN2,k of sUk. Then, for every k “ 0, . . . , n

}pUk ´ sUk}2 ď
k
ÿ

j“0

rAj,k
`

N1,j ˆN2,j

˘´1{2
`Bk

?
h (3.40)

where
rAj,k “ 2

p´2
2p C2

pAj,k

ˆ

2p
p
2
´1qjβjp}

pU0}
p
2
` αp

1´ 2p
p
2
´1qjβjp

1´ 2
p
2
´1βp

˙1{p

(3.41)

with

Aj,k “ 2
k´j
2 e

?
h
2
pk´jq and Bk “ CT phq

k´1
ÿ

j“0

2
k´1´j

2 e
?
h
2
pk´1´jq (3.42)

where
ř

H “ 0 by convention and CT phq “ Op1q.

3.3 Backward algorithm for Bermudan and Barrier options

Bermudan Options A Bermudan option is a financial derivative product that gives the right
to its owner to buy or sell (or to enter to, in the case of a swap) an underlying product with a
given payoff ψtp¨, ¨q at predefined exercise dates tt0, ¨ ¨ ¨ , tnu. Its price, at time t0 “ 0, is given by

sup
τPtt0,¨¨¨ ,tnu

E
”

e´rτ ψτ pXτ , Yτ q | F t0
ı

where Xt and Yt are solutions to the system defined in (3.10).
In this part, we follow the numerical solution first introduced by [BPP05, BP03]. They

proposed to solve discrete-time optimal stopping problems using a quantization tree of the risk
factors Xt and Yt.

Let FX,Y “ pFq0ďkďn the natural filtration of X and Y . Hence, we can define recursively
the sequence of random variable Lp-integrable pVkq0ďkďn

#

Vn “ e´rtn ψnpXn, Ynq,

Vk “ max
`

e´rtk ψkpXk, Ykq,ErVk`1 | Fks
˘

, 0 ď k ď n´ 1
(3.43)
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called Backward Dynamical Programming Principle. Then

V0 “ sup
 

Ere´rτ ψτ pXτ , Yτ q | F0s, τ P Θ0,n

(

with Θ0,n the set of all stopping times taking values in tt0, ¨ ¨ ¨ , tnu. The sequence pVkq0ďkďn is
also known as the Snell envelope of the obstacle process

`

e´rtk ψkpXk, Ykq
˘

0ďkďn
. In the end,

ErV0s is the quantity we are interested in. Indeed, ErV0s is the price of the Bermudan option
whose payoff is ψk and is exercisable at dates tt1, ¨ ¨ ¨ , tnu.

Following what was defined in (3.43), in order to compute ErV0s, we will need to use the
previously defined quantizer of Xk and Yk: pXk and pYk. Hence, for a given global budget N “

N1,0N2,0 ` ¨ ¨ ¨ ` N1,nN2,n, the total number of nodes of the tree by the couple p pXk, pYkq0ďkďn,
we can approximate the Backward Dynamical Programming Principle (3.43) by the following
sequence involving the couple p pXk, pYkq0ďkďn

#

pVn “ e´rtn ψnp pXn, pYnq,

pVk “ max
`

e´rtk ψkp pXk, pYkq,ErpVk`1 | p pXk, pYkqs
˘

, k “ 0, . . . , n´ 1.
(3.44)

Remark 3.8. A direct consequence of choosing recursive Markovian Quantization to spatially
discretize the problem is that the sequence p pXk, pYkq0ďkďn is Markovian. Hence the above se-
quence is the Backward Dynamical Programming Principle of the Snell envelope of

`

e´rtk ψkp pXk, pYkq
˘

0ďkďn
.

This is the main difference with the first approach of [BPP05, BP03], where in there case they
only had a pseudo-Snell envelope of

`

e´rtk ψkp pXk, pYkq
˘

0ďkďn
.

Using the discrete feature of the quantizers, (3.44) can be rewritten
$

’

’

’

’

’

&

’

’

’

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rtn ψnpx

n
i1 , y

n
i2q,

i1 “ 1, . . . , N1,n

i2 “ 1, . . . , N2,n

pvkpx
k
i1 , y

k
i2q “ max

´

e´rtk ψkpx
k
i1 , y

k
i2q,

N1,k`1
ÿ

j1“1

N2,k`1
ÿ

j2“1

πkpi1,i2q,pj1,j2qpvk`1px
k`1
j1

, yk`1
j2
q

¯

,
k “ 0, . . . , n´ 1
i1 “ 1, . . . , N1,k

i2 “ 1, . . . , N2,k

(3.45)
where πk

pi1,i2q,pj1,j2q
“ P

`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

is the conditional
probability weight given in (3.28). Finally, the approximation of the price of the Bermudan
option is given by

E
“

pv0px0, pY0q
‰

“

N2,0
ÿ

i“1

pi pv0px0, y
0
i q (3.46)

with pi “ P
`

pY0 “ y0
i

˘

given by (2.11).

