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1. Introduction  1 

Human domination of the natural world is resulting in biodiversity losses similar to those during 2 

mass-extinction events recorded over geological time (Ceballos et al., 2017). In the marine realm, 3 

biodiversity is threatened by numerous anthropogensic stressors, such as overfishing (Pauly et al., 4 

1998), climate change (Cheung et al., 2009) and biological invasions (Simberloff et al., 2013). In 5 

this context, marine protected areas (MPAs) are promoted as tools to help conserve biodiversity 6 

heritage (Wood et al., 2008), maintain ecosystem processes (Roberts et al., 2005), and favour a 7 

sustainable exploitation of living resources (Agardy et al., 2003; Spalding et al., 2008). 8 

Systematic Conservation Planning (SCP; Margules & Pressey, 2000) is a widely-used approach to 9 

develop networks of protected areas. Based on the principle of complementarity, this approach 10 

selects protected area systems that optimize the representation of each biodiversity feature occurring 11 

in a region (e.g. species, habitats, ecosystem services ; Possingham et al., 2000; Carwardine et al., 12 

2009). A crucial step in the SCP process is to set conservation targets for biodiversity features. 13 

These targets are explicit goals that quantify the minimum amount of each biodiversity feature to be 14 

covered by the protected areas (Ball et al., 2009). 15 

At the international level, the parties to the Convention on Biological Diversity (CBD) agreed in 16 

2010 to protect 10% of their marine exclusive economic zone and 17% of their terrestrial lands and 17 

inland waters by 2020 (Aichi Biodiversity Target n°11; CBD, 2010). These targets, expressed as 18 

percentages of broad geographical regions are often translated in the SCP process as uniform 19 

conservation targets such as 10% for each habitat type occurring in a region (Barr et al. 2011; 20 

Pressey et al. 2003). Setting such uniform targets assumes that all habitats need to be equally 21 

protected, and ignores biological variations across regions and habitats (Agardy et al., 2003; Pressey 22 

et al., 2003). Moreover, the broadscale Aichi targets have been negotiated to encompass countries 23 

with remarkably different economic, political and cultural backgrounds (Amengual & Alvarez-24 

Berastegui, 2018), and have been thus criticized for being justified in terms of political expediency 25 

and for their lack of scientific background (Carwardine et al., 2009; Noss et al., 2012; Svancara et 26 

al., 2005; Müller et al, 2018). In the marine realm particularly, a meta-analysis of published MPAs 27 

networks concludes that the 10% marine target proves insufficient to meet many conservation goals, 28 

such as the protection of biodiversity, has socio-economic limitations and does not account for the 29 

connectivity within MPAs networks (O’Leary et al., 2016). Considering environmental and 30 

biological variations by determining habitat-specific conservation targets has thus been advocated 31 

to provide ecologically realistic and relevant conservation solutions (Wood, 2011; Woodley et al., 32 

2012). 33 
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The methodological strategy used for setting conservation targets varies according to the 34 

biodiversity feature considered (Metcalfe et al., 2013). When the biodiversity features are different 35 

habitats occurring in the planning region, an extensively used approach to set habitat-specific 36 

conservation targets is based on the Species-Area Relationship (SAR; Fig. 1 ; Rosenzweig, 1995; 37 

Triantis et al., 2012). Building on the relationship between species richness and area (SAR), habitat-38 

specific conservation targets are set by estimating the proportion of a habitat required to represent a 39 

given proportion of the total number of species occurring within it (step 2 Fig. 1 and for instance 40 

Desmet & Cowling, 2004; Reyers et al., 2007; Metcalfe et al., 2013; Davis et al., 2017). These 41 

habitat-specific conservation targets are then used to constrain the SCP reserve selection algorithm 42 

when designing protected area networks (step 3 Fig. 1). 43 

SARs are both universal and versatile. Positive relationships between species-richness and area 44 

have been described for a wide variety of taxa, ranging from bacteria (Horner-Devine et al., 2004) 45 

to vertebrates (Newmark et al., 2017), including invertebrates and plants (Triantis et al., 2012), as 46 

well as for a variety of ecosystems and geographic locations (Adams et al., 2017; Deane et al., 47 

2017). Despite the universality of the pattern, systematic variations in the shape of SARs have been 48 

reported across taxa and ecosystems. For example, Qian et al. (2007) identified a strong decrease in 49 

the slope of SARs with increasing latitude for vascular plants in North America; and SARs have 50 

been shown to vary in shape among taxa (Guilhaumon et al., 2008). The shape of SARs varies also 51 

with scale, changing from exponential for small sampling areas to Power-law for intermediate 52 

sampling areas, and sigmoid when representing entire biogeographical regions (He & Legendre, 53 

1996); or depends on the method used to construct them (Scheiner, 2003). 54 

Reflecting the variety of observed SAR shapes and the large body of theoretical work that interprets 55 

the patterns, over 20 mathematical models have been developed to describe SARs (Tjørve, 2003, 56 

2009). Although no agreement has been reached on a single and universal model (Connor and 57 

McCoy 1979; Veech 2000; Fattorini 2007; Guilhaumon et al. 2008), the Power-law model 58 

