An explicit representation for the axisymmetric solutions of the free Maxwell equations

Mayeul Arminjon

To cite this version:

Mayeul Arminjon. An explicit representation for the axisymmetric solutions of the free Maxwell equations. 2020. hal-02434217v3

HAL Id: hal-02434217
https://hal.science/hal-02434217v3
Preprint submitted on 29 Jan 2020 (v3), last revised 4 Apr 2020 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An explicit representation for the axisymmetric solutions of the free Maxwell equations

Mayeul Arminjon
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
E-mail: Mayeul.Arminjon@3sr-grenoble.fr

Short title: Explicit representation for axisymmetric free Maxwell fields

Abstract

Garay-Avendaño \& Zamboni-Rached (2014) defined two classes of axisymmetric solutions of the free Maxwell equations. We show that, by combining these two classes of solutions, one is able to describe in explicit form all time-harmonic axisymmetric free Maxwell fields, and hence, by summation on frequencies, all axisymmetric free Maxwell fields. This provides an explicit representation for these fields. It will be important, e.g., to have the interstellar radiation field in a disc galaxy modelled as an exact solution of the free Maxwell equations.

Keywords: Maxwell equations; axial symmetry; exact solutions; electromagnetic duality.

1 Introduction

Axially symmetric solutions of the Maxwell equations are quite important, at least as an often relevant approximation. For instance, axisymmetric magnetic fields occur naturally as produced by systems possessing an axis of revolution, such as disks or coils [1, 2], or astrophysical systems like accretion disks [3] or disk galaxies [4]. Axisymmetric solutions are also used to model

EM beams and their propagation (e.g. [5, 6]). In particular, non-diffracting beams are usually endowed with axial symmetry, see e.g. Refs. [7, 8, 8]. Naturally, one often considers time-harmonic solutions, since a general time dependence is got by summing such solutions. Two classes of time-harmonic axisymmetric solutions of the free Maxwell equations, mutually associated by EM duality, have been introduced recently [10. The main aim was to "describe in exact and analytic form the propagation of nonparaxial scalar and electromagnetic beams." However, as noted by the authors of Ref. [10], the analytical expression for a time-harmonic axisymmetric solution Ψ of the scalar wave equation, from which they start [Eq. (1) below], covers all such solutions [9 - thus not merely ones corresponding to nonparaxial scalar beams. The first class of EM fields defined in Ref. [10] is obtained by associating with any such scalar solution Ψ a vector potential A by Eq. (10) below, and the second class is deduced from the first one by EM duality [10].

The aim of the present work is to show that, somewhat surprisingly, by combining these two classes one is able to describe all time-harmonic axisymmetric EM fields (and thus all axisymmetric EM fields). More precisely, we shall prove that any time-harmonic axisymmetric EM field is the sum of two EM fields, say $\left(\mathbf{E}_{1}, \mathbf{B}_{1}\right)$ and $\left(\mathbf{E}_{2}^{\prime}, \mathbf{B}_{2}^{\prime}\right)$, deduced from two time-harmonic axisymmetric solutions of the scalar wave equation, say Ψ_{1} and Ψ_{2} : the first EM field derives from the vector potential $\mathbf{A}_{1}=\Psi_{1} \mathbf{e}_{z}$, the second one is deduced by EM duality from the EM field that derives from the vector potential $\mathbf{A}_{2}=\Psi_{2} \mathbf{e}_{z}$. Because this method is based on determining two vector potentials from merely two scalar fields, this result was not necessarily expected. Section 2 presents and comments the results of Ref. [10]. (Equations (15)-(20) are new.) Section 3 gives the proof of the announced result, which is not immediate but uses standard mathematics with which one is familiar from classical field theory. Section 4 presents the Conclusion.

2 From scalar waves to Maxwell fields

2.1 Axially symmetric scalar waves

We adopt cylindrical coordinates ρ, ϕ, z about the symmetry axis, that is the z axis. Any time-harmonic axisymmetric solution of the scalar wave equation
(of d'Alembert) can be written [9, 10] as a sum of Bessel beams [7:

$$
\begin{equation*}
\Psi_{\omega S}(t, \rho, z)=e^{-\mathrm{i} \omega t} \int_{-K}^{+K} J_{0}\left(\rho \sqrt{K^{2}-k^{2}}\right) e^{\mathrm{i} k z} S(k) \mathrm{d} k, \tag{1}
\end{equation*}
$$

with ω the angular frequency, $K:=\omega / c,{ }^{1}$ and J_{0} the first-kind Bessel function of order 0 . (c is the velocity of light.) Thus the (axial) "wave vector spectrum" S is a (generally complex) function of the real variable $k=k_{z} \quad(-K \leq k \leq K)$, that is the projection of the wave vector on the z axis. This function S determines the spatial dependency of the timeharmonic solution (1) in the two-dimensional space left by the axial symmetry, i.e. the half-plane ($\rho \geq 0, z \in]-\infty,+\infty[$).

Thus, any time-harmonic axisymmetric scalar wave Ψ can be put in the explicit form (1), in which no restriction has to be put on the "wave vector spectrum" S (except for a minimal regularity ensuring that the function Ψ is at least twice continuously differentiable: the integrability of S, $S \in \mathrm{~L}^{1}([-K,+K])$, would be enough for this). Of course, the general axisymmetric solution of the scalar wave equation can be got from (1) by an appropriate summation over a frequency spectrum: an integral (inverse Fourier transform) in the general case, or a discrete sum if a discrete frequency spectrum $\left(\omega_{j}\right)\left(j=1, \ldots, N_{\omega}\right)$ is considered for simplicity:

$$
\begin{equation*}
\Psi(t, \rho, z)=\sum_{j=1}^{N_{\omega}} \Psi_{\omega_{j} S_{j}}(t, \rho, z) \tag{2}
\end{equation*}
$$

where, for $j=1, \ldots, N_{\omega}, \Psi_{\omega_{j} S_{j}}$ is the time-harmonic solution (11), corresponding with frequency ω_{j} and wave vector spectrum S_{j}. The different weights w_{j} which may be affected to the different frequencies can be included in the functions S_{j}, replacing S_{j} by $w_{j} S_{j}$.