Barrier Options A Barrier option is a path-dependent financial product whose payoff at
maturity date T depends on the value of the process XT at time T and its maximum or minimum
over the period r0, T s. More precisely, we are interested by options with the following types of
payoff h

h “ fpXT q1tsuptPr0,T sXtPIu
or h “ fpXT q1tinftPr0,T sXtPIu (3.47)

where I is an unbounded interval of R, usually of the forme p´8, Ls or rL,`8q (L is the barrier)
and f can be any vanilla payoff function (Call, Put, Spread, Butterfly, ...).

In this part, we follow the methodology initiated in [Sag10] in the case of functional quan-
tization. This work is based on the Brownian bridge method applied to the Euler-Maruyama
scheme as described e.g. in [Pag18]. We generalize it to stochastic volatility models and product
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Markovian recursive quantization. Xt being discretized by an Euler-Maruyama scheme, yielding
sXk with k “ 0, . . . , n, we can determine the law of maxtPr0,T s sXt and mintPr0,T s sXt given the
values sXk “ xk, sYk “ yk, k “ 0, . . . , n

L
´

max
tPr0,T s

sXt | sXk “ xk, sYk “ yk, k “ 0, . . . , n
¯

“ L
´

max
k“0,...,n´1

`

Gkpxk,ykq,xk`1

˘´1
pUkq

¯

(3.48)

and

L
´

min
tPr0,T s

sXt | sXk “ xk, sYk “ yk, k “ 0, . . . , n
¯

“ L
´

max
k“0,...,n´1

`

F kpxk,ykq,xk`1

˘´1
pUkq

¯

(3.49)

where pUkqk“0,...,n´1 are i.i.d uniformly distributed random variables over the unit interval and
pGk
px,yq,zq

´1 and pF k
px,yq,zq

´1 are the inverse of the conditional distribution functions Gk
px,yq,z and

F k
px,yq,z defined by

Gkpx,yq,zpuq “
´

1´ e
´2n px´uqpz´uq

Tσ2ptk,x,yq

¯

1tuěmaxpx,zqu (3.50)

and
F kpx,yq,zpuq “ 1´

´

1´ e
´2n px´uqpz´uq

Tσ2ptk,x,yq

¯

1tuďminpx,zqu . (3.51)

Now, using the resulting representation formula for E fp sXT ,maxtPr0,T s sXtq (see e.g. [Sag10,
Pag18]), we have a new representation formula for the price of up-and-out options sPUO and
down-and-out options sPDO

sPUO “ e´rT E
“

fp sXT q1suptPr0,T s
sXtďL

‰

“ e´rT E

„

fp sXT q

n´1
ź

k“0

Gk
pXk,Y kq, sXk`1

pLq



(3.52)

and

sPDO “ e´rT E
“

fp sXT q1inftPr0,T s sXtěL

‰

“ e´rT E

„

fp sXT q

n´1
ź

k“0

´

1´ F k
p sXk,sYkq, sXk`1

pLq
¯



(3.53)

where L is the barrier.

Finally, replace sXk and sYk by pXk and pYk and apply the recursive algorithm in order to
approximate sPUO or sPDO by ErpV0s or equivalently Erpv0px0, pY0qs

#

pVn “ e´rT fp pXnq,

pVk “ E
“

gkp pXk, pYk, pXk`1qpVk`1 | p pXk, pYkq
‰

, 0 ď k ď n´ 1
(3.54)

that can be rewritten
$

’

’

’

’

’

&

’

’

’

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rT fpxni q,

i “ 1, . . . , N1,n

j “ 1, . . . , N2,n

pvkpx
k
i1 , y

n
i2q “

N1,k`1
ÿ

j1“1

N2,k`1
ÿ

j2“1

πkpi1,i2q,pj1,j2qpvk`1px
k`1
j1

, yk`1
j2
qgkpx

k
i1 , y

k
i2 , x

k`1
j1
q,

k “ 0, . . . , n´ 1
i “ 1, . . . , N1,k

j “ 1, . . . , N2,k

(3.55)
with πk

pi1,i2q,pj1,j2q
“ P

`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

the conditional proba-
bilities given in (3.28) and gkpx, y, zq is either equal to Gk

px,yq,zpLq or 1 ´ F k
px,yq,zpLq depending

on the option type. Finally, the approximation of the price of the barrier option is given by

ErpV0s “ E
“

pv0px0, pY0q
‰

“

N2,0
ÿ

i“1

pi pv0px0, y
0
i q (3.56)

with pi “ P
`

pY0 “ y0
i

˘

given by (2.11).
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3.4 Numerical illustrations

In this part, we deal with numerical experiments in the Stationary Heston model. We will apply
the methodology based on hybrid product recursive quantization to the pricing of European,
Bermudan and Barrier options. For the model parameters, we consider the parameters given in
Table 2 obtained after the penalized calibration procedure and instead of considering the market
value for S0, we take S0 “ 100 in order to get prices of an order we are used to. For the size of
the quantization grids, we consider grids of constant size for all time-steps: for all k “ 0, . . . , n,
we take N1,k “ N1 and N2,k “ N2 where n is the number of time steps. During the numerical
tests, we vary the tuple values pn,N1, N2q.

All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core i9 CPU. The computations of the transition probabilities are parallelized on the CPU.