(Arrhenius, 1921) is often assumed to describe SARs well and is therefore the most widely used in 59 

ecology and conservation science (Smith, 2010). For analytical convenience, simple linear 60 

regression models obtained by log-transforming the Power-law equation are generally used in 61 

conservation applications (see equations 1-3 in methods). When setting habitat conservation targets 62 

using SARs, most studies do not even fit the log-transformed Power-law model to data, but instead 63 

estimate the Power model parameters (and derive corresponding conservation targets) for a given 64 

habitat on the basis of two data points���,���: P1 (x1= log of average area of sampling units, y1= log 65 

of average number of species per sampling unit) and P2 (x2= log of the total habitat area, y2= log of 66 

the total number of species) (see methods for details, Desmet & Cowling, 2004; Rouget et al., 2004; 67 
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Metcalfe et al., 2013; Davis et al., 2017). Even though this approach (called hereafter the ‘log-68 

transformed model’) is more ecologically relevant than setting uniform conservation targets (e.g. 69 

the 10% target adopted internationally) and may be useful in data-poor situations, it is not suited to 70 

take into account the wide range of SAR shapes encountered across ecological conditions and 71 

habitats. Consequently, when the a priori chosen model (e.g. log-transformed model) is 72 

inappropriate for fitting the SAR, the estimation of conservation targets may potentially be 73 

inaccurate and lead to inefficient reserve networks, in particular when the derived targets are less 74 

ambitious than those estimated using the data-driven best fit. Conversely, when the a priori chosen 75 

model estimates too ambitious targets, scarce conservation effort could be mismanaged, while it 76 

could be rather used to protect more depleted habitats. Also, several SAR models could provide 77 

equivalent good fits to empirical data sets, resulting in model-selection uncertainty. In such 78 

situations, the choice of a particular SAR model to calculate conservation targets is delicate, 79 

especially when the estimated habitat targets vary among good fits. Several studies have reported an 80 

uncertainty when selecting the best SAR model for a given data set (Stiles & Scheiner, 2007; 81 

Guilhaumon et al., 2008), with significant influence on the outcomes of a variety of ecological 82 

applications, such as detecting richness hotspots (Guilhaumon et al., 2008) or estimating species 83 

extinction rates (Matthews et al., 2014). For coping with SAR uncertainties, multi-model inference 84 

has been recommended as a solution to provide a robust final inference, weighting several models 85 

fits with respect to their relative probabilities to best fit the SAR (Step 2 Fig. 1 ; Grace et al., 2010; 86 

Guilhaumon et al., 2008, 2010; Smith, 2010; Scheiner et al., 2011). 87 

In this study, we investigate whether the uncertainty in the selection of SAR models propagates 88 

throughout the entire SCP process and leads to different habitat targets and conservation solutions. 89 

Using fishes of the coastal Mediterranean Sea as a case study, we aimed to answer the following 90 

questions: (1) What are the uncertainties underlying the selection of SAR models for different 91 

Mediterranean coastal marine habitats? We constructed empirical SARs for six Mediterranean 92 

coastal marine habitats and compared in a model selection framework 20 SAR models (hereafter 93 

SAR scenarios) to fit these empirical SARs. (2) Do SAR scenarios lead to different habitat 94 

conservation targets, and do they propagate in the SCP process, resulting in distinct conservation 95 

solutions? For each SAR scenario, we calculated conservation targets for the different habitats and 96 

identified corresponding conservation solution using a reserve-selection algorithm. We then tested 97 

whether dissimilarities between conservation targets estimated by different SAR models were 98 

correlated to dissimilarities between the corresponding conservation solutions. (3) Finally, we asked 99 

whether conservation targets and conservation solutions generated by taking into account SAR 100 

uncertainties (i.e. using a multi-model inference) were different from those based on the log-101 
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transformed model? We estimated conservation targets and associated conservation solutions using 102 

both methods and analysed differences in conservation outcomes. 103 

 104 

2. Material and methods 105 

 2.1. Data 106 

Spatial distribution data for 635 Mediterranean fish species, which represent the entire 107 

Mediterranean fish assemblage, were obtained as rasters at 0.1° resolution from the FishMed 108 

database (Albouy et al., 2015). Raster maps for 6 Mediterranean Sea marine habitats, mainly coastal 109 

(i.e. rocky reef, shallow soft, soft slope, soft shelf, seagrass and rocky intertidal; Fig. A1, Table 1), 110 

based on the distribution of substrate types (e.g. soft, hard) and three depth ranges (shallow for 0-60 111 

m, shelf for 60-200 m and slope for 200-2000 m), were obtained from Micheli et al. (2013) at 1km2 112 

resolution (see Halpern et al, 2008 and Micheli et al, 2013 for further details), and resampled on the 113 

species distribution grid. 114 

 2.2. Species-area sampling 115 

Using gridded species distributions, we constructed empirical SAR for each habitat by tallying both 116 

the number of species and the habitat surface area occurring at increasing levels of cells number 117 

(step 1 Fig.1). For each level of n cells number (n ranging from 1 to N-1 grid cell, with N the total 118 

number of grid cells observed in the focal habitat, and using a step of one grid cell), we sampled 119 

randomly 100 sets of cells and averaged species richness and habitat surface area over these 100 120 

sets, constructing empirical species-area curves of type IIB as defined by Scheiner (2003). For the 121 

last level of N cells we used the total number of species observed in the focal habitat, without 122 

replications. 123 

When constructing empirical SARs, species are usually counted at the first encounter and 124 

considered present at a given level of area even if they are represented by a single individual (He & 125 

Hubbell, 2011). For conservation purposes, this approach would hardly promote the maintenance of 126 

populations that are sufficiently viable to ensure species persistence. To address this limitation, we 127 

considered that a species was present at a given level of area only if at least 10% of the species’ 128 

total range in the habitat considered was encompassed. This 10% coverage threshold was chosen 129 

conservatively to allow for species persistence (Rodrigues et al., 2004; Venter et al., 2014; 130 

Guilhaumon et al., 2015; Mouillot et al., 2016). 131 

2.3. Species-area modeling 132 

Many functional forms have been proposed to fit SARs; they differ in shape (e.g. convex, sigmoid, 133 

asymptotic, non-asymptotic) and in the complexity of the corresponding mathematical model 134 