2.2 Reminder on time-harmonic free Maxwell fields

In this subsection, we recall equations more briefly recalled in Ref. [10]. The electric and magnetic fields in SI units are given in terms of the scalar and

[^0](3-)vector potentials V and \mathbf{A} by
\[

$$
\begin{gather*}
\mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t} \tag{3}\\
\mathbf{B}=\operatorname{rot} \mathbf{A} \tag{4}
\end{gather*}
$$
\]

These equations imply that \mathbf{E} and \mathbf{B} obey the first group of Maxwell equations. If one imposes the Lorenz gauge condition

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial V}{\partial t}+\operatorname{div} \mathbf{A}=0 \tag{5}
\end{equation*}
$$

then the validity of the second group of the Maxwell equations in free space for \mathbf{E} and \mathbf{B} is equivalent to ask that V and \mathbf{A} verify d'Alembert's wave equation [11, 12]. Moreover, if one assumes a harmonic time-dependence for V and \mathbf{A} :

$$
\begin{equation*}
V(t, \mathbf{x})=e^{-\mathrm{i} \omega t} \hat{V}(\mathbf{x}), \quad \mathbf{A}(t, \mathbf{x})=e^{-\mathrm{i} \omega t} \hat{\mathbf{A}}(\mathbf{x}) \tag{6}
\end{equation*}
$$

then the wave equation for \mathbf{A} becomes the Helmholtz equation: ${ }^{2}$

$$
\begin{equation*}
\Delta \mathbf{A}+\frac{\omega^{2}}{c^{2}} \mathbf{A}=\mathbf{0} \tag{7}
\end{equation*}
$$

and the Lorenz gauge condition (5) rewrites as

$$
\begin{equation*}
V=-\mathrm{i} \frac{c^{2}}{\omega} \operatorname{div} \mathbf{A} \tag{8}
\end{equation*}
$$

If \mathbf{A} is time-harmonic $[\text { Eq. (6) })_{2}$] and obeys (7), then V given by (8) is timeharmonic and automatically satisfies the wave equation. The electric field (3) is then easily rewritten as

$$
\begin{equation*}
\mathbf{E}=\mathrm{i} \omega \mathbf{A}+\mathrm{i} \frac{c^{2}}{\omega} \nabla(\operatorname{div} \mathbf{A}) \tag{9}
\end{equation*}
$$

Thus, the data of a time-harmonic vector potential A obeying the wave equation, or equivalently obeying Eq. (7), determines a unique solution of the free Maxwell equations, by Eqs. (4) and (9), and that solution is timeharmonic with the same frequency ω as for \mathbf{A}.

[^1]
2.3 Time-harmonic axisymmetric fields: from a scalar wave to a Maxwell field

To any axisymmetric time-harmonic solution $\Psi(t, \rho, z)=e^{-\mathrm{i} \omega t} \hat{\Psi}(\rho, z)$ of the scalar wave equation, the authors of Ref. [10] associate a vector potential A by

$$
\begin{equation*}
\mathbf{A}:=\Psi \mathbf{e}_{z}, \quad \text { or } \quad A_{z}:=\Psi, A_{\rho}=A_{\phi}=0 \tag{10}
\end{equation*}
$$

(We shall denote by $\left(\mathbf{e}_{\rho}, \mathbf{e}_{\phi}, \mathbf{e}_{z}\right)$ the standard point-dependent orthonormal basis associated with the cylindrical coordinates.) Thus, in the way recalled in the foregoing subsection, they define a unique solution of the free Maxwell equations, which is time-harmonic. Their equations for the different components of this solution (\mathbf{E}, \mathbf{B}) are as follows:

$$
\begin{align*}
B_{\phi} & =-\frac{\partial A_{z}}{\partial \rho}, \quad E_{\phi}=0 \tag{11}\\
E_{\rho} & =\mathrm{i} \frac{c^{2}}{\omega} \frac{\partial^{2} A_{z}}{\partial \rho \partial z}, \quad B_{\rho}=0 \tag{12}\\
E_{z} & =\mathrm{i} \frac{c^{2}}{\omega} \frac{\partial^{2} A_{z}}{\partial z^{2}}+\mathrm{i} \omega A_{z}, \quad B_{z}=0 \tag{13}
\end{align*}
$$

These equations follow easily from Eqs. (4), (9) and (10), and from the axisymmetry of $A_{z}=\Psi(t, \rho, z)$, by using the standard formulas for the curl and divergence in cylindrical coordinates. Equations (11)-(13) provide an axisymmetric EM field whose electric field is radially polarized $(\mathbf{E}=$ $E_{\rho} \mathbf{e}_{\rho}+E_{z} \mathbf{e}_{z}$), in short a "radially polarized" EM field.

An "azimuthally polarized" solution $\left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right)$ (in the sense that $\mathbf{E}^{\prime}=$ $\left.E_{\phi}^{\prime} \mathbf{e}_{\phi}\right)$ of the free Maxwell equations can alternatively be deduced from the data Ψ, by transforming the solution (11)-(13) through the EM duality, that is:

$$
\begin{equation*}
\mathbf{E}^{\prime}=c \mathbf{B}, \quad \mathbf{B}^{\prime}=-\mathbf{E} / c \tag{14}
\end{equation*}
$$

The two axisymmetric time-harmonic solutions of the free Maxwell equations, thus associated with an axisymmetric time-harmonic solution Ψ of the scalar wave equation, will be called here the "GAZR1 solution" and the "GAZR2 solution", respectively, because both were derived in Ref. [10].