European options First, we compare, in Table 3, the price of European options with maturity
T “ 0.5 (6 months) computed using the quantization tree to the benchmark price computed
using the methodology based on the quadrature formula (the quadrature formula with Laguerre
polynomials) explained in Section 2. We give, in parenthesis, the relative error induced by the
quantization-based approximation. We compare the behavior of the pricers with different size of
grids and numbers of discretization steps. We notice that the main part of the error is explained
by the size of the time-step n.

pN1, N2q

K Benchmark p20, 5q p50, 10q p100, 10q p150, 10q

Call

80 20.17 19.68 p2.46%q 19.99 p0.92%q 20.04 p0.64%q 20.06 p0.57%q
85 15.56 14.97 p3.75%q 15.35 p1.31%q 15.42 p0.89%q 15.43 p0.79%q
90 11.24 10.60 p5.68%q 11.03 p1.84%q 11.10 p1.18%q 11.12 p1.02%q
95 7.383 6.781 p8.14%q 7.202 p2.44%q 7.286 p1.30%q 7.306 p1.03%q
100 4.196 3.727 p11.1%q 4.081 p2.73%q 4.173 p0.54%q 4.194 p0.04%q

Put

100 4.469 4.160 p6.90%q 4.396 p1.61%q 4.459 p0.22%q 4.472 p0.08%q
105 7.171 7.034 p1.91%q 7.178 p0.09%q 7.244 p1.01%q 7.257 p1.19%q
110 10.86 10.84 p0.18%q 10.91 p0.46%q 10.97 p1.02%q 10.98 p1.11%q
115 15.38 15.43 p0.33%q 15.40 p0.12%q 15.43 p0.37%q 15.44 p0.41%q
120 20.30 20.43 p0.60%q 20.31 p0.02%q 20.29 p0.05%q 20.29 p0.04%q

Time 2.6s 39s 192s 480s

Table 3: Comparison between European options prices, with maturity T “ 0.5 (6 months),
given by quantization and the benchmark, in function of the strike K and pN1, N2q where we set
n “ 180.
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n

K Benchmark 30 60 90 180

Call

80 20.17 20.00 p0.83%q 20.03 p0.70%q 20.03 p0.72%q 19.99 p0.92%q
85 15.56 15.33 p1.47%q 15.38 p1.11%q 15.39 p1.07%q 15.35 p1.31%q
90 11.24 10.94 p2.60%q 11.04 p1.78%q 11.05 p1.63%q 11.03 p1.84%q
95 7.383 7.045 p4.57%q 7.170 p2.87%q 7.203 p2.43%q 7.202 p2.44%q
100 4.196 3.879 p7.55%q 4.016 p4.29%q 4.057 p3.31%q 4.081 p2.73%q

Put

100 4.469 4.161 p6.89%q 4.306 p3.64%q 4.354 p2.56%q 4.396 p1.61%q
105 7.171 6.972 p2.77%q 7.081 p1.25%q 7.125 p0.64%q 7.178 p0.09%q
110 10.86 10.81 p0.44%q 10.85 p0.05%q 10.87 p0.12%q 10.91 p0.46%q
115 15.38 15.39 p0.06%q 15.38 p0.04%q 15.39 p0.08%q 15.40 p0.12%q
120 20.30 20.29 p0.08%q 20.29 p0.09%q 20.29 p0.06%q 20.31 p0.02%q

Time 9s 16s 24s 42s

Table 4: Comparison between European options prices, with maturity T “ 0.5 (6 months), given
by quantization and the benchmark, in function of the strike K and of the size n where we set
pN1, N2q “ p50, 10q.

Bermudan options Then, in Figure 11, we display the prices of monthly exercisable Bermu-
dan options with maturity T “ 0.5 (6 months) for Call and Put of strikes K “ 100. The prices
are computed by quantization and we compare the behavior of the pricer for different choices of
time-step n and sizes of the asset grids N1 where we set N2 “ 10. Again, we notice that the
choice of n has a high impact on the price given by quantization compared to the choice of the
grid size.

 30  60  90  180
n
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4.0

4.1

4.2

4.3

4.4

Pr
ice

s

Call (K=100) -- N2=10
EU price

N1
50
100
200

 30  60  90  180
n

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Pr
ice

s

Put (K=100) -- N2=10
EU price

N1
50
100
200

Figure 11: Prices of Bermudan options in the stationary Heston model given by product hybrid
recursive quantization with fixed value N2 “ 10.

Barrier options Finally, in Figure 12, we display the prices of an up-and-out Barrier option
with strike K “ 100, maturity T “ 0.5 (6 months), barrier L “ 115 and N2 “ 10 computed with
quantization. Again, we can notice the impact of n on the approximated price.
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Figure 12: Prices of Barrier options with strike K “ 100 in the stationary Heston model given
by product hybrid recursive quantization with fixed value N2 “ 10.
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Appendices

A Discretization scheme for the volatility preserving the positiv-
ity

We recall the dynamics of the volatility

dvt “ κpθ ´ vtqdt` ξ
?
vtdĂWt

with κ ą 0, θ ą 0 and ξ ą 0. In this section, we discuss the choice of the discretization scheme
under the Feller condition, which ensures the positivity of the process.