(Triantis et al., 2012). For each habitat, we fitted 20 SAR models�̂	 = �	�
�, 1 ⩽ � ⩽ 20where �̂	 is 135 
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the species richness inferred by model � for the habitat area 
 and �	  is the functional form, 136 

including a linear function, nine convex functions and ten sigmoid functions, thus encompassing the 137 

various SAR shapes gathered in the literature (Table 2). To compare the goodness-of-fit of SAR 138 

models, we used the version of Akaike’s Information Criterion (AICci; Akaike, 1987) corrected for 139 

small samples. Model selection using AICc considers both fit and complexity when comparing 140 

several models. We used Akaike weights (ωi) derived from AICc values to reflect the probability of 141 

each model to be the best in explaining the data (Burnham & Anderson, 2003). When the best-fitted 142 

model has an Akaike weight greater than 0.9, robust inferences can be made using only this model; 143 

however if none of the models has a weight greater than 0.9, no conclusion can be drawn about the 144 

best model, reflecting a substantial uncertainty surrounding the model selection (Burnham & 145 

Anderson, 2003). If so, model averaging has been recommended to make robust SAR predictions 146 

(Guilhaumon et al., 2008). Here we performed multi-model inference by averaging SAR inferences 147 

across models and weighting according to Akaike-weights : �̄̂ = ∑ ��̂	 �	. 148 

All SAR analyses were conducted using an updated version of the R package “mmSAR” 149 

(Guilhaumon et al., 2010), which estimates non-linear model parameters for numerous SAR 150 

functional forms (Triantis et al., 2012). Of the 20 SAR models initially fitted, those with negative 151 

R2 (i.e. the model does not follow the trend of the data and fits worse than an intercept-only linear 152 

regression) and those yielding negative predictions or a decrease in species richness with increasing 153 

area were discarded. The remaining models differed by habitat, but for comparison purposes, only 154 

the 13 models validated for all habitats were used to evaluate the sensitivity of the SCP process to 155 

the selection of the SAR model (Table 2). We used an R² measure that compares the deviance of the 156 

non linear SAR model with the deviance of a linear intercept-only model (Kvålseth, 1985) and used 157 

these R² values as indicators of the proportion of the total variation in species richness that is 158 

explained (accounted for) by the non linear SAR models. 159 

 160 

 2.4. Conservation targets 161 

For a given habitat, targets were expressed as the proportion of that habitat area required to 162 

represent a given proportion of the total number of species occurring within it. The proportion of 163 

species is generally set at 70-80% (Desmet & Cowling, 2004; Metcalfe et al., 2013; Davis et al., 164 

2017). In this study, habitat targets were calculated to protect 80% of the fish fauna of each habitat. 165 

For the six habitats, 13 fitting SARs models (�̂ = ��
�; Table 2) were used to derive the habitat-166 

target area 
� corresponding to 80% of the species richness (St) inferred for the total area of the 167 
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focal habitat (�����^ ). We also used multi-model inference for each habitat to estimate corresponding 168 

conservation targets.  169 

In addition, we calculated habitat targets following the log-transformed model approach developed 170 

in Desmet & Cowling (2004), based on simplifications of the logarithmic transformation of the 171 

Power-law model ( Eq.1 and Eq.2 ; Arrhenius, 1921): 172 

�̂ = �
� (1) 173 

�����̂� = � + !����
� (2) 174 

where �̂ = species richness, A = habitat area, z = the rate at which new species are encountered in a 175 

system (Lomolino, 2000) and c is a scaling factor that relates to the area of an individual sampling 176 

unit, which can be ignored when comparing percentages of species and area (Rondinini & Chiozza, 177 

2010). The habitat-specific z-parameter was calculated using Eq. (3) as the slope of the log-178 

transformed model (Eq. 2). 179 

! = �"� − "�� �$� − $��⁄  (3) 180 

where y2 = log (total number of species in a habitat class), y1 = log (mean number of species per 181 

sampling point), x2 = log (total area of the habitat class) and x1 = log (mean area of sampling 182 

points). Habitat-target area (At) was then calculated to protect St = 80% of predicted species 183 

richness using equation 4 (Desmet & Cowling, 2004; Metcalfe et al., 2013). 184 

����
�� = ��� ���� !⁄  (4) 185 

 2.5. Systematic conservation planning 186 

We used the reserve-selection algorithm in the Marxan decision support tool (Ball et al., 2009) to 187 

assess the implications of considering habitat-targets from different SAR scenarios on spatial 188 

conservation solutions. Marxan uses a heuristic algorithm to minimize the opportunity cost (surface 189 

area or socio-economic cost) of the set of Planning Units (PUs, here grid cells) selected as a 190 

protected area system while ensuring predefined representativeness for each conservation feature 191 

(here SARs habitat-targets). Near-optimal conservation solutions are generated by minimizing an 192 

objective function, linear combination of three components: (1) total cost of the solution (sum of the 193 

opportunity costs of the PUs selected in a given solution); (2) penalty associated with the spatial 194 

compactness level of the solution, calibrated using a Boundary Length Modifier (BLM) and (3) sum 195 

of Features Penalty Factor (FPF), which represents a penalty cost for each unmet target. 196 

Because the value of the FPF and the BLM depend on the magnitude of conservation targets, it is 197 

necessary to adjust, for each SAR scenario independently, the weights in the objective function 198 

components (i.e. BLM and FPF) to be of similar magnitude, thus preventing any component from 199 

outweighing the others (Stewart & Possingham, 2005; Ardron et al., 2008). Here we conducted 200 



7 

analyses without using BLM to allow comparison of conservation solutions based on different 201 

SARs habitat-targets. FPF was incrementally increased for each habitat separately until all the 202 

habitats would meet their SAR targets. We allocated an equal cost (set to 1) to the 15,539 PUs of 203 

the planning region, as our aim was to examine differences in the selection of priority areas among 204 

the SAR scenarios and not to design a cost-effective MPA network. We ran Marxan to identify a set 205 

of 100 potential MPAs network solutions for each of the 15 SAR scenarios (13 fitting non-linear 206 