As usual, it is implicit that, in Eqs. (11)-(13), B_{ϕ}, E_{ρ} and E_{z} are actually the real parts of the respective r.h.s. [as are also \mathbf{E} and \mathbf{B} in Eqs. (3), (4), and (9)]. Thus, with A_{z} given by (1) (as can always be the case in view of the general representativity of that equation), and using the fact that $\mathrm{d} J_{0} / \mathrm{d} x=-J_{1}(x)$, we obtain:

$$
\begin{align*}
& B_{\phi \omega S}=\mathcal{R} e\left[e^{-\mathrm{i} \omega t} \int_{-K}^{+K} \sqrt{K^{2}-k^{2}} J_{1}\left(\rho \sqrt{K^{2}-k^{2}}\right) S(k) e^{i k z} \mathrm{~d} k\right] \tag{15}\\
& E_{\rho \omega S}=\mathcal{R} e\left[-\mathrm{i} \frac{c^{2}}{\omega} e^{-\mathrm{i} \omega t} \int_{-K}^{+K} \sqrt{K^{2}-k^{2}} J_{1}\left(\rho \sqrt{K^{2}-k^{2}}\right) \mathrm{i} k S(k) e^{i k z} \mathrm{~d} k\right], \tag{16}\\
& E_{z \omega S}=\mathcal{R} e\left[\mathrm{i} e^{-\mathrm{i} \omega t} \int_{-K}^{+K} J_{0}\left(\rho \sqrt{K^{2}-k^{2}}\right)\left(\omega-\frac{c^{2}}{\omega} k^{2}\right) S(k) e^{i k z} \mathrm{~d} k\right] \tag{17}
\end{align*}
$$

where $K:=\omega / c$. In the case with a (discrete) frequency spectrum, one just has to sum each component: (15), (16), or (17), over the different frequencies ω_{j}, with the corresponding values $K_{j}=\omega_{j} / c$ and spectra $S_{j}=S_{j}(k)\left(-K_{j} \leq k \leq+K_{j}\right)$ - as with a scalar wave (2):

$$
\begin{align*}
B_{\phi} & =\sum_{j=1}^{N_{\omega}} B_{\phi \omega_{j} S_{j}}, \tag{18}\\
E_{\rho} & =\sum_{j=1}^{N_{\omega}} E_{\rho \omega_{j} S_{j}}, \tag{19}\\
E_{z} & =\sum_{j=1}^{N_{\omega}} E_{z \omega_{j} S_{j}} . \tag{20}
\end{align*}
$$

3 From Maxwell fields to scalar waves

Now an important question arises: Do the GAZR solutions generate all axisymmetric time-harmonic solutions of the Maxwell equations (in which case, by summation on frequencies, they would generate all axisymmetric solutions
of the Maxwell equations)? That is: let ($\mathbf{A}, \mathbf{E}, \mathbf{B}$) be any time-harmonic axisymmetric solution of the free Maxwell equations. Can one find a GAZR1 solution and a GAZR2 solution, whose sum give just that starting solution?

Note from Eqs. (11)-(13) and (14) that the GAZR1 solution and the GAZR2 solution are complementary: in cylindrical coordinates, the GAZR1 solution provides non-zero components $B_{\phi}, E_{\rho}, E_{z}$, the other components E_{ϕ}, B_{ρ}, B_{z} being zero - and the exact opposite is true for the GAZR2 solution. In view of this complementarity, we can consider separately the two sets of components: $B_{\phi}, E_{\rho}, E_{z}$ on one side, and $E_{\phi}, B_{\rho}, B_{z}$ on the other side.

3.1 Sufficient conditions for the existence of the decomposition

For the "GAZR1" solution, which gives non-zero values to the first among the two sets of components just mentioned, we have the following result:

Proposition 1. Let (A, E, B) be any time-harmonic axisymmetric solution of the free Maxwell equations. In order that a time-harmonic axisymmetric solution $\left(A_{1 z}, B_{1 \phi}, E_{1 \rho}, E_{1 z} ; E_{1 \phi}=B_{1 \rho}=B_{1 z}=0\right)$, of the form (11)-(13), and having the same frequency ω as the starting solution $(\mathbf{A}, \mathbf{E}, \mathbf{B})$, be such that $B_{1 \phi}=B_{\phi}, E_{1 \rho}=E_{\rho}, E_{1 z}=E_{z}$, it is sufficient that we have just

$$
\begin{equation*}
B_{1 \phi}=B_{\phi} . \tag{21}
\end{equation*}
$$

Proof. Let $A_{1 z}(t, \rho, z)$ be a time-harmonic axisymmetric solution of the wave equation, with frequency ω, and assume that $B_{1 \phi}$ as defined by Eq. (11) [with $A_{1 z}$ in the place of A_{z}] is equal to B_{ϕ}, where \mathbf{B} is defined by Eq. (4). I.e., assume that

$$
\begin{equation*}
-\frac{\partial A_{1 z}}{\partial \rho}=\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho} \tag{22}
\end{equation*}
$$

Denoting by $\mathbf{A}_{1}:=A_{1 z} \mathbf{e}_{z}$ the vector potential that provides the GAZR1 solution ($B_{1 \phi}, E_{1 \rho}, E_{1 z} ; E_{1 \phi}=B_{1 \rho}=B_{1 z}=0$), let us compute $E_{\rho}-E_{1 \rho}$ and $E_{z}-E_{1 z}$. We have by Eq. (9):

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)=\nabla\left(\operatorname{div} \mathbf{A}^{\prime}\right)+\frac{\omega^{2}}{c^{2}} \mathbf{A}^{\prime} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{A}^{\prime}:=\mathbf{A}-\mathbf{A}_{1}:=\mathbf{A}-A_{1 z} \mathbf{e}_{z} . \tag{24}
\end{equation*}
$$

