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COMPARATIVE STUDY OF HARMONIC AND RAYLEIGH-RITZ
PROCEDURES WITH APPLICATION TO DEFLATED CONJUGATE

GRADIENTS

NICOLAS VENKOVIC∗, PAUL MYCEK∗, LUC GIRAUD† , AND OLIVIER P. LE MAÎTRE‡

Abstract. Harmonic Rayleigh-Ritz and Raleigh-Ritz projection techniques are compared in the context of
iterative procedures to solve for small numbers of least dominant eigenvectors of large symmetric positive definite
matrices. The procedures considered are (i) locally optimal conjugate gradient (CG) methods, i.e., LOBCG, (ii)
thick-restart Lanczos methods, and (iii) recycled linear CG solvers, e.g., eigCG. Approaches based on principles of
local optimality are adapted to enable the use of harmonic projection techniques. Upon investigating the search
spaces generated by these methods, it is found that LOBCG and thick-restart Lanczos methods can be adapted,
which is not the case of eigCG. Explanations are also given as to why eigCG works so well in comparison to other
recycling strategies. Numerical experiments show that, while approaches based on harmonic projections consistently
result in a faster convergence of eigen-residuals, they generally do not yield better convergence of the forward error
of eigenvectors, until the Rayleigh quotients have converged. Then, the effect of recycling strategies is investigated
on deflation for the resolution of sequences of linear systems. While non-locally optimal recycling strategies need to
solve more linear systems in order to fully develop their effect on convergence, they eventually reach similar behaviors
to those of locally optimal recycling procedures. While implementations based on Init-CG are robust for systems
with multiple right-hand sides, this is not the case for multiple operators.

1. Introduction. When solving a large linear system Ax = b, approximate eigenvectors of
A can be leveraged so as to achieve a more efficient iterative resolution [6]. Often times, this is
equivalent to introducing a deflation subpsace, to which, the iterated residual is forced to remain
orthogonal throughout the resolution [7, 2]. In particular, in Deflated-CG [27], the orthogonaliza-
tion of the residual at each solver iteration accounts for most of the computational overcost when
compared to a resolution by standard CG. Meanwhile, the smaller the gap between the actual eigen-
space and the subspace spanned by the approximated vectors, the more significant of a speed-up
can be achieved by deflation [8]. Floating-point arithmetic aside, if by any chance, the spectral
information available is exact, then, the iterated residual does not need to be orthogonalized with
respect to the deflation subspace, as it is then invariant under the action of A. Assuming the proper
initial iterate is selected, skipping the orthogonalization step leads to Init-CG [6, 21, 25, 39], which
is sometimes used when the eigenvectors are sufficiently well approximated, but often does not lead
to the same iteration gain as a resolution by Deflated-CG [6], depending on the stopping criterion.
Irrespective of whether Deflated-CG or Init-CG is used, there is clear value in being able to extract
the most accurate eigenvector approximations possible for some given computational resources.

In this work, we are particularly interested in applications where the linear system is symmetric
positive definite (SPD), and in which only the least dominant (LD) eigenvectors are targeted for de-
flation. As most iterative eigensolvers can be recast into some sort of projection technique, see [26],
Rayleigh-Ritz approximation procedures—developed after the work of Rayleigh [11] and Ritz [24]—
are certainly the most common approach, see [22, 37, 26]. However, they suffer from only being
optimal when applied to approximate most dominant eigenvectors, see Chap. 11.1 in [21], as well
as leading to spurious approximations [29]. Harmonic Rayleigh-Ritz projection techniques were
introduced and presented as better approaches to approximate interior eigen-pairs of Hermitian
operators in general [13, 19, 15], i.e. not necessarily SPD. While harmonic procedures are some-
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times preferred over classic Rayleigh-Ritz projections for LD eigenvector approximations [27, 31],
some eigen-solving strategies, on the other hand, were first, or even exclusively developed using
Rayleigh-Ritz projections. For example, implicitly restarted Arnoldi (IRA) methods were first
developed using Rayleigh-Ritz approximations [32], before being revisited with harmonic projec-
tions [14]. Similarly, the thick-restart Lanczos method [40] was adapted to harmonic projections
for the development of explicitly restarted Arnoldi algorithms [16]. Meanwhile, approaches based
on optimization [3, 9, 4, 28, 10, 1] were only developed in relation to Rayleigh-Ritz projections.
Finally, recycling strategies, which build search spaces directly from matrix-vector products gener-
ated by a linear iterative solver, have been considered differently depending on their characteristics.
The only such method based on CG for SPD systems that recycles the search space several times
throughout the resolution of a single system, i.e. eigCG [35], was based on Raleigh-Ritz projections.
On the other hand, methods that generate a single search space per linear system solved, and use it
to approximate the eigenvectors of the next system in a sequence—might the operator remain the
same [27, 35], or not [20]—have been based on both types of projections. The question remains as
to whether or not some of these strategies exclusively developed with Rayleigh-Ritz projections can
be adapted to account for harmonic approximations, and if so, whether they yield better quality
approximations of invariant subspaces than their counterparts based on Rayleigh-Ritz projections.