SARs models, the log-transformed model and the SAR multi-model inference) using 1,000,000 207 

iterations that were necessary for the heuristic algorithm to achieve near-optimal solutions. We then 208 

calculated the “irreplaceability” value for each PU as the percentage of solutions that contained the 209 

PU. The irreplaceability values emphasize the importance of each PU for achieving conservation 210 

targets (Carwardine et al., 2007).  211 

To emphasize the sensitivity of conservation planning to various SAR scenarios, we used two 212 

different metrics. We first investigated the spatial overlap between the best conservation solutions 213 

arising from the 13 different SAR scenarios (i.e. fitting non-linear SARs models). As such, PUs 214 

were identified as priority areas of the least investment risk when selected among all models, or as 215 

unsure for conservation plans when their selection depended on the SAR scenario. Second, we 216 

derived pairwise comparisons between the 13 SAR scenarios by calculating, for each PU, the 217 

difference in irreplaceability. We additionally defined the PUs selected across more than 50% of 218 

conservation solutions as ”highly irreplaceable” (and essential to effectively meet conservation 219 

objectives (Ardron et al., 2008)), and compared them across SAR scenarios. The same analyses 220 

were conducted to compare match and mismatches between the multi-model inference and the log-221 

transformed model, the relationship between respective PUs irreplaceability values was projected 222 

onto an RGB (Red-Green-Blue) two-dimensional color space and mapped geographically.  223 

 2.6. Uncertainty propagation analysis 224 

We used the Mantel test (Mantel, 1967) to test for a relationship between dissimilarities in 225 

conservation targets and dissimilarities in conservation solutions arising from different SAR 226 

models. In the Mantel test, a coefficient of correlation is computed between the two observed 227 

dissimilarity matrices and its significance is evaluated by re-calculating the correlation after many 228 

random permutations of the rows and columns of one dissimilarity matrix. We calculated the 229 

dissimilarity between all pairs of habitat targets for the 13 fitting SAR models using Euclidean 230 

distances. A second dissimilarity matrix between the same models was calculated on the basis of 231 

PU irreplaceability values, using Euclidean distances as well. A strong and significant Mantel 232 

correlation indicates that the dissimilarity in habitat-targets between SARs models is tightly linked 233 
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to the dissimilarity in conservation solutions, revealing that SAR uncertainties spread across the full 234 

SCP process.  235 

To visualize the dissimilarities between conservation solutions arising from different SAR scenarios 236 

we used Nonmetric Multi-Dimensional Scaling (NMDS). We used the function “metaMDS” of the 237 

R package “vegan” (Oksanen et al., 2008). Besides, a k-means partitioning was performed on the 238 

irreplaceability values for all SAR scenarios, and the resulting grouping was projected in the NMDS 239 

space to highlight groupings of SAR scenarios that generated similar conservation solutions. 240 

 241 

3. Results 242 

 3.1. SAR modeling 243 

Coefficients of determination (&�) for the 13 SAR models ranged widely across habitats (i.e. from 0 244 

to 1 for the gompertz model for the soft slope and rocky intertidal habitats, respectively) and 245 

explained on average c. 90% of the total variation in species richness (mean ± standard deviation 246 

(SD) = 0.88 ± 0.18) (Table 3). More complex sigmoid models (i.e. weibull3 and mmf) generally 247 

explained more variation in species richness than simpler non-asymptotic convex models. Akaike 248 

weights varied greatly among models and habitats, and the data empirically supported between 1 249 

and 6 models (i.e. Akaike weights > 0), depending on the habitat (Table 3). For two habitats (i.e. 250 

shallow soft and rocky intertidal), model selection probabilities spread almost equally between the 251 

mmf and heleg models. For the seagrass habitat, data provided empirical support for the Power-law 252 

model and five sigmoid asymptotic models (i.e. mmf, weibull3, weibull4, gompertz and heleg), 253 

indicating uncertainty in the selection of the best fitting model. As for the other habitats (i.e. rocky 254 

reef, soft slope, and soft shelf), the weibull4 model was selected without uncertainty (i.e. Akaike 255 

weights > 0.9) as the best-fitting model. 256 

 3.2. Conservation targets 257 

For a given habitat, conservation targets differed substantially among SAR models (Table 4). The 258 

difference between the maximum and minimum conservation targets predicted by different SAR 259 

models exceeded 30% for all habitats. For example, conservation targets for the soft shelf habitat 260 

varied from c. 8% for the gompertz model to c. 38% for the power model. Similarly, a given model 261 

provided varying conservation targets among habitats. For example, the monod model identified 262 

targets ranging from 18% to 87%, depending on the habitat. Calculating the mean target for a given 263 

SAR model across habitats revealed a relationship between target sizes and model characteristics: 264 

non-asymptotic models generated the largest targets (i.e. 54% and 59% for the koba and power, 265 

respectively), while convex models generated larger targets than sigmoid models (Table 4). 266 
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Multi-model inference, weighting all 13 SAR models, determined a consensual conservation target 267 

ranging from 9-97% depending on the habitat (38% ± 35.5) whereas the log-transformed model 268 

yielded relatively less ambitious targets, ranging between 12-40% among habitats (21% ± 9.7). The 269 

differences between the conservation targets estimated by these two methods can exceed 40% when 270 

the multi-model inference generated the most ambitious targets (i.e. seagrass and rocky reef 271 

habitats). Otherwise, targets estimated by the log-transformed model exceeded those estimated by 272 

the multi-model by c. 8 % depending on the habitat (Table 3). 273 

 3.3 Conservation solutions 274 

Although SAR scenarios that provided more ambitious targets ultimately led to more spatially 275 

extensive conservation networks, conservation solutions for different SAR scenarios showed 276 

different spatial distributions beyond their difference in size. While the less ambitious SAR scenario 277 