In order that the vector potential \mathbf{A} of the a priori given solution $(\mathbf{A}, \mathbf{E}, \mathbf{B})$ be axisymmetric, its components $A_{\rho}, A_{\phi}, A_{z}$ must depend only on t, ρ, z, i.e., be independent of ϕ. Therefore:

$$
\begin{equation*}
\operatorname{div} \mathbf{A}=\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{\partial A_{z}}{\partial z} \tag{25}
\end{equation*}
$$

and, using this and 24):

$$
\begin{equation*}
\operatorname{div} \mathbf{A}^{\prime}=\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{\partial A_{z}^{\prime}}{\partial z} . \tag{26}
\end{equation*}
$$

Hence, in (23), we have

$$
\begin{align*}
\nabla\left(\operatorname{div} \mathbf{A}^{\prime}\right) & =\nabla\left(\frac{\partial A_{\rho}}{\partial \rho}+\frac{A_{\rho}}{\rho}+\frac{\partial A_{z}^{\prime}}{\partial z}\right) \tag{27}\\
& =\left(\frac{\partial^{2} A_{\rho}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \rho}-\frac{1}{\rho^{2}} A_{\rho}+\frac{\partial^{2} A_{z}^{\prime}}{\partial \rho \partial z}\right) \mathbf{e}_{\rho}+\left(\frac{\partial^{2} A_{\rho}}{\partial z \partial \rho}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial z}+\frac{\partial^{2} A_{z}^{\prime}}{\partial z^{2}}\right) \mathbf{e}_{z}
\end{align*}
$$

The radial component of the vector (23) is thus:

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)_{\rho}=\frac{\partial^{2} A_{\rho}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \rho}-\frac{A_{\rho}}{\rho^{2}}+\frac{\partial^{2} A_{z}}{\partial \rho \partial z}-\frac{\partial^{2} A_{1 z}}{\partial \rho \partial z}+\frac{\omega^{2}}{c^{2}} A_{\rho} \tag{28}
\end{equation*}
$$

However, the vector potential \mathbf{A} obeys the Helmholtz equation (7), that is for the radial component (using the fact that $\frac{\partial A_{\rho}}{\partial \phi}=\frac{\partial A_{\phi}}{\partial \phi} \equiv 0$):

$$
\begin{align*}
(\Delta \mathbf{A})_{\rho}+\frac{\omega^{2}}{c^{2}} A_{\rho} & \equiv \Delta A_{\rho}-\frac{A_{\rho}}{\rho^{2}}-\frac{2}{\rho^{2}} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\omega^{2}}{c^{2}} A_{\rho} \\
& \equiv \frac{\partial^{2} A_{\rho}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial \rho}+\frac{\partial^{2} A_{\rho}}{\partial z^{2}}-\frac{A_{\rho}}{\rho^{2}}+\frac{\omega^{2}}{c^{2}} A_{\rho}=0 \tag{29}
\end{align*}
$$

Inserting (29) into (28) gives us:

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)_{\rho}=-\frac{\partial^{2} A_{\rho}}{\partial z^{2}}+\frac{\partial^{2} A_{z}}{\partial \rho \partial z}-\frac{\partial^{2} A_{1 z}}{\partial \rho \partial z}=-\frac{\partial}{\partial z}\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}+\frac{\partial A_{1 z}}{\partial \rho}\right) . \tag{30}
\end{equation*}
$$

Therefore, if Eq. 22 is satisfied, then we have $E_{1 \rho}=E_{\rho}$.
Similarly, from (27), the axial component of the vector (23) is

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)_{z}=\frac{\partial^{2} A_{\rho}}{\partial z \partial \rho}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial z}+\frac{\partial^{2} A_{z}}{\partial z^{2}}-\frac{\partial^{2} A_{1 z}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}}\left(A_{z}-A_{1 z}\right) \tag{31}
\end{equation*}
$$

On the other hand, the axial component of the Helmholtz equation (7) is

$$
\begin{align*}
(\Delta \mathbf{A})_{z}+\frac{\omega^{2}}{c^{2}} A_{z} & \equiv \Delta A_{z}+\frac{\omega^{2}}{c^{2}} A_{z} \\
& \equiv \frac{\partial^{2} A_{z}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial A_{z}}{\partial \rho}+\frac{\partial^{2} A_{z}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} A_{z}=0 \tag{32}
\end{align*}
$$

If Eq. 22) is satisfied, we have

$$
\begin{equation*}
\frac{\partial^{2} A_{z}}{\partial \rho^{2}}=\frac{\partial^{2} A_{\rho}}{\partial \rho \partial z}+\frac{\partial^{2} A_{1 z}}{\partial \rho^{2}} \tag{33}
\end{equation*}
$$

In Eq. (32), we replace $\frac{\partial^{2} A_{z}}{\partial \rho^{2}}$ by its value given on the r.h.s. above, and we replace $\frac{\partial A_{z}}{\partial \rho}$ by its value given by Eq. 22. This gives:

$$
\begin{equation*}
\frac{\partial^{2} A_{\rho}}{\partial \rho \partial z}+\frac{\partial^{2} A_{1 z}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial A_{\rho}}{\partial z}+\frac{1}{\rho} \frac{\partial A_{1 z}}{\partial \rho}+\frac{\partial^{2} A_{z}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} A_{z}=0 . \tag{34}
\end{equation*}
$$

Using this equation in Eq. (31), we rewrite the latter as

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)_{z}=-\frac{\partial^{2} A_{1 z}}{\partial \rho^{2}}-\frac{1}{\rho} \frac{\partial A_{1 z}}{\partial \rho}-\frac{\partial^{2} A_{1 z}}{\partial z^{2}}-\frac{\omega^{2}}{c^{2}} A_{1 z} . \tag{35}
\end{equation*}
$$

We recognize the r.h.s as that of Eq. (32), though with the minus sign, and with $A_{1 z}$ in the place of A_{z}. I.e., Eq. (35) is just

$$
\begin{equation*}
\frac{\omega}{\mathrm{i} c^{2}}\left(\mathbf{E}-\mathbf{E}_{1}\right)_{z}=-\Delta A_{1 z}-\frac{\omega^{2}}{c^{2}} A_{1 z} \tag{36}
\end{equation*}
$$

But this is zero, since $A_{1 z}$ is by assumption a time-harmonic solution of the wave equation, with frequency ω. Therefore, if Eq. (22) is satisfied, then we have $E_{1 z}=E_{z}$, too. This completes the proof of Proposition 1.