Euler-Maruyama scheme. Discretizing the volatility using an Euler-Maruyama scheme

svtk`1
“ svtk ` κpθ ´ svtkqh` ξ

a

svtk
?
hZ2

k`1

with tk “ kh, h “ T {n and Z2
k`1 “ pĂWtk`1

´ ĂWtkq{
?
h may look natural. However, such a

scheme clearly does not preserve positivity of the process even if the Feller condition is fulfilled
since

P
`

svt1 ă 0
˘

“ P

ˆ

Z ă
´v0 ´ κpθ ´ v0qh

ξ
?
v0

?
h

˙

ą 0

with Z „ N p0, 1q. This suggests to introduce the Milstein scheme which is quite tractable in
one dimension in absence of Lévy areas.

Milstein scheme. The Milstein scheme of the stochastic volatility is given by

svtk`1
“Mb,σ

`

tk, svtk`1
, Z2

k`1

˘

where (see (3.4))

Mb,σpt, x, zq “ x´
σpxq

2σ1xpxq
` h

ˆ

bpt, xq ´
pσσ1xqpxq

2

˙

`
pσσ1xqpxqh

2

ˆ

z `
1

?
hσ1xpxq

˙2

.

with bpxq “ κpθ ´ xq, σpxq “ ξ
?
x and σ1xpxq “

ξ
2
?
x
. Consequently, under the Feller condition,

the positivity ofMb,σpt, x, zq is ensured if

x ě
σpxq

2σ1xpxq
ě 0, bpt, xq ě

pσσ1xqpxq

2
ě 0.

In our case, if the first condition holds true since

σpxq

2σ1xpxq
“

ξ
?
x

2 ξ
2
?
x

“ x

the second one fails. Indeed
pσσ1xqpxq

2
“
ξ
?
x ξ

2
?
x

2
“
ξ2

4

can be bigger than bpt, xq. In order to solve this problem, we consider the following boosted
volatility process

Yt “ eκt vt, t P r0, T s. (A.1)
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Milstein scheme for the boosted volatility. Let Yt “ eκt vt, t P r0, T s for some κ ą 0, which
satisfies, owing to Itô’s formula

dYt “ eκt κθdt` ξ eκt{2
a

YtdĂWt.

Remark A.1. The process pYtqtPr0,T s will have a higher variance but, having in mind a quantized
scheme, this has no real impact (by contrast with a Monte Carlo simulation).

Now, if we look at the Milstein discretization scheme of Yt

sYtk`1
“M

rb,rσ

`

tk, sYtk , Z
2
k`1

˘

using the notation defined in (3.4) where drift and volatility terms of the boosted process, now
time-dependents, are given by

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x eκt{2 and rσ1xpt, xq “

ξ eκt{2

2
?
x
.

Under the Feller condition, the positivity of the scheme is ensured, since

rσpt, xq

2rσ1xpt, xq
“ x and

prσrσ1xqpt, xq

2
“
ξ2 eκt

4
ď rbpt, xq “ eκt κθ.

The last inequality is satisfied thanks to the condition ξ2

2κθ ď 1 ensuring the positivity of the
scheme.

B Lp-linear growth of the hybrid scheme

The aim of this section is to show the Lp-linear growth of the scheme Fkpu, zq with u “ px, yq
defined by

Fkpu, Zq “

˜

Eb,σ
`

tk, x, y, Z
1
k`1

˘

M
rb,rσ

`

tk, y, Z
2
k`1

˘

¸

. (B.1)

where the schemes Eb,σ andM
rb,rσ

are defined in (3.8) and (3.4), respectively.
The results on the Lp-linear growth of the schemes are essentially based on the key Lemma

2.1 proved in [PS18] in Rd that we recall below.

Lemma B.1. (a) Let u P Rd and Apuq be a d ˆ q-matrix and let apuq P Rd. Let p P r2, 3q.
For any centered random vector ζ P Lp

Rd
pΩ,A,Pq, one has for every h P p0,`8q

E
“

|apuq `
?
hApuqζ|p

‰

ď

ˆ

1`
pp´ 1qpp´ 2q

2
h

˙

|apuq|p ` h
`

1` p` h
p
2
´1
˘

}Apuq}pE
“

|ζ|p
‰

(B.2)
where }Apuq} “

`

TrpApuqA‹puqq
˘1{2.

(b) In particular, if |apuq| ď |u|p1` Lhq ` Lh and }Apuq}p ď 2p´1Υpp1` |u|pq, then

E
“

|apuq `
?
hApuqζ|p

‰

ď
`

eκph L`Kp

˘

h`
`

eκph`Kph
˘

|u|p, (B.3)

where

κp “
pp´ 1qpp´ 2q

2
` 2pL and Kp “ 2p´1Υp

`

1` p` h
p
2
´1
˘

E
“

|ζ|p
‰

. (B.4)
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Now, we will apply Lemma B.1 to Fkpu, zq defined in (B.1) further on in order to show its
Lp-linear growth. Let apuq P R2 and let Apuq be a 2ˆ 3-matrix defined by

apuq “

˜

x` h
`

r ´ e´κtk y
2

˘

y ` eκtk κθh

¸

, Apuq “

˜

e´κtk{2
?
y 0 0

0
?
y eκtk{2

?
h ξ

2 eκtk
4

¸

and ζ “

¨

˝

Z1
k`1

Z2
k`1

pZ2
k`1q

2 ´ 1

˛

‚.