(i.e. gompertz) provided an average target of c. 26% across habitats, consensual priority areas 278 

among all SAR scenarios did not exceed 1% of the study area (Fig. 3 and Fig. A2): the PUs selected 279 

by models estimating moderately ambitious targets were not necessarily selected by models that 280 

estimate larger targets. 281 

The spatial distribution of irreplaceability differed among SAR scenarios (Fig. 4). PUs that are 282 

“highly irreplaceable” for achieving targets for a given SAR scenario are not likely to be so for 283 

another SAR scenario. In all pairwise SAR scenarios comparisons, between c. 2%- 50% of “Highly 284 

irreplaceable” PUs differed, while only c. 2% presented maximum irreplaceability across all SAR 285 

scenarios (Fig. A3; Table A4). 286 

The comparison between irreplaceability values for the multi-model SAR and the log-transformed 287 

model revealed substantial differences over 10% of the study area (Fig. 5). Several patches of 288 

”highly irreplaceable” PUs under the multi-model SAR scenario were spread across the Balearic 289 

Islands (Spain), Sicily (Italy) and Corsica (France), covering mainly seagrass and rocky reef 290 

habitats; irreplaceability values for the corresponding PUs under the log-transformed model were 291 

systematically low.  292 

 3.4. SARs uncertainties propagation 293 

A Mantel r-statistic of 0.97 (p-value=0.01) suggested a strong, positive and significant correlation 294 

between SARs habitat-targets dissimilarities and conservation solutions dissimilarities, revealing 295 

that differences in SARs inferences propagate through the SCP process and lead to different 296 

conservation solutions. The two-dimensional NMDS (Fig. 6) produced high congruence between 297 

the observed and ordinated distances (non-metric fit &� = 0.99) and a stress value of 0.02 298 

distinguished clearly conservation solutions of the log-transformed model from other SAR 299 

scenarios. A k-means clustering distinguishing five groups of SAR models partitioned the models 300 
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as follows. A first group of three non-asymptotic models (power, koba and P2). A second group 301 

gathering four sigmoid asymptotic models (weibull3, weibull4, heleg and mmf) and the multi-model 302 

inference. A third group including both convex asymptotic and sigmoid models with 2-3 parameters 303 

(i.e. monod, epm2, negexpo and chapman) while the gompertz and betap models were aggregated 304 

into a fourth group. The log-transformed model was isolated in a fifth group. Note that all models of 305 

the second group were most frequently selected as the best models among habitats and that models 306 

of the third group had null Akaike weights across all habitats (Table 3). 307 

 308 

4. Discussion 309 

As expected from the literature evidence, the shapes of coastal Mediterranean SARs varied greatly 310 

among habitats, including convex, exponential and sigmoid tendencies (Fig. 2). The best fitting 311 

SAR model differed by habitat and although the mean &� was relatively high, the goodness-of-fit of 312 

the 13 models varied greatly among the six marine habitat types we considered. Hence, assuming 313 

any of the numerous models described in the literature to provide an optimal fit for all the habitat 314 

data sets analysed here would have led to spurious inferences (Smith, 2010). Indeed, our results 315 

confirm that models that fit well for one habitat may not do so for other habitats (Connor & McCoy, 316 

1979; Guilhaumon et al., 2008; Stiles & Scheiner, 2007; Triantis et al., 2012). 317 

Furthermore, based on AICc weights, we detected a substantial uncertainty in the selection of the 318 

best SAR model for three habitats, with several models (mostly sigmoid asymptotic) supported by 319 

empirical SARs. For the other habitats, a sigmoid asymptotic model was selected as best-fitting 320 

SAR (Table 3). Our findings of substantial support for sigmoid asymptotic SARs models for 321 

Mediterranean habitats, would not be considered in classical analyses assuming a priori the Power-322 

law SAR or its log-transformed model. As pertaining from the versatility of the SAR, the 323 

justification for particular SAR models is problematic in the literature, and when the data allows, 324 

testing among existing SAR models is advocated (Smith et al., 2010; Scheiner et al., 2011; Davis et 325 

al., 2017). Furthermore, when numerous models show equivalent support for empirical SARs, 326 

testing a range of SARs models is prospectively essential to allow a multi-model inference robust to 327 

the assumption of a particular SAR model (Burnham and Anderson, 2003). 328 

The comparison of conservation habitat-targets revealed substantial differences among SAR 329 

scenarios. For example, while the best-fitting model for soft shelf habitat (i.e. weibull4) predicted a 330 

target of 13%, other models predicted markedly different ranges of targets (e.g. from 7% to 38% for 331 

gompertz and power models, respectively). In general, for the threshold of 80% of species richness 332 

coverage employed here, non-asymptotic models predicted the largest targets, and convex models 333 
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predicted larger targets than sigmoid models. The model used, whether convex or sigmoid or with 334 

an asymptote, significantly influenced the amount of each habitat to be secured in protected areas.  335 

Using multi-model inference resulted in a mean conservation target of c. 38% over the entire study 336 

area. This conservation target, devised to protect 80% of the species within each habitat, as 337 

recommended by international conservation institutions (Desmet & Cowling, 2004; Metcalfe et al., 338 

2013; Davis et al., 2017), and combined with the 10% coverage threshold to construct SARs, 339 

promotes both species representation and persistence within each habitat. Accordingly, in the 340 

Mediterranean Sea, the conservation target of 10% of the marine area set by the CBD (2010) would 341 

leave some key habitats under-protected to represent 80% of the species (i.e. seagrass and rocky 342 

reefs). Additionally, this result supports the recommendations of the 2014 World Parks Congress, 343 

which called for protection of at least 30% of marine areas, as in previous studies (O’Leary et al., 344 