It follows for the dual ("GAZR2") solution:

Corollary 1. Let (A, E, B) be any time-harmonic axisymmetric solution of the free Maxwell equations. In order that a time-harmonic solution $\left(A_{2 z}, E_{2 \phi}^{\prime}\right.$, $B_{2 \rho}^{\prime}, B_{2 z}^{\prime} ; B_{2 \phi}^{\prime}=E_{2 \rho}^{\prime}=E_{2 z}^{\prime}=0$) with the same frequency, deduced from Eqs. (11)-(13) by the duality (14), be such that $E_{2 \phi}^{\prime}=E_{\phi}, B_{2 \rho}^{\prime}=B_{\rho}, B_{2 z}^{\prime}=B_{z}$, it is sufficient that we have just

$$
\begin{equation*}
E_{2 \phi}^{\prime}=E_{\phi} . \tag{37}
\end{equation*}
$$

Proof. The GAZR2 solution $\left(A_{2 z}, E_{2 \phi}^{\prime}, B_{2 \rho}^{\prime}, B_{2 z}^{\prime} ; B_{2 \phi}^{\prime}=E_{2 \rho}^{\prime}=E_{2 z}^{\prime}=0\right)$ is deduced from the GAZR1 solution $\left(A_{2 z}, B_{2 \phi}, E_{2 \rho}, E_{2 z} ; E_{2 \phi}=B_{2 \rho}=B_{2 z}=0\right)$, associated with the same potential $A_{2 z}$, by the duality relation (14). Suppose that Eq. (37) is satisfied. With the starting solution (A, E, B) of the free Maxwell equations, we may associate another solution, by the inverse duality:

$$
\begin{equation*}
\widetilde{\mathbf{B}}=\frac{1}{c} \mathbf{E}, \quad \widetilde{\mathbf{E}}=-c \mathbf{B} . \tag{38}
\end{equation*}
$$

The assumed relation (37) means that

$$
\begin{equation*}
B_{2 \phi}=\widetilde{B}_{\phi} . \tag{39}
\end{equation*}
$$

Indeed, by applying successively $(14)_{1}$, (37), and $(38)_{1}$, we obtain:

$$
\begin{equation*}
B_{2 \phi}=\frac{1}{c} E_{2 \phi}^{\prime}=\frac{1}{c} E_{\phi}=\widetilde{B}_{\phi} . \tag{40}
\end{equation*}
$$

In turn, the relation (39) means that we may apply Proposition 1 to the GAZR1 solution $\left(A_{2 z}, B_{2 \phi}, \ldots\right)$ and the solution $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{E}}, \widetilde{\mathbf{B}}) \cdot{ }^{3}$ Thus, Proposition 1 tells us here that, since $B_{2 \phi}=\widetilde{B}_{\phi}$, we have also

$$
\begin{equation*}
E_{2 \rho}=\widetilde{E}_{\rho} \quad \text { and } \quad E_{2 z}=\widetilde{E}_{z} \tag{41}
\end{equation*}
$$

${ }^{3}$ The explicit expression of the corresponding vector potential $\widetilde{\mathbf{A}}$ as function of $(\mathbf{A}, \mathbf{E}, \mathbf{B})$ is not needed: only the existence of an axisymmetric $\widetilde{\mathbf{A}}$, such that $\widetilde{\mathbf{B}}=\operatorname{rot} \widetilde{\mathbf{A}}$, is needed. Precisely, $\widetilde{\mathbf{A}}$ is got as a solution of the $\operatorname{PDE} \operatorname{rot} \widetilde{\mathbf{A}}=\widetilde{\mathbf{B}}$. (Such a solution always exists in a topologically trivial domain, thus in particular if the domain is the whole space.) Hence $\widetilde{\mathbf{A}}$ can indeed be chosen axisymmetric, i.e. with its components in cylindrical coordinates being independent of ϕ, because with this choice the independent variables of the $\mathrm{PDE} \operatorname{rot} \widetilde{\mathbf{A}}=\widetilde{\mathbf{B}}$ simply do not include $\phi-$ since $\widetilde{\mathbf{B}}=\frac{1}{c} \mathbf{E}$ is axisymmetric, as is \mathbf{E} by assumption.
i.e., in view of $(14)_{2}$ and $(38)_{2}$:

$$
\begin{equation*}
-c B_{2 \rho}^{\prime}=-c B_{\rho} \quad \text { and } \quad-c B_{2 z}^{\prime}=-c B_{z} \tag{42}
\end{equation*}
$$

This proves Corollary 1.