First, we show the linear growth of apuq

|apuq| “
´ˇ

ˇ

ˇ
x` h

`

r ´
e´κtk y

2

˘

ˇ

ˇ

ˇ

2
`
ˇ

ˇy ` eκtk κθh
ˇ

ˇ

2
¯1{2

“

´

|x|2 ` |y|2 ` h2
´

r2 `
e´2κtk

4
|y|2

¯

` e2κtk κ2θ2h2
¯1{2

ď

´

|u|2
´

1` h2 e´2κtk

4

¯

` h2
`

r2 ` e2κtk κ2θ2
˘

¯1{2

ď |u|
´

1` h2 e´2κtk

4

¯1{2
` h

`

r2 ` e2κtk κ2θ2
˘1{2

ď |u|
´

1` h
h

2

¯

` h
`

r2 ` e2κT κ2θ2
˘1{2

ď |u|p1` Lhq ` Lh

where L “ max
´

1
2 ,
`

r2 ` e2κT κ2θ2
˘1{2

¯

. Then, we study }Apuq}p

}Apuq}p “
´

e´κtk |y| ` |y| eκtk `h
ξ4 e2κtk

16

¯p{2

“

´

|y|pe´κtk ` eκtkq ` h
ξ4 e2κtk

16

¯p{2

ď 2
p
2
´1
´

|y|
p
2 pe´κtk ` eκtkq

p
2 ` h

p
2
ξ2p epκtk

4p

¯

ď 2
p
2
´1
´

|y|p ` 1

2
pe´κtk ` eκtkq

p
2 ` h

p
2
ξ2p epκtk

4p

¯

ď 2
p
2
´1 p1` eκT q

p
2

2

´

|y|p ` 1` h
p
2
ξ2p epκT

22p´1

1

p1` eκT q
p
2

¯

ď 2p´1Υp
`

1` |u|p
˘

where Υp “
p1`eκT q

p
2

2 ` h
p
2
ξ2p epκT

22p
. Hence, by Lemma B.1, the discretization scheme Fk has an

Lp-linear growth
E
“

|Fkpu, Zk`1q|
p
‰

ď αp ` βp|u|
p

with
αp “

`

eκph L`Kp

˘

h and βp “ eκph`Kph (B.5)

where Kp and κp are defined in the Lemma B.1.

C Proof of the L2-error estimation of Proposition 3.7

We have, for every k “ 0, . . . , n´ 1

pUk`1 ´ sUk`1 “ pUk`1 ´ rUk`1 ` rUk`1 ´ sUk`1

“ pUk`1 ´ rUk`1 ` FkppUk, Zk`1q ´ FkpsUk, Zk`1q
(C.1)
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by the very definition of rUk`1 and sUk`1. Hence,

}pUk`1 ´ sUk`1}2 ď }
pUk`1 ´ rUk`1}2 ` }

rUk`1 ´ sUk`1}2

ď }pUk`1 ´ rUk`1}2 ` }Fkp
pUk, Zk`1q ´ FkpsUk, Zk`1q}2 .

(C.2)

Using the definition of Milstein scheme of the boosted -volatility models M
rb,rσ

in (3.5), the 1
2 -

Hölder property of
?
x, for every y, y1 P R` one has

ˇ

ˇM
rb,rσ

`

t, y, z
˘

´M
rb,rσ

`

t, y1, z
˘ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

´

z
ξ eκt{2

?
h

2
`
?
y
¯2
´

´

z
ξ eκt{2

?
h

2
`
a

y1
¯2
ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

?
y ´

a

y1
ˇ

ˇ

`

|z|ξ eκt{2
?
h`

?
y `

a

y1
˘

ď
a

|y ´ y1|
?
h|z|ξ eκt{2`|y ´ y1|

(C.3)

and using the definition of the Euler-Maruyama scheme of the log-asset Eb,σ defined in (3.8) we
have, for any x, x1, y, y1 P R`

ˇ

ˇEb,σ
`

t, x, y, z
˘

´ Eb,σ
`

t, x1, y1, z
˘ˇ

ˇ ď |x´ x1| `
e´κt

2
h|y ´ y1| ` e´κt{2

?
h|z|

a

|y ´ y1|. (C.4)

Now, when we replace x, y, x1, y1 by pXk, pYk, sXk, sYk in the last expression, we get an upper-
bound for the last term of (C.2)

›

›FkppUk, Zk`1q ´ FkpsUk, Zk`1q
›

›

2

ď
›

›Eb,σ
`

tk, pXk, pYk, Z
1
k`1

˘

´ Eb,σ
`

tk, sXk, sYk, Z
1
k`1

˘›

›

2

`
›

›M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

´M
rb,rσ

`

tk, sYk, Z
2
k`1

˘›

›

2

ď } pXk ´ sXk}2 `

´

1`
e´κtk

2
h
¯

}pYk ´ sYk}2 `
›

›

›

?
h
`

ξ eκtk{2` e´κtk{2
˘

b

|pYk ´ sYk|
›

›

›

2

ď } pXk ´ sXk}2 `

´

1`
e´κtk

2
h
¯

}pYk ´ sYk}2 `
›

›

›

a

2hpξ2 eκtk ` e´κtkq

b

|pYk ´ sYk|
›

›

›

2

.