2016). On the other hand, the use of the log-transformed model is justified on the assumption that 345 

the power model is the most appropriate at fitting all SAR datasets. However, our results show that 346 

a power model, fitted as a non-linear regression by minimizing the residual sum of squares, was 347 

never selected as the best fitting one, except for the seagrass habitat, where the power model holds a 348 

share of the statistical information in explaining empirical SAR. If employed, habitat-conservation 349 

targets estimated with the log-transformed model would provide insufficient protection level for 350 

some key habitats in the life cycle of Mediterranean fish species (i.e. seagrass and rocky reef 351 

habitats). On the flip side, when targets estimated with the log-transformed model exceeded those 352 

estimated by the multi-model SAR, the protection of the corresponding habitats may be overstated, 353 

leading to waste of scarce conservation resources that could be used to protect more needful 354 

habitats. Overall, our investigations revealed strong differences in SAR scenarios on the setting of 355 

habitat-specific conservation targets, with the log-transformed model providing conservation targets 356 

diverging markedly from data-driven SAR inferences. As such, beyond providing ecologically 357 

relevant conservation targets, considering habitat specificities by modeling empirical SARs is 358 

relevant for a parsimonious allocation of conservation funds. 359 

Importantly, beyond an effect on the magnitude of conservation targets, our study revealed that the 360 

spatial distribution of selected priority areas depends on the SAR scenario used (Fig. 3, Fig. 4). As 361 

shown here, conservation solutions for less ambitious targets are not always subsets of conservation 362 

solutions for more ambitious targets (Fig. 3), confirming that the spatial distribution of conservation 363 

solutions is target-specific (Margules & Pressey, 2000). Pairwise comparison between 364 

irreplaceability values under different SAR scenarios revealed a maximal congruence of 50% of 365 

”highly irreplaceable” PUs (Fig.A3; Table A4). Our analyses highlighted that dissimilarities in 366 

habitat-targets associated with alternative SAR scenarios propagate throughout the SCP process and 367 
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lead to correlated dissimilarities in conservation outcomes. This is of special concern given the wide 368 

range of magnitude for targets estimated under different SAR scenarios (exceeding 30% for e.g. 369 

rocky reefs or soft slopes; Table 4). The clustering of SAR scenarios in the NMDS based on 370 

irreplaceability values (Fig. 6) shows that models with similar shapes were likely to generate similar 371 

conservation solutions (e.g. the group of sigmoid models vs the group of convex models in Fig. 6). 372 

This suggests the necessity to consider a wide range of SAR shapes when estimating habitat 373 

conservation targets and solutions. On another note, the overlap among the 13 best conservation 374 

solutions, each based on a different SAR scenario, revealed that priority areas of the least 375 

investment risk (i.e. consensual areas among all SAR models) occupied only 1% of the total study 376 

area. Most of these consensual PUs are already located in established MPAs (e.g. Cabrera National 377 

Park (Spain), reserve of Lavezzi islands (France), Egadi MPA (Italy), MPA of “Penisola del Sinis - 378 

Isola di Mal di Ventre” (Italy) and MPA of Ustica Island (Italy); Fig.5), indicating that the current 379 

Mediterranean MPAs system provides a valuable starting point to establish a relevant conservation 380 

network for coastal habitat conservation (Guilhaumon et al. 2015).  381 

Comparing the multi-model SAR and the log-transformed model, SCP outcomes showed strong 382 

effects of the method on the spatial distribution of irreplaceability values. Particular conservation 383 

implications of using both methods can be highlighted by scrutinizing areas with larger differences 384 

in irreplaceability values (Fig. 5). Most of these areas, such as the Balearic Islands in Spain, the 385 

Gulf of Gabes in Tunisia, and the coasts of Sicily in Italy and Corsica in France, are predicted to be 386 

irreplaceable under the multi-model SAR scenario but not by the log-transformed model. Some of 387 

these priority areas overlap with established MPAs, while most are located in unprotected areas, 388 

such as the Gulf of Gabes, known to be a shelter for one of the most extensive Posidonia oceanica 389 

meadows in the Mediterranean sea (Batisse & Jeudy de Grissac, 1998) and a fish functional 390 

diversity hotspot (Mouillot et al., 2011). 391 

In conclusion, our findings highlight the potential consequences of the choice of a particular SAR 392 

model on the different stages of habitat-based SCP. SAR uncertainties propagate through the SCP 393 

process, confirming our theoretical anticipation that ignoring SARs specificities when setting 394 

habitat conservation targets may lead either to a waste of resources limited by socio-economic 395 

constraints or to the under-representation of biological conservation features. When the data allows, 396 

a shift from an a priori defined SAR model or uniform targets towards a data-based approach would 397 

provide stakeholders with better guidance on the appropriate strategies for habitats conservation. 398 

Failing to do so may well lead to uncertain conservation outcomes, as exemplified herein the 399 

identification of conservation plans among coastal Mediterranean habitats.  400 
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Figure captions :  

Figure 1 : Description of the different steps of the workflow for habitats conservation planning 

using Species-Area Relationships (SARs). Gray points indicate the empirical SAR and SAR 

scenarios are represented by solid lines. On each plot in Step 2, horizontal and vertical 

dashed lines indicate respectively the threshold of 80% of total predicted species richness 

and the corresponding habitat area to protect. In Step 3, the colors of the selected planning 

units correspond to the color of the scenario in Step 2. 