3.2 Generality of the decomposition

Proposition 2. Let (A, E, B) be any time-harmonic axisymmetric solution of the free Maxwell equations. There exists a time-harmonic axisymmetric solution $A_{2 z}$ of the wave equation, with the same frequency, such that the associated GAZR2 solution $\left(\mathbf{E}_{2}^{\prime}, \mathbf{B}_{2}^{\prime}\right)$, deduced from $A_{2 z}$ by Eqs. (11)-(13) followed by the duality transformation (14), satisfy

$$
\begin{equation*}
E_{2 \phi}^{\prime}=E_{\phi}, \quad B_{2 \rho}^{\prime}=B_{\rho}, \quad B_{2 z}^{\prime}=B_{z} \tag{43}
\end{equation*}
$$

Proof. In view of Corollary 1, we merely have to prove that there exists a time-harmonic axisymmetric solution $A_{2 z}$ of the wave equation, such that Eq. (37) is satisfied. From Eqs. (9) and (25), we have

$$
\begin{equation*}
E_{\phi}=\mathrm{i} \omega A_{\phi} \tag{44}
\end{equation*}
$$

Using this with Eqs. (11) and (14) 1 , we may rewrite the sought-for relation (37) as:

$$
\begin{equation*}
-\frac{\partial A_{2 z}}{\partial \rho}=\frac{\mathrm{i} \omega}{c} A_{\phi} \tag{45}
\end{equation*}
$$

This equation can be solved by a quadrature:

$$
\begin{equation*}
A_{2 z}(t, \rho, z)=h(t, z)+\int_{\rho_{0}}^{\rho}-\frac{\mathrm{i} \omega}{c} A_{\phi}\left(t, \rho^{\prime}, z\right) \mathrm{d} \rho^{\prime} \tag{46}
\end{equation*}
$$

We thus have to find out if it is possible to determine the function h so that $A_{2 z}$ given by (46) obey the wave equation. Moreover, the unknown function $A_{2 z}$ must have a harmonic time dependence with frequency ω as has A_{ϕ}, i.e.,

$$
\begin{equation*}
A_{2 z}(t, \rho, z)=\psi(\rho, z) e^{-\mathrm{i} \omega t}, \quad A_{\phi}(t, \rho, z)=\hat{A}_{\phi}(\rho, z) e^{-\mathrm{i} \omega t} \tag{47}
\end{equation*}
$$

so we must have $h(t, z)=e^{-\mathrm{i} \omega t} g(z)$, too. Hence we may rewrite (46) as

$$
\begin{equation*}
\psi(\rho, z)=g(z)+\int_{\rho_{0}}^{\rho}-\frac{\mathrm{i} \omega}{c} \hat{A}_{\phi}\left(\rho^{\prime}, z\right) \mathrm{d} \rho^{\prime} \tag{48}
\end{equation*}
$$

and now the question is to know if g can be determined so that ψ obey the scalar Helmholtz equation, i.e. [cf. Eq. (32)]:

$$
\begin{equation*}
\mathcal{H} \psi:=\Delta \psi+\frac{\omega^{2}}{c^{2}} \psi \equiv \frac{\partial^{2} \psi}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \psi}{\partial \rho}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} \psi=0 \tag{49}
\end{equation*}
$$

- knowing that A_{ϕ} or \hat{A}_{ϕ} does obey the ϕ component of the vector Helmholtz equation (7), i.e.:

$$
\begin{align*}
(\Delta \hat{\mathbf{A}})_{\phi}+\frac{\omega^{2}}{c^{2}} \hat{A}_{\phi} & \equiv \Delta \hat{A}_{\phi}-\frac{\hat{A}_{\phi}}{\rho^{2}}+\frac{2}{\rho^{2}} \frac{\partial \hat{A}_{\rho}}{\partial \phi}+\frac{\omega^{2}}{c^{2}} \hat{A}_{\phi} \\
& \equiv \frac{\partial^{2} \hat{A}_{\phi}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \hat{A}_{\phi}}{\partial \rho}+\frac{\partial^{2} \hat{A}_{\phi}}{\partial z^{2}}-\frac{\hat{A}_{\phi}}{\rho^{2}}+\frac{\omega^{2}}{c^{2}} \hat{A}_{\phi}=0 \tag{50}
\end{align*}
$$

We have from Eqs. (45) and (47):

$$
\begin{equation*}
\frac{\partial \psi}{\partial \rho}=-\frac{\mathrm{i} \omega}{c} \hat{A}_{\phi} \tag{51}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \rho^{2}}=-\frac{\mathrm{i} \omega}{c} \frac{\partial \hat{A}_{\phi}}{\partial \rho} \tag{52}
\end{equation*}
$$

And we get from (48):

$$
\begin{equation*}
\frac{\partial \psi}{\partial z}=\frac{\mathrm{d} g}{\mathrm{~d} z}-\int_{\rho_{0}}^{\rho} \frac{\mathrm{i} \omega}{c} \frac{\partial \hat{A}_{\phi}}{\partial z}\left(\rho^{\prime}, z\right) \mathrm{d} \rho^{\prime} \tag{53}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{\mathrm{d}^{2} g}{\mathrm{~d} z^{2}}-\int_{\rho_{0}}^{\rho} \frac{\mathrm{i} \omega}{c} \frac{\partial^{2} \hat{A}_{\phi}}{\partial z^{2}}\left(\rho^{\prime}, z\right) \mathrm{d} \rho^{\prime} . \tag{54}
\end{equation*}
$$

Entering Eqs. (51), (52) and (54) into (49) , we obtain:

$$
\begin{align*}
\mathcal{H} \psi= & -\frac{\mathrm{i} \omega}{c} \frac{\partial \hat{A}_{\phi}}{\partial \rho}-\frac{\mathrm{i} \omega}{c} \frac{\hat{A}_{\phi}}{\rho}+\frac{\mathrm{d}^{2} g}{\mathrm{~d} z^{2}}-\int_{\rho_{0}}^{\rho} \frac{\mathrm{i} \omega}{c} \frac{\partial^{2} \hat{A}_{\phi}}{\partial z^{2}}\left(\rho^{\prime}, z\right) \mathrm{d} \rho^{\prime} \tag{55}\\
& +\frac{\omega^{2}}{c^{2}}\left(g-\frac{\mathrm{i} \omega}{c} \int_{\rho_{0}}^{\rho} \hat{A}_{\phi}\left(\rho^{\prime}, z\right) \mathrm{d} \rho^{\prime}\right) .
\end{align*}
$$