(C.5)

Now, using that
?
a
?
b ď 1

2

`

a
λ ` bλ

˘

with
?
a “

a

2hpξ2 eκtk ` e´κtkq and
?
b “

b

|pYk ´ sYk|

where we considere that λ “
?
hp1´

?
hq. Wo choose λ of this order because we wish to divide

equally the impact of h and get
?
h on each side. Hence, we have

a

2hpξ2 eκtk ` e´κtkq

b

|pYk ´ sYk| ď
1

2

ˆ

2hpξ2 eκtk ` e´κtkq

λ
` |pYk ´ sYk|λ

˙

. (C.6)

Then,
›

›FkppUk, Zk`1q ´ FkpsUk, Zk`1q
›

›

2

ď } pXk ´ sXk}2 `

´

1`
e´κtk

2
h
¯

}pYk ´ sYk}2 `
›

›

›

1

2

ˆ

2hpξ2 eκtk ` e´κtkq

λ
` |pYk ´ sYk|λ

˙

›

›

›

2

ď } pXk ´ sXk}2 `

´

1`
e´κtk

2
h`

λ

2

¯

}pYk ´ sYk}2 ` pξ
2 eκtk ` e´κtkq

h

λ

ď
?

2
´

1`
h

2
`
λ

2

¯

}pUk ´ sUk}2 ` CT
h

λ

ď
?

2
´

1`

?
h

2

¯

}pUk ´ sUk}2 ` CT phq
?
h

(C.7)
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where CT phq “ p1` ξ2 eκT qp1´
?
hq´1 “ Op1q.

Finally, (C.2) is upper-bounded by

}pUk`1 ´ sUk`1}2 ď }
pUk`1 ´ rUk`1}2 `

?
2
´

1`

?
h

2

¯

}pUk ´ sUk}2 ` CT phq
?
h

ď

k`1
ÿ

j“0

}pUj ´ rUj}22
k´j`1

2

´

1`

?
h

2

¯k´j`1
`
?
hCT phq

k
ÿ

j“0

2
k´j
2

´

1`

?
h

2

¯k´j

ď

k`1
ÿ

j“0

Aj,k`1}pUj ´ rUj}2 `Bk`1

?
h

(C.8)
where

Aj,k “ 2
k´j
2 e

?
h
2
pk´jq and Bk “ CT phq

k´1
ÿ

j“0

2
k´1´j

2 e
?
h
2
pk´1´jq (C.9)

and
ř

H “ 0 by convention.

Now, we follow the lines of the proof developed in [PS18], we apply the revisited Pierce’s
lemma for product quantization (Lemma 2.3 in [PS18]) with r “ 2 and let p ą r “ 2, which
yields

}pUk`1 ´ sUk`1}2 ď 2
p´2
2p Cp

k`1
ÿ

j“0

Aj,k`1}rUj}p
`

N1,j ˆN2,j

˘´1{2
`Bk`1

?
h (C.10)

where Cp “ 2C1,p and C1,p is the constant appearing in Pierce lemma (see the second item in
theorem D.8 and [GL00] for further details) and we used that }rUj}p ě σpprUjq “ infaPR2 }rUj´a}p .
Moreover, noting that the hybrid discretization scheme Fk has an Lp-linear growth, (see Appendix
B), i.e.

@k “ 0, . . . , n´ 1, @u P R2, E
“

|Fkpu, Zk`1q|
p
‰

ď αp ` βp|x|
p, (C.11)

where the coefficients αp and βp are defined in (B.5). Hence, for all j “ 0, . . . , n´ 1, we have

}rUj`1}
p
p
“ E

“

E
“

|FjppUj , Zj`1q|
p | pUj

‰‰

ď αp ` βp}pUj}
p
p
. (C.12)

Furthermore, E
“

|pUj |
p
‰

can be upper-bounded using Jensen’s inequality and the stationary prop-
erty satisfied by pXj and pYj independently. Indeed, they are one-dimensional quadratic optimal
quantizers of rXj and rYj , respectively, hence they are stationary in the sense of Proposition D.6.

}pUj}
p
p
ď 2

p
2
´1
´

E
“

| pXj |
p
‰

` E
“

|pYj |
p
‰

¯

ď 2
p
2
´1

ˆ

E
”

ˇ

ˇE
“

rXj | pXj

‰ˇ

ˇ

p
ı

` E
”

ˇ

ˇE
“

rYj | pYj
‰ˇ

ˇ

p
ı

˙

ď 2
p
2
´1
´

E
“

| rXj |
p
‰

` E
“

|rYj |
p
‰

¯

“ 2
p
2
´1}rUj}

p
p

ď 2
p
2
´1}rUj}

p
2
.