 402 

Figure 2: Empirical (gray points) and fitted (lines) SAR for six Mediterranean coastal habitats : (a) 403 

rocky reef, (b) shallow soft, (c) soft slope, (d) soft shelf, (e) seagrass and (f) rocky intertidal. Model 404 

codes as in Table 1. 405 

 406 

Figure 3: The overlap between the best conservation solutions under 13 SAR scenarios. The color 407 

of each planning unit indicate the number of SAR scenarios among which it was part of the best 408 

conservation solution. Locations of five marine protected areas : 1, Cabrera National Park ; 2, 409 

reserve of Lavezzi lslands ; 3, Egadi MPA ; 4, MPA of Ustica Island and 5, MPA of “Penisola del 410 

Sinis - Isola di Mal di Ventre”. 411 

 412 

Figure 4: Irreplaceability values of planning units in the Mediterranean Sea under different SAR 413 

scenarios : (a) power , (b) epm2, (c) P2, (d) koba, (e) mmf, (f) monod. (g) negexpo, (h) chapman, (i) 414 

weibull3, (j) gompertz, (k)weibull4, (l) betap, (m) heleg (n) the log-transformed model and (o) the 415 

multi-model inference. Model codes as in Table 1. 416 

 417 

Figure 5: Matches and mismatches between the multi-model inference and the log-transformed 418 

model SAR scenarios. Planning units colors are produced by projecting irreplaceability values 419 

within a two-dimensional RGB (Red-Green-Blue) color space as indicated in the inset. 420 

 421 

Figure 6: Non-metric multi-dimensional scaling ordination of the irreplaceability values of SAR 422 

scenarios. Colors represent groups identified using a k-means clustering method. The point “multi-423 

model” represents the multi-model inference, while “log-transform” indicates the log-transformed 424 

model. 425 

  426 
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Tables : 

Table 1: Characteristics of six coastal habitat types in the Mediterranean Sea used in this study: 427 

total area, species richness, mean habitat area per planning unit (PU) and mean number of species 428 

per planning unit. 429 

Habitat type Area (km2) 
No. of 

species 
No. of PUs  

Mean habitat 

area per PU 

(km2) 

Mean no. of species per PU 

Rocky reef 37689.248  576 837 45.02 207 

Shallow soft 190334.881 595 4462 42.65 203 

Soft slope 879488.256 589 11349 77.49 62 

Soft shelf 225536.802 593 5304 42.52 168 

Seagrass  3158.366 520 286 11.04 285 

Rocky intertidal 18522.185 594 2844 6.51 229 

 430 

Table 2: The analytical formula, shape, presence/absence of an asymptote and number of 431 

parameters of the 20 models analyzed. S is species richness, A is the area, and c, d, f, and z are 432 

fitted parameters. Bold font identifies the 13 models selected for conservation planning analyses. 433 

Model name Code Formula Parameters Shape Asymptote? 

Linear linear � = � + !
 2 Linear × 

Power power � = �
' 2 Convex × 

Power 

Rosenzweig 
power_R � = ( + �
� 3 Convex × 

Extended 

power-law 

model 1 

epm1 � = �
��)* 3 Sigmoid × 

Extended 

power-law 

model 2 

epm2 � = �
�)�+ �⁄ � 3 Sigmoid × 

Persistence 

function 1 
P1 � = �
',�)*�� 3 Convex × 

Persistence P2 � = �
',�)* �⁄ � 3 Sigmoid × 
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function 2 

Exponential expo � = � + !���
 2 Convex × 

Kobayashi 

logarithmic 
koba � = �����1 + 
 !⁄ � 2 Convex × 

Monod monod � = - �1 + �
)��⁄  2 Convex �  

Morgan-

Mercer-Foldin 
mmf � = - �1 + �
)��⁄  3 Sigmoid �  

Logistic heleg � = � �. + 
)��⁄  3 Sigmoid �  

Negative 

exponential 
negexpo � = -�1 − ,)��� 2 Convex �  

Chapman–

Richards 
chapman � = -�1 − ,)���+ 3 Sigmoid �  

Weibull 3 weibull3 � = -�1 − ,)+�
/
� 3 Sigmoid �  

Weibull4 weibull4 � = -�1 − ,)+�
/
�
0
 4 Sigmoid �  

Asymptotic 

regression 
asymp � = - − �!� 3 Convex �  

Rational ratio � = �� + !
� �1 + -
�⁄  3 Convex �  

Gompertz gompertz � = -,�)1
2/�324�� 3 Sigmoid �  

Beta-P betap 
�

= -51 − �1 + �
 �⁄ ���)06 
4 Sigmoid �  

 434 
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Table 3: Model selection and goodness-of-fit for 13 SAR models in six Mediterranean coastal habitats. R2 is the coefficient of determination, AICc is 435 

the Akaike Information Criterion corrected for small samples and ω is Akaike model weight, which reflects the probability that a model is the best at 436 

fitting the data. Model codes as in Table 1. 437 

 438 

 Rocky reef Shallow soft Soft slope Soft shelf Seagrass Rocky intertidal 

Model R2 AICc ω R2 AICc ω R2 AICc ω R2 AICc ω R2 AICc ω R2 AICc ω 

power 0.94 6 904 0 0.54 46 349 0 0.9 89 174 0 0.68 48 726 0 0.98 1 834 0.38 0.56 31 112 0 

epm2 0.99 5 639 0 0.83 41 365 0 0.97 76 515 0 0.93 40 224 0 0.97 1 962 0 0.79 28 650 0 

P2 0.99 5 453 0 0.85 40 712 0 0.9 89 178 0 0.94 39 011 0 0.98 1 849 0 0.82 28252 0 

koba 0.94 6 919 0 0.63 45 245 0 0.95 82 590 0 0.77 46 830 0 0.86 2 529 0 0.65 30407 0 

mmf 1 4 547 0 1 14 900 0.48 0.98 71 465 0 0.99 26 153 0 0.98 1 836 0.14 1 14581 0.50 

monod 0.94 6 919 0 0.78 42 584 0 0.97 76 452 0 0.89 42 728 0 0.86 2 529 0 0.75 29287 0 

negexpo 0.94 6 919 0 0.87 40 025 0 0.99 67 774 0 0.96 37 477 0 0.87 2 529 0 0.82 28207 0 

chapman 0.94 6 921 0 0.87 40 027 0 0.98 72 379 0 0.96 37 479 0 0.86 2 532 0 0.82 28209 0 

weibull3 0.99 4 961 0 1 19 295 0 0.99 64 386 0 1 20 227 0 0.98 1 836 0.14 1 15020 0 

gompertz 0.81 8 000 0 0.06 49 994 0 0 115 925 0 0.76 47 084 0 0.98 1 836 0.13 1 15387 0 

weibull4 1 4 466 1 1 16 235 0 1 40 626 1 1 20 182 1 0.98 1 838 0.05 1 15271 0 

betap 0.99 4 963 0 0.99 23 323 0 0.51 107 688 0 0.79 46 424 0 0.9 2 425 0 1 14999 0 

heleg 1 4 547 0 1 14 899 0.52 0.98 71 464 0 0.99 26 153 0 0.98 1 836 0.14 1 14581 0.50 