Therefore, the scalar Helmholtz equation (49)2 rewrites as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} g}{\mathrm{~d} z^{2}}+\frac{\omega^{2}}{c^{2}} g=\frac{\mathrm{i} \omega}{c}\left[\frac{\partial \hat{A}_{\phi}}{\partial \rho}+\frac{\hat{A}_{\phi}}{\rho}+\int_{\rho_{0}}^{\rho}\left(\frac{\partial^{2} \hat{A}_{\phi}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} \hat{A}_{\phi}\right) \mathrm{d} \rho^{\prime}\right] \tag{56}
\end{equation*}
$$

or, using (50):

$$
\begin{equation*}
\frac{\mathrm{d}^{2} g}{\mathrm{~d} z^{2}}+\frac{\omega^{2}}{c^{2}} g=\frac{\mathrm{i} \omega}{c}\left[\frac{\partial \hat{A}_{\phi}}{\partial \rho}+\frac{\hat{A}_{\phi}}{\rho}+\int_{\rho_{0}}^{\rho}\left(-\frac{\partial^{2} \hat{A}_{\phi}}{\partial \rho^{\prime 2}}-\frac{1}{\rho^{\prime}} \frac{\partial \hat{A}_{\phi}}{\partial \rho^{\prime}}+\frac{\hat{A}_{\phi}}{\rho^{\prime 2}}\right) \mathrm{d} \rho^{\prime}\right] . \tag{57}
\end{equation*}
$$

An integration by parts gives us:

$$
\begin{equation*}
\int_{\rho_{0}}^{\rho}\left(-\frac{\partial^{2} \hat{A}_{\phi}}{\partial \rho^{\prime 2}}+\frac{\hat{A}_{\phi}}{\rho^{\prime 2}}\right) \mathrm{d} \rho^{\prime}=-\left[\frac{\partial \hat{A}_{\phi}}{\partial \rho^{\prime}}+\frac{\hat{A}_{\phi}}{\rho^{\prime}}\right]_{\rho_{0}}^{\rho}+\int_{\rho_{0}}^{\rho} \frac{1}{\rho^{\prime}} \frac{\partial \hat{A}_{\phi}}{\partial \rho^{\prime}} \mathrm{d} \rho^{\prime} \tag{58}
\end{equation*}
$$

so Eq. (57) rewrites as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} g}{\mathrm{~d} z^{2}}+\frac{\omega^{2}}{c^{2}} g=\frac{\mathrm{i} \omega}{c}\left[\frac{\partial \hat{A}_{\phi}}{\partial \rho}\left(\rho_{0}, z\right)+\frac{\hat{A}_{\phi}\left(\rho_{0}, z\right)}{\rho_{0}}\right] . \tag{59}
\end{equation*}
$$

As is well known and easy to check, this very ordinary differential equation can be solved explicitly by the method of variation of constants. (The general solution g of (59) depends linearly on two arbitrary constants.) And by construction, any among the solutions g of (59) is such that, with that g, the function ψ in Eq. (48) obeys the scalar Helmholtz equation (49). This proves Proposition 2.

Corollary 2. Let ($\mathbf{A}, \mathbf{E}, \mathbf{B})$ be any time-harmonic axisymmetric solution of the free Maxwell equations. There exists a time-harmonic axisymmetric solution $A_{1 z}$ of the wave equation, with the same frequency, such that the associated GAZR1 solution $\left(\mathbf{E}_{1}, \mathbf{B}_{1}\right)$, deduced from $A_{1 z}$ by Eqs. (11)-(13), satisfy

$$
\begin{equation*}
B_{1 \phi}=B_{\phi}, \quad E_{1 \rho}=E_{\rho}, \quad E_{1 z}=E_{z} \tag{60}
\end{equation*}
$$

Proof. Let $A_{1 z}$ be a time-harmonic axisymmetric solution of the wave equation, and consider:
(i) the GAZR1 solution defined from $A_{1 z}$ by Eqs. (11)-(13) (thus with $A_{1 z}, B_{1 \phi}, E_{1 \rho}, E_{1 z}, \ldots$ instead of $A_{z}, B_{\phi}, E_{\rho}, E_{z}, \ldots$ respectively).
(ii) the GAZR2 solution defined from the same $A_{1 z}$ by applying the duality (14) to the said GAZR1 solution:

$$
\begin{equation*}
E_{1 \phi}^{\prime}:=c B_{1 \phi}, \quad B_{1 \rho}^{\prime}:=-\frac{1}{c} E_{1 \rho}, \quad B_{1 z}^{\prime}:=-\frac{1}{c} E_{1 z} \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
E_{1 \rho}^{\prime}:=c B_{1 \rho}=0, \quad E_{1 z}^{\prime}:=c B_{1 z}=0, \quad B_{1 \phi}^{\prime}:=-\frac{1}{c} E_{1 \phi}=0 . \tag{62}
\end{equation*}
$$

On the other hand, consider the free Maxwell field $\left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right)$ deduced from the given time-harmonic axisymmetric solution (\mathbf{E}, \mathbf{B}) of the free Maxwell equations by the same duality relation:

$$
\begin{equation*}
\mathbf{E}^{\prime}:=c \mathbf{B}, \quad \mathbf{B}^{\prime}:=-\mathbf{E} / c . \tag{63}
\end{equation*}
$$

Just in the same way as it was shown in Note 3, we know that a vector potential \mathbf{A}^{\prime} such that $\mathbf{B}^{\prime}=\operatorname{rot} \mathbf{A}^{\prime}$ does exist and can be chosen to be axisymmetric (and is indeed chosen so) - as are \mathbf{E} and \mathbf{B}, and hence \mathbf{E}^{\prime} and \mathbf{B}^{\prime}. Clearly, the sought-for relation (60) is equivalent to

$$
\begin{equation*}
E_{1 \phi}^{\prime}=E_{\phi}^{\prime}, \quad B_{1 \rho}^{\prime}=B_{\rho}^{\prime}, \quad B_{1 z}^{\prime}=B_{z}^{\prime} . \tag{64}
\end{equation*}
$$