Here, we review some of these iterative eigen-solving strategies for SPD matrices, explain why
they work, or not, adapt some of them to allow for harmonic approximations, and consistently com-
pare the forward errors of the approximated eigenvectors as a function of the projection technique
used. Some properties of the search spaces generated are investigated in an attempt to explain con-
verging behaviors and lack thereof. Finally, a particular emphasis is given to recycling strategies,
and their use with deflation, to solve sequences of linear systems with multiple right-hand sides,
and operators. The work is organized as follows. The projection techniques used throughout this
work are presented in Section 2. Then, some approaches based on optimization are presented in
Section 3, where LOBCG [9, 10] is adapted to allow for harmonic approximations, albeit not for
matrix pencils, and without preconditioner. Un-restarted Lanczos procedures are briefly reminded
in Section 4, as forward errors of approximated eigenvectors are compared on the basis of the pro-
jection they rely on. In Section 5, different explicit (i.e., thick-) restarted strategies are reviewed
while new ones are attempted, compared and analyzed. Finally, recycling strategies are investigated
in Section 6, and applied with deflation, or not, to solve sequences of linear systems with different
right-hand sides and operators.

2. Projection methods. We are interested in solving for pairs of eigenvalue θ and eigenvec-
tor u of symmetric positive definite matrices A such that Au = θu. We assume the n positive
eigenvalues of A to be sorted in ascending order, i.e. 0 < θ1 ≤ · · · ≤ θn, with corresponding
unit eigenvectors ui ∈ Rn. The first few solution pairs {(θi,ui)}i=1,2,... and {(θi,ui)}i=n,n−1,... are
referred to as least and most dominant eigenpairs, respectively. Here, we consider both harmonic
Rayleigh-Ritz and Raleigh-Ritz projection techniques, as they are commonly used in matrix-free
iterative methods to solve for small numbers of LD or MD eigenpairs of A.

2.1. Rayleigh-Ritz. Rayleigh-Ritz pairs (λ,w) are approximations of eigenpairs (θ,u) of A
obtained by orthogonal projection onto a subspace R(V). In particular, we search for λ ∈ R and
w ∈ R(V) such that the Petrov-Galerkin condition,

Aw − λw ⊥ R(V),(2.1)
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is satisfied. Let V ∈ Rn×k≤n be full column rank, so that k Ritz pairs, denoted by {(λj ,wj)}kj=1

with 0 < λ1 ≤ · · · ≤ λk, are obtained when solving the reduced eigenvalue problem:

VTAVŵ = λVTVŵ,(2.2)
Vŵ = w.(2.3)

A Rayleigh-Ritz procedure consists of computing and selecting only some of these solutions (λj ,wj).
Such procedures are often considered unfit to compute approximations of the LD eigenpairs of A.
Although this difficulty can be bypassed by applying the procedure to A−1—hence mapping the
eigenpairs of A to a sequence with reversed order—this causes other problems, namely the need
to compute a factorization of the operator, or to simply solve linear systems, both of which are
impractical for sufficiently large n.