  439 
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Table 4: Conservation targets, expressed as the percentage of each habitat required to protect 80% of species according to 13 non-linear SAR models, 440 

the log-transformed model and the multi-model SAR. Mean habitat targets for a given SAR model across habitats ; Mean habitat targets for a given 441 

habitat across SAR scenarios; ranges of targets estimated across SAR scenarios for each habitat (maximum minus minimum target). 442 

 443 

 Rocky reef Shallow soft Soft slope Soft shelf Seagrass 
Rocky 

intertidal 

Mean % 

target 

power 83.02 34.15 57.69 38.31 97.42 45.67 59.37 

epm2 74.34 18.23 38.28 20.61 95.95 26.55 45.65 

P2 73.06 17.18 57.69 19.49 97.27 24.85 48.25 

koba 81.45 31.95 51 34.47 87.57 41.01 54.57 

mmf 62.84 9.31 37.21 13.69 97.42 11.94 38.73 

monod 81.45 18.47 43.63 21.77 87.57 26.92 46.63 

negexpo 81.32 13.46 36.94 16.35 87.8 19.44 42.55 

chapman 81.32 13.46 33.39 16.35 87.57 19.44 41.92 

weibull3 61.36 9.34 34.17 13.82 97.42 11.77 37.98 

gompertz 36.62 0.41 0.06 7.97 98.98 11.94 25.99 

weibull4 64.13 9.37 33.35 13.82 97.42 11.94 38.33 

betap 61.36 9.52 13.07 35.19 85.8 11.77 36.11 

heleg 62.84 9.31 37.21 13.69 97.42 11.94 38.73 

Multi-model 64.13 9.31 33.35 13.82 97.42 11.94 38.32 

Log-transformed 

model 
22.95 17.42 39.61 21.79 12.18 15.41 21.56 

Mean % target  66.14 14.72 36.44 20.07 88.34 20.16  
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% target range 60.07 33.73 57.62 30.33 86.80 33.89  

 444 

SUPPORTING INFORMATION 

Figure A1: Habitat types in the Mediterranean Sea : (a) rocky reef, (b) shallow soft, (c) soft slope, (d) soft shelf, (e) seagrass and (f) rocky intertidal. 

Figure A2 :  Best solutions for each SAR scenario : (a) power , (b) epm2, (c) P2, (d) koba, (e) mmf, (f) monod. (g) negexpo, (h) chapman, (i) weibull3, 

(j) gompertz, (k)weibull4, (l) betap, (m) heleg, (n) the log-transformed model and (o) the multi-model inference. Model codes as in Table 1. 

Figure A3 : Pairwise comparison of irreplaceability values of planning units under 13 SAR scenarios. Upper triangle illustrates differences in 

irreplaceability values between two given SAR scenarios. Colors of planning units in scatter plots (lower triangle) and maps indicate the diffrences in 

irreplaceability values between two SAR scenarios. 

 445 
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Table A4 : Pairwise comparison of matches and mismatches of “highly irreplaceable” planning units under 13 SAR scenarios : The percentage of 

“highly irreplaceable” planning units selected under the SAR scenario and not under the other are given in upper triangle; the percentage of “highly 

irreplaceable” planning units selected under both SAR scenarios are represented in lower triangle. 

 

Model power epm2 P2 koba mmf monod negexpo chapman weibull3 gompertz 

power  45.82 6.7 13.59 46.97 33.95 47.31 50.26 49.95 53.14 

epm2 8.04  42.56 32.59 5.67 12.53 4.96 4.2 4.64 6.28 

P2 49.16 18.33  14.32 43.45 30.96 44.06 47 46.43 49.62 

koba 7.92 17.29 4.27  33.77 22.87 33.66 36.42 36.41 39.49 

mmf 39.78 5.68 4.37 4.07  13.55 5.01 4.25 3.78 5.22 

monod 7.74 6.72 3.52 3.64 1.64  13 14.42 14.8 17.25 

negexpo 37.75 4.73 4.25 3.31 1.63 3.9  3.1 3.84 5.22 

chapman 6.98 6.6 3.95 1.79 1.87 3.55 3.13  2.28 2.92 

weibull3 4.49 6.63 4.56 1.78 4.25 3.34 3.19 3.08  2.79 

gompertz 7 4.18 3.86 1.8 3.79 3.54 3.08 1.61 7.1  

weibull4 6.64 5.9 4.56 1.67 4.26 1.78 3.11 3.09 6.76 4.12 

betap 18.64 4.4 4.38 1.78 4.08 3.24 3.1 7.1 4.38 3.48 

heleg 6.73 4.05 3.82 1.65 3.69 3.13 3.08 4.49 5.71 3.78 
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Step 1 : Empirical SARs Step 2 : SAR models and conservation targets 

Species richness and habitat area 
are tallied for increasing surface 
level (number of planning units) 
for each habitat of study area.

For each habitat, the empirical SAR is fitted according to different SAR scenarios (here 3 
SAR models and a multi-model inference). The corresponding conservation targets are 
then inferred to protect a given percentage (here 80%) of the total species richness of 

each habitat.

Step 3: Conservation planning

A reserve-selection algorithm (here Marxan) is 
used to generate a conservation solution based 

on each SAR scenario.
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