Therefore, the existence of $A_{1 z}$ as in the statement of Corollary 2 is ensured by Proposition 2

Accounting for Proposition 2 and for Corollary 2, and remembering the "complementarity" of the GAZR1 and GAZR2 solutions, we thus can answer positively to the question asked at the beginning of this section:

Theorem. Let $(\mathbf{A}, \mathbf{E}, \mathbf{B})$ be any time-harmonic axisymmetric solution of the free Maxwell equations. There exist a unique GAZR1 solution $\left(\mathbf{E}_{1}, \mathbf{B}_{1}\right)$ and a unique GAZR2 solution $\left(\mathbf{E}_{2}^{\prime}, \mathbf{B}_{2}^{\prime}\right)$, both with the same frequency as has $(\mathbf{A}, \mathbf{E}, \mathbf{B})$, and whose sum gives just that solution:

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}^{\prime}, \quad \mathbf{B}=\mathbf{B}_{1}+\mathbf{B}_{2}^{\prime} \tag{65}
\end{equation*}
$$

Remark. Thus, the uniqueness of the representation concerns the electric and magnetic fields. It of course does not concern the potentials $\mathbf{A}_{1}=A_{1 z} \mathbf{e}_{z}$ and $\mathbf{A}_{2}=A_{2 z} \mathbf{e}_{z}$ that generate respectively $\left(\mathbf{E}_{1}, \mathbf{B}_{1}\right)$ and $\left(\mathbf{E}_{2}^{\prime}, \mathbf{B}_{2}^{\prime}\right)$.

4 Conclusion

In Ref. [10], two classes of axisymmetric solutions of the free Maxwell equations have been introduced, and it has been shown that they allow one to
obtain in explicit form nonparaxial EM beams. It has been proved here that, by combining these two classes one can define a method that allows one to get all time-harmonic axisymmetric free Maxwell fields - and thus, by the appropriate summation on frequencies, all axisymmetric free Maxwell fields. This method results immediately from the Theorem just above, which theorem is not an obviously expected result, and whose proof is not immediate. We thus have now a constructive method to obtain all axisymmetric free Maxwell fields. Namely, considering a discrete frequency spectrum $\left(\omega_{j}\right)_{j=1, \ldots, N_{\omega}}$ for simplicity: there are $2 N_{\omega}$ functions, $k \mapsto S_{j}(k)$, and $k \mapsto S_{j}^{\prime}(k) \quad\left(j=1, \ldots, N_{\omega}\right)$, such that the components $B_{\phi}, E_{\rho}, E_{z}$ of the field are given by Eqs. (18), (19), (20) respectively - while the components $E_{\phi}, B_{\rho}, B_{z}$ are given by these same equations applied with the primed spectra S_{j}^{\prime}, followed by the duality transformation (14).

In a forthcoming work, we apply this to model the interstellar radiation field in a disc galaxy as an (axisymmetric) exact solution of the free Maxwell equations. In this application, it is very important that, due to the present work, one knows that any axisymmetric free Maxwell field can be got in this way.

References

[1] Garrett M.W., Axially symmetric systems for generating and measuring magnetic fields. Part I, J. Appl. Phys., 1951, 22, 1091-1107.
[2] Boridy E., Magnetic fields generated by axially symmetric systems, J. Appl. Phys., 1989, 66, 5691-5700.
[3] Wang J.C.L., Sulkanen M.E., Lovelace R.V.E., Self-collimated electromagnetic jets from magnetized accretion disks: the even-symmetry case, Astrophys. J., 1990, 355, 38-43.
[4] Beck R., Wielebinski, R., Magnetic fields in the Milky Way and in galaxies, In: Oswalt T.D., Gilmore G. (Eds.), Planets, Stars and Stellar Systems Vol. 5, Springer, Dordrecht, 2013, 641-723
[5] Nesterov A.V., Niziev V.G., Propagation features of beams with axially symmetric polarization, J. Opt. B: Quantum and Semiclassical Optics, 2001, 31, 215-219.
[6] Borghi R., Ciattoni A., Santarsiero M., Exact axial electromagnetic field for vectorial Gaussian and flattened Gaussian boundary distributions, J. Opt. Soc. Am. A, 2002, 19, 1207-1211.
[7] Durnin J., Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A, 1987, 4, 651-654.
[8] Durnin J., Miceli J.J., Jr, Eberly J.H., Diffraction-free beams, Phys. Rev. Lett., 1987, 58, 1499-1501.
[9] Zamboni-Rached M., Recami E., Hernández-Figueroa H.E., Structure of nondiffracting waves and some interesting applications, In: Hernández-Figueroa H.E., Zamboni-Rached M., Recami E. (Eds.), Localized Waves, John Wiley \& Sons, Hoboken, 2008, 43-77
[10] Garay-Avendaño R.L., Zamboni-Rached M., Exact analytic solutions of Maxwell's equations describing propagating nonparaxial electromagnetic beams, Appl. Opt., 2014, 53, 4524-4531.
[11] Landau L.D., Lifshitz E.M., The classical theory of fields, 3rd English edition, Pergamon, Oxford, 1971, 108-109
[12] Jackson J.D., Classical electrodynamics, 3rd edition, John Wiley \& Sons, Hoboken, 1998, 239-240

[^0]: ${ }^{1}$ Beware that instead $K:=2 \omega / c$ in Ref. [10]. Our notation seems as natural and gives more condensed formulas.

[^1]: ${ }^{2}$ Of course, just the same equation (7) applies to the "amplitude field" $\hat{\mathbf{A}}$.