(C.13)
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Now, plugging this upper-bound in (C.12) and by a standard induction argument, we have

}rUj}
p
p
ď αp ` βp2

p
2
´1}rUj´1}

p
2

ď 2p
p
2
´1qjβjp}

pU0}
p
2
` αp

j´1
ÿ

i“0

`

2
p
2
´1βp

˘i

ď 2p
p
2
´1qjβjp}

pU0}
p
2
` αp

1´ 2p
p
2
´1qjβjp

1´ 2
p
2
´1βp

.

(C.14)

Hence, using the upper-bound (C.14) in (C.10), we have

}pUk`1 ´ sUk`1}2

ď 2
p´2
2p C2

p

k`1
ÿ

j“0

Aj,k`1

ˆ

2p
p
2
´1qjβjp}

pU0}
p
2
` αp

1´ 2p
p
2
´1qjβjp

1´ 2
p
2
´1βp

˙1{p
`

N1,j ˆN2,j

˘´1{2
`Bk`1

?
h

ď

k`1
ÿ

j“0

rAj,k`1

`

N1,j ˆN2,j

˘´1{2
`Bk`1

?
h

(C.15)
yielding the desired result with

rAj,k “ 2
p´2
2p C2

pAj,k

ˆ

2p
p
2
´1qjβjp}

pU0}
p
2
` αp

1´ 2p
p
2
´1qjβjp

1´ 2
p
2
´1βp

˙1{p

. (C.16)

D Quadratic Optimal Quantization: Generic Approach

Let X be a R-valued random variable with distribution PX defined on a probability space
pΩ,A,Pq such that X P L2

RpΩ,A,Pq.

Definition D.1. Let ΓN “ txN1 , . . . , x
N
Nu Ă R be a subset of size N , called N -quantizer. A

Borel partition pCipΓN qqiPt1,...,Nu of R is a Voronoï partition of R induced by the N -quantizer
ΓN if, for every i P t1, . . . , Nu,

CipΓN q Ă
 

ξ P R, |ξ ´ xNi | ď min
j‰i

|ξ ´ xNj |
(

.

The Borel sets CipΓN q are called Voronoï cells of the partition induced by ΓN .

Remark D.2. Any such N -quantizer is in correspondence with the N -tuple x “ pxN1 , . . . , xNN q P
pRqN as well as with all N -tuples obtained by a permutation of the components of x. This is
why we will sometimes replace ΓN by x.

If the quantizers are in non-decreasing order: xN1 ă xN2 ă ¨ ¨ ¨ ă xNN´1 ă xNN , then the Voronoï
cells are given by

CipΓN q “
`

xNi´1{2, x
N
i`1{2

‰

, i P t1, . . . , N ´ 1u, CN pΓN q “
`

xNN´1{2, x
N
N`1{2

˘

(D.1)

where @i PP t2, . . . , Nu, xNi´1{2 “
xNi´1`x

N
i

2 and xN1{2 “ ´8 and xNN`1{2 “ `8.

Definition D.3. The Voronoï quantization of X by ΓN , pXN , is defined as the nearest neighbour
projection of X onto ΓN

pXN “ ProjΓN pXq “
N
ÿ

i“1

xNi 1XPCipΓN q (D.2)
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and its associated probabilities, also called weights, are given by

P
`

pXN “ xNi
˘

“ PX
`

CipΓN q
˘

“ P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯

.

Definition D.4. The quadratic distortion function at level N induced by an N -tuple x “
pxN1 , . . . , x

N
N q is given by

Q2,N : x ÞÝÑ
1

2
E
”

min
iPt1,...,Nu

|X ´ xNi |
2
ı

“
1

2
E
“

distpX,ΓN q
2
‰

“
1

2
}X ´ pXN}2

2
.

Of course, the above result can be extended to the Lp case by considering the Lp-mean
quantization error in place of the quadratic one.

We briefly recall some classical theoretical results, see [GL00, Pag18] for further details. The
first one treats of existence of optimal quantizers.

Theorem D.5. (Existence of optimal N -quantizers) Let X P L2
RpPq and N P N‹.

(a) The quadratic distortion function Q2,N at level N attains a minimum at a N -tuple x‹ “
pxN1 , . . . , x

N
N q and Γ‹N “

 

xNi , i P t1, . . . , Nu
(

is a quadratic optimal quantizer at level N .

(b) If the support of the distribution PX of X has at least N elements, then x‹ “ pxN1 , . . . , x
N
N q

has pairwise distinct components, PX
`

CipΓ
‹
N q

˘

ą 0, i P t1, . . . , Nu. Furthermore, the
sequence N ÞÑ infxPpRqN Q2,Npxq converges to 0 and is decreasing as long as it is positive.

A really interesting and useful property concerning quadratic optimal quantizers is the sta-
tionary property, this property is deeply connected to the addressed problem after for the opti-
mization of the quadratic optimal quantizers in (D.6).

Proposition D.6. (Stationarity) Assume that the support of PX has at least N elements. Any
L2-optimal N -quantizer ΓN P pRqN is stationary in the following sense: for every Voronoï
quantization pXN of X,

E
“

X | pXN
‰

“ pXN .

Moreover P
`

X P
Ť

i“1,...,N BCipΓN q
˘

“ 0, so all optimal quantization induced by ΓN a.s. coin-
cide.