2.2. Harmonic Rayleigh-Ritz. The harmonic Rayleigh-Ritz method was introduced in [13]
as a mean to produce better approximations of eigenpairs with eigenvalues close to some shift σ,
without having to factor the shifted operator A − σI. Here, we are only interested in the LD
eigenpairs of the SPD matrix A with eigenvalues near zero, so we simply let the shift σ be zero.
Now, one way to produce approximations of the MD eigenpairs of A−1 is to perform a Rayleigh-Ritz
procedure in the subspace AR(V). In particular, let (λ−1,Aw) be a Rayleigh-Ritz pair of A−1 of
AR(V). Every such pair satisfies the following Petrov-Galerkin condition,

A−1Aw − λ−1Aw ⊥ AR(V),(2.4)

so that k approximations can be obtained by solving the reduced eigenvalue problem:

VTA2Vŵ = λŵVTAV,(2.5)
AVŵ = Aw.(2.6)

For every such approximation (λ−1,Aw) of eigenpair of A−1, (λ,Aw) can be used as an approx-
imate eigenpair of A. However, it was argued in [13] that (λ,w), the harmonic Rayleigh-Ritz
pair, constitutes a better approximation. Note that, equivalently, the harmonic Rayleigh-Ritz pairs
(λ,w) of A are obtained by the projection:

w ∈ R(V),(2.7)
Aw − λw ⊥ AR(V).(2.8)

It is particularly advantageous that the inverse of A need not be applied in order to compute (λ,w).
Moreover, although (λ,w) is of interest, (ρ(w;A),w) often provides better approximations [13, 15],
where

ρ(w;A) :=
wTAw

wTw
(2.9)

is the Rayleigh quotient. Then, harmonic Rayleigh-Ritz procedures generally consist of computing
and selecting {(ρ(wj ;A),wj)}j=1,2... to approximate some LD eigenpairs {(θi,ui)}i=1,2... of A.

3. Approaches based on optimization.
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3.1. Rayleigh-Ritz. Consider a sequence of iterates w(1),w(2), . . . approximating the LD
eigenvector u1 of A, and let us assume w(r+1) := w(r) + δ(r)p(r) for some search direction p(r).
Most approaches based on optimization rely on such an iteration, as well as on the fact that
u1 minimizes the Rayleigh quotient of A [4, 9]. In particular, a steepest descent procedure is
obtained when p(r) := −∇ρ(w(r);A) and δ(r) := argminδ ρ(w

(r) + δp(r);A). Now, if we rather
assume p(r) := −∇ρ(w(r);A) + β(r)p(r−1), the sequence follows after a nonlinear CG—indeed, the
Rayleigh-quotient is not quadratic—so that different choices of β(r) yield the sought condition that
p(r−1) and p(r) are conjugate directions, i.e. p(r−1)TAp(r) = 0. Here, we are not interested in these
variants [5], but rather in those that follow from the observation that letting w

(r+1)
LOCG := w(r) −

δ
(r)
LOCG∇ρ(w(r);A) + γ

(r)
LOCGp

(r−1) where (δ
(r)
LOCG, γ

(r)
LOCG) := argmin(δ,γ) ρ(w

(r) − δ∇ρ(w(r);A) +

γp(r−1);A), is such that ρ(w(r+1)
LOCG) ≤ ρ(w

(r+1)
CG ) [9, 10]. Clearly, the resulting iterate is equivalent to

the LD Rayleigh-Ritz vector of A in R(V(r)) with V(r) := [w(r),∇ρ(w(r);A),p(r−1)]. Moreover,
the search space R(V(r)) is equivalently spanned by {w(r−1),w(r), r̃(r)}, in which r̃(r) denotes
the eigen-residual r̃(λ(r),V(r−1)y) := AV(r−1)y − λ(r)V(r−1)y of the LD eigenpair (λ(r),y) of
V(r−1)TAV(r−1)y = λV(r−1)TV(r−1)y. The iterative method resulting from such a sequence of
Rayleigh-Ritz projections was proposed in [3, 9] for matrix pencils, and is often referred to as a
locally optimal CG (LOCG)—due to the fact that it minimizes the Rayleigh quotient at least as
well as any nonlinear CG scheme. Note that, while LOCG usually converges in more iterations
than an unrestarted Lanczos procedure, it still can do so in less time, as it relies on search spaces
of dimension no larger than three.

In [10], this method was extended and deemed the name LOBPCG so as to allow for the
approximation of several eigenvectors at the same time, or improve the quality of approximation of
a single eigenvector. Without preconditioning, the resulting method consists of computing Rayleigh-
Ritz approximations w(r+1)

1 , . . . ,w
(r+1)
k of the LD eigenvectors u1, . . . ,uk in a search space

Span{w(r−1)
1 ,w

(r)
1 , . . . ,w

(r−1)
k ,w

(r)
k , r̃

(r)
1 , . . . , r̃

(r)
k },

where r̃
(r)
j is the eigen-residual of the Rayleigh-Ritz pair (λ

(r)
j ,w

(r)
j ). Since then, it has become

common to refer to methods that generates search spaces using iterates w
(r−1)
• and w

(r)
• from

subsequently generated search spaces as locally optimal methods, see [33, 34, 35] for examples.

3.2. Harmonic Rayleigh-Ritz. Now, just like the harmonic Rayleigh-Ritz projection is in-
troduced as a way to bypass the difficulty related to the Rayleigh-Ritz procedure with a shifted-and-
inverted operator, one can introduce a harmonic LOCG sequence as follows. First, let w̃(1), w̃(2), . . . , w̃(r)

be a LOCG sequence of approximations of the MD eigenvector u1 of A−1. This is equiva-
lent to say that w̃(r+1) maximizes the Rayleigh quotient of A−1 over a subspace R(Ṽ(r)) with
Ṽ(r) := [w̃(r−1), w̃(r),A−1w̃(r) − (1/λ(r))w̃(r)], where w̃(r) := Ṽ(r−1)y is obtained from the LD
eigenpair (λ(r),y) of Ṽ(r−1)TA2Ṽ(r−1)y = λṼ(r−1)TAṼ(r−1)y. Thus, by definition, w(r) :=
A−1w̃(r) is the LD harmonic Rayleigh-Ritz vector of A in R(V(r)), where V(r) := A−1Ṽ(r) =
[w(r−1),w(r),A−1w(r)− (1/λ(r))w(r)]. Our numerical results show that a procedure based on such
a sequence of harmonic projections converges very fast. However, the presence of A−1 in the last
vector spanning the search space defeats the purpose of harmonic projections as a mean to bypass
the need to shift-and-invert the operator. To circumvent this difficulty, we note that

A−1w(r) − (1/λ(r))w(r) = −(1/λ(r))A−1r̃(r),
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where the harmonic eigen-residual r̃(r) := Aw(r)−λ(r)w(r) is computed with the harmonic Rayleigh-
Ritz value λ(r)—not the Rayleigh quotient. Note that this does not resolve our problem, as we still
need to compute A−1r̃(r). To bypass this difficulty, we rather consider Span{w(r−1),w(r), z̃(r)} as
a search space for the harmonic projection, where z̃(r) := V(r−1)(V(r−1)TAV(r−1))−1V(r−1)T r̃(r)

approximates A−1r̃(r) in the previously generated search space. The resulting procedure is straight-
forwardly generalized to enable the computation of several approximate eigenvectors at the same
time.

3.3. Numerical results. As shown in Fig. 1, the harmonic LOBCG procedure yields faster
convergence of eigen-residuals. However, the forward errors of the approximated eigenvectors only
start converging faster than those of Rayleigh-Ritz LOBCG once the Rayleigh quotients have con-
verged.
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10−1

100
sin∠(wi,ui)
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ρ(wi; A)
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Figure 1: Results of LOBCG procedures with RR and HR approximations. The LD eigenvectors
ui of A are approximated by wi for i = 1 ( ), i = 2 ( ), i = 3 ( ). The black ticks on the third
column represent the spectrum Sp(A).

4. Unrestarted Lanczos procedures. The unrestarted Lanczos procedure constructs an
orthonormal basis v1, . . . ,vm of the Krylov subspace of A generated by some unit vector v1:

Span{v1, . . . ,vm} = Km(A,v1) := Span{v1,Av1, . . . ,A
m−1v1}.

This basis is stored in the columns of Vm, which admits the following relation:

AVm = VmVT
mAVm + βmvm+1e

T
m,

where em is the last column of the m-dimensional identity matrix, and βm := vTmAvm+1.
Note that for all Rayleigh-Ritz pairs (λ,w) of A in R(Vm), we have:

r̃(λ,w) := Aw − λw = AVmy − λVmy = βm(eTmy)vm+1,

where w := Vmy and (λ,y) is an eigenpair of VT
mAVm.

4.1. Numerical results. See results in Fig. 2. Although the harmonic procedure leads to
faster convergence of eigen-residuals and Rayleigh quotients, it does not result in a faster conver-
gence of the eigenvectors and the subspace they span.
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Figure 2: Results of un-restarted Lanczos procedures with RR and HR approximations. The LD
eigenvectors ui of A are approximated by wi for i = 1 ( ), i = 2 ( ), i = 3 ( ). The black ticks
on the third column represent the spectrum Sp(A).

5. Restarted Lanczos procedures. For large matrices, high-dimensional search spaces are
often needed in order for the Rayleigh-Ritz vectors to precisely approximate several eigenvectors of
A. When the search space is generated by a Lanczos procedure, this requires storing a large basis
so as to compute the Rayleigh-Ritz vectors using Eq. (2.3), after solving Eq. (2.2). Until then, the
Lanczos vectors can be stored on disk. However, due to the effect of floating-point arithmetic, the
computed vectors tend to lose their orthogonality as the dimension of the spanned Krylov subspace
increases. This phenomenon, explained in [17, 18], requires some re-orthogonalization to prevent
collateral effects on the Rayleigh-Ritz vectors. Different strategies exist to re-orthogonalize: full
re-orthogonalization, which is the most computationally demanding; to which, partial [30], and
selective [23] schemes were proposed as alternatives. Irrespective of the strategy selected, the cost
of re-orthogonalization remains an issue for high-dimensional problems, often requiring Lanczos
vectors to be stored on-core for a faster execution, hence limiting the range of suitable applications
for un-restarted algorithms. Restarting strategies allow for a better use of resources than un-
restarted algorithms [26].

5.1. Thick-restarts. Here, we exclusively consider strategies in which the search space is
explicitly restarted with several eigenvector approximations. While this approach was deemed
the term thick-restart by Wu and Simon [40], it was not always the case when similar ideas were
developed [12, 38]. We define thick-restart methods as follows. First, the Lanczos vectors of a Krylov
subspace K•(A,v1) are progressively generated to form search spaces of increasing dimension, each
of which can be used to calculate eigenvector approximations. Once the dimension of the search
space reaches a certain size k + `, its k LD eigenvector approximations w1, . . . ,wk are used as the
basis of a new, restarted subspace. From here on, a new vector v̂1 ⊥ Span{w1, . . . ,wk} is used
to generate new Lanczos vectors v̂2, . . . , v̂j , by letting each v̂j be Av̂j−1 orthogonalized against
w1, . . . ,wk, v̂1, . . . , v̂j−1. Once ` new Lanczos vectors have been generated, k new eigenvector
approximations are computed in the current search space STR-Lan({wi}ki=1, v̂1, `) defined by

STR-Lan({wi}ki=1, v̂1, j) := Span{w1, . . . ,wk, v̂1,Av̂1, . . . ,A
j−1v̂1}(5.1)

for 1 ≤ j ≤ `. The search space is restarted again with these approximations and some v̂1, yet to
be defined. This process is repeated over and over again, and the overall number of Lanczos vectors
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generated is denoted by m. For all m > k + `, the current search space can be put in the form of
Eq. (5.1). Note that, as the orthogonalization of v̂2, . . . , v̂j is done by a Gram-Schmidt procedure,
it can simplify to short recurrence relations depending on how v̂1 is defined for the given projection
technique. Moreover, the choice of v̂1 also strongly influences some properties of the current search
space which are responsible for the convergence of the restarted procedure.

5.1.1. Rayleigh-Ritz. Consider the case addressed by Wu and Simon [40], in which the
approximations (λ1,w1), . . . , (λk,wk) are Rayleigh-Ritz pairs of A in the current search space.
Just before the search space is restarted for the first time, by property of Rayleigh-Ritz pairs in
Krylov subspaces, we have

Awi = λiwi + βk+`(e
T
k+`yi)vk+`+1(5.2)

where wi := [v1, . . . ,vk+`]yi for 1 ≤ i ≤ k. Then, letting v̂1 := vk+`+1 has important consequences
on the procedure. First, the computation of v̂2, . . . , v̂j is simplified to the evaluation of short
recurrence relations, see [40]. We then have:

Av̂1 = α̂1v̂1 + β̂1v̂2 +

k∑
i=1

βk+`(e
T
k+`yi)wi,(5.3)

Av̂j = α̂jv̂j + β̂jv̂j+1 + β̂j−1v̂j−1 for j > 1,(5.4)

where α̂j := v̂Tj Av̂j and β̂j := v̂Tj+1Av̂j , so that A[w1, . . . ,wk, v̂1, . . . , v̂j ] can be put in the form
of a rank-1 update which, in turn, implies that the current search space STR-Lan is, and remains a
Krylov subspace as long as v̂1 := v̂`+1 for all the next restarts. Then, once passed the first restart,
all the eigenvector approximations are such that

Awi = λiwi + β̂`(e
T
k+`yi)v̂`+1.(5.5)

An important observation is that Eqs. (5.1), (5.2) and (5.5) imply

STR-Lan({wr}kr=1, v̂1, j) = Span{w1, . . . ,wk,Awi, . . . ,A
jwi} for 1 ≤ i ≤ k.(5.6)

This, in turn, implies that the current (k + j)-dimensional search space STR-Lan contains all the
(j + 1)-dimensional Krylov subspaces of A generated by each of the eigenvector approximations
w1, . . . ,wk:

Kj+1(A,wi) ⊂ STR-Lan({wr}kr=1, v̂1, j) for 1 ≤ i ≤ k.(5.7)

This property plays an important role in explaining the effectiveness, and lack thereof, of restarted
methods [16]. Therefore, all the other methods presented in this work are investigated to tell
whether or not they admit a property similar to Eq. (5.7).

5.1.2. Harmonic Rayleigh-Ritz. Clearly, if there exists r̃ such that Awi = λiwi+γir̃ with
some constant γi for all 1 ≤ i ≤ k, then, restarting with v̂1 := r̃ ensures that the newly generated
search space satisfies Eq. (5.7). For the case of Rayleigh-Ritz approximations, the existence of such
a r̃ is guaranteed as long as the search space is a Krylov subspace. Now, when (λ1,w1), . . . , (λk,wk)
are harmonic pairs of A, such a r̃ also exists, under the same condition.
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Proof. Let {(λi,wi)}ki=1 be harmonic Rayleigh-Ritz pairs of A in Km(A,v1). The matrix
A being positive definite, we have Km(A,v1) = Km(A−1,Am−1v1). By definition of harmonic
pairs, {(λ−1i ,Awi)}ki=1 are Rayleigh-Ritz pairs of A−1 in Km(A−1,Am−1v1). Then, by property
of Rayleigh-Ritz approximations in Krylov subspaces, each eigen-residual A−1Awi − λ−1i Awi can
be expressed as a multiple of the same unit vector r̃, say −(γi/λi)r̃ for some γi.

Therefore, since the search space is always Krylov prior to the first restart, letting v̂1 := r̃, as done
in [16], ensures Eq. (5.7) is satisfied between the first and second restarts. Then, the orthogonaliza-
tion leading to the computation of v̂2, . . . , v̂j simplifies to short recurrence relations, and, similarly
as for Rayleigh-Ritz projections, Av̂2, . . . ,Av̂j are given by Eq. (5.4), while

Av̂1 = α̂1v̂1 + β̂1v̂2 +

k∑
i=1

(λir̃
Twi + γi)wi.

As a result, the current search space STR-Lan is, and remains a Krylov subspace as long as v̂1 := r̃
for all the next restarts, which in turn implies that Eq. (5.7) is satisfied throughout the procedure.

On the other hand, performing the first restart with v̂1 := vk+`+1 has for consequence that,
in general, the new search space does not contain any Krylov subspace of A of dimension d > 1
generated by any of the approximations w1, . . . ,wk. It also does not contain any of the vectors
Adwi for d > 0.

Proof. First, for K2(A,wi) to be contained in STR-Lan({wr}kr=1,vk+`+1, j), there must exist
some constants a(i)1 , . . . , a

(i)
k and b(i)1 , . . . , b

(i)
j such that

Awi =

k∑
r=1

a(i)r wr +

j∑
s=1

b(i)s v̂s(5.8)

is satisfied. Let Vk+` := [v1, . . . ,vk+`], so that every harmonic eigenvector approximation can be
expressed as wi = Vk+`yi. Then, since the columns of Vk+` span a Krylov subspace, Eq. (5.8) can
be recast in

(
Vk+`Tk+` + βk+`vk+`+1e

T
k+`

)
yi =

k∑
r=1

a(i)r Vk+`yr +

j∑
s=1

b(i)s v̂s

Vk+`Tk+`yi + βk+`(e
T
k+`yi)vk+`+1 = Vk+`

k∑
r=1

a(i)r yr +

j∑
s=1

b(i)s v̂s

where Tk+` := VT
k+`AVk+`. However, vk+`+1 and v̂s are orthogonal to R(Vk+`) by construction,

so that we should have

Tk+`yi =

k∑
r=1

a(i)r yr,

where y1, . . . ,yk are eigenvectors of the matrix pencil (VT
k+`A

2Vk+`,Tk+`). Note that, in general,
these eigenvectors span a different subspace than the eigenvectors of Tk+`. Moreover, since A is
definite, ` > 1 implies that R([y1, . . . ,yk]) does not contain R(Tk+`). Thus, we can generally not
find the constants a(i)1 , . . . , a

(i)
k such that Eq. (5.8) is satisfied, in which case, none of the subspaces

Kd(A,wi) is included in the search space STR-Lan for d > 1.
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Second, if Adwi /∈ R(V̂), where V̂ := [w1, . . . ,wk, v̂1, . . . , v̂j ], then Ad+1wi /∈ R(V̂). Indeed,
if there exists ẑ such that Ad+1wi = V̂ẑ, then, there must exist z := (V̂TAV̂)−1ẑ such that
Adwi = V̂z. Therefore, Awi /∈ STR-Lan implies A2wi /∈ STR-Lan, which implies A3wi /∈ STR-Lan,
and so on.

Letting v̂1 := vk+`+1 also has for consequence that the orthogonalization leading to the computation
of v̂2, . . . , v̂j does not simplify. Then, the new search space is not Krylov, and Eq. (5.7) generally
still does not hold when the next restarts are done with v̂1 := v̂`+1.

5.2. Locally optimal thick-restarts. A thick-restart procedure based on Rayleigh-Ritz
approximations of a single eigenvector with (k, `) = (1, 1) leads to a sequence which is equiv-
alently given by a steepest descent approach to minimize a Rayleigh quotient over a subspace
Span{w(r), r̃(r)}, which does not include the previous iterate w(r−1). Since a locally optimal iter-
ate would be obtained from a subspace which does include this previous approximate, we now
consider thick-restart strategies which incorporate eigenvector approximations from subsequent
subspaces when generating a new search space. Locally optimal thick-restarts were used in [36]
for a generalized Davidson method. We define locally optimal thick-restarts as follows. Simi-
larly as for the regular thick-restarts presented in Section 5.1, we start by generating Lanczos
vectors v1,v2, . . . until the spanned Krylov subspace reaches a dimension 2k + `. Then, a first
restart is achieved with, still, the k LD eigenvector approximations w1, . . . ,wk in R(V2k+`), where
V• := [v1, . . . ,v•], along with the k LD approximations w1, . . . ,wk in R(V2k+`−1). Then, a restart
vector v̂1 ⊥ Span{w1, . . . ,wk,w1, . . . ,wk} is defined, and a basis of the subspace

SLO-TR-Lan({(wi,wi)}ki=1, v̂1, j) := Span{w1,w1, . . . ,wk,wk, v̂1,Av̂1, . . . ,A
j−1v̂1}

= Span{w1,w1, . . . ,wk,wk, v̂1, v̂2, . . . , v̂j}
(5.9)

is completed with some vectors v̂j , each of which obtained by orthogonalization of Av̂j−1 against
w1,w1, . . . ,wk,wk, v̂1, . . . , v̂j−1. Once ` new Lanczos vectors have been generated, the search
space is restarted again with k eigenvector approximations from SLO