The uniqueness of an optimal N -quantizer, due to Kieffer [Kie82], was shown in dimension
one under some assumptions on the density of X.

Theorem D.7. (Uniqueness of optimal N -quantizers see [Kie82]) If PX pdξq “ ϕpξqdξ with
logϕ concave, then for every N ě 1, there is exactly one stationary N -quantizer (up to the
permutations of the N -tuple). This unique stationary quantizer is a global (local) minimum of
the distortion function, i.e.

@N ě 1, arg min
RN

Q2,N “ tx
‹u.

In what follows, we will drop the star notation (‹) when speaking of optimal quantizers, x‹

and Γ‹N will be replaced by x and ΓN .
The next result elucidates the asymptotic behavior of the distortion. We saw in theorem

D.5 that the infimum of the quadratic distortion converges to 0 as N goes to infinity. The next
theorem, known as Zador’s Theorem, establishes the sharp rate of convergence of the Lp-mean
quantization error.

Theorem D.8. (Zador’s Theorem) Let p P p0,`8q.
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(a) Sharp rate [Zad82, GL00]. Let X P Lp`δR pPq for some δ ą 0. Let PX pdξq “ ϕpξq ¨
λpdξq ` νpdξq, where ν K λ i.e., is singular with respect to the Lebesgue measure λ on R.
Then, there is a constant rJp,1 P p0,`8q such that

lim
NÑ`8

N min
ΓNĂR,|ΓN |ďN

}X ´ pXN}p “
1

2ppp` 1q

„
ż

R

ϕ
1

1`pdλ

1` 1
p

. (D.3)

(b) Non asymptotic upper-bound [GL00, Pag18]. Let δ ą 0. There exists a real constant
C1,p P p0,`8q such that, for every R-valued random variable X,

@N ě 1, min
ΓNĂR,|ΓN |ďN

}X ´ pXN}p ď C1,pσδ`ppXqN
´1 (D.4)

where, for r P p0,`8q, σrpXq “ minaPR }X ´ a}r ď `8 is the Lr-pseudo-standard devia-
tion.

Now, we will be interested by the construction of such quadratic optimal quantizer. We
differentiate Q2,N, whose gradient is given by

∇Q2,Npxq “

ˆ

E
”

pxNi ´Xq1X P
`

xN
i´1{2

,xN
i`1{2

‰

ı

˙

i“1,...,N

. (D.5)

Moreover, if x is solution to the distortion minimization problem then it satisfies

∇Q2,Npxq “ 0 ðñ xNi “

E
”

X 1
X P

`

xN
i´1{2

,xN
i`1{2

‰

ı

P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯ , i “ 1, . . . , N

ðñ xNi “
KX

`

xNi`1{2

˘

´KX

`

xNi´1{2

˘

FX
`

xNi`1{2

˘

´ FX
`

xNi´1{2

˘ , i “ 1, . . . , N

(D.6)

where KX p¨q and FX p¨q are the first partial moment and the cumulative distribution respectively,
function of X, i.e.

KX pxq “ E
“

X 1Xďx
‰

and FX pxq “ P
`

X ď x
˘

. (D.7)

Hence, one can notices that the optimal quantizer that cancel the gradient defined in (D.6),
hence is an optimal quantizer, is a stationary quantizer in the following sense

E
“

pxN | X
‰

“ pXN . (D.8)

The last equality in (D.6) was the starting point to the development of the first method
devoted to the numerical computation of optimal quantizers: the Lloyd’s method I. This method
was first devised in 1957 by S.P. Lloyd and published later [Llo82]. Starting from a sorted N -
tuple xr0s and with the knowledge of the first partial moment KX and the cumulative distribution
function FX ofX, the algorithm, which is essentially a deterministic fixed point method, is defined
as follows

x
N,rn`1s
i “

KX

`

x
N,rns
i`1{2

˘

´KX

`

x
N,rns
i´1{2

˘

FX
`

x
N,rns
i`1{2

˘

´ FX
`

x
N,rns
i´1{2

˘

, i “ 1, . . . , N. (D.9)

In the seminal paper of [Kie82], it has been shown that
`

xrns
˘

ně1
converges exponentially fast

toward x, the optimal quantizer, when the density ϕ of X is log-concave and not piecewise affine.
Numerical optimizations can be made in order to increase the rate of convergence to the optimal
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quantizer such as fixed point research acceleration, for example the Anderson acceleration (see
[And65] for the original paper and [WN11] for details on the procedure).

Of course, other algorithms exist, such as the Newton Raphson zero search procedure or its
variant the Levenberg–Marquardt algorithm which are deterministic procedures as well if the
density, the first partial moment and the cumulative distribution function of X are known. Ad-
ditionally, we can cite stochastic procedures such as the CLVQ procedure (Competitive Learning
Vector Quantization) which is a zero search stochastic gradient and the randomized version of
the Lloyd’s method I. For more details, the reader can refer to [Pag18, PY16].

Once the algorithm (D.9) has been converging, we have at hand the quadratic optimal quan-
tizer pXN of X and its associated probabilities given by

P
`

pXN “ xni
˘

“ FX
`

xNi`1{2

˘

´ FX
`

xNi´1{2

˘

, i “ 1, . . . , n. (D.10)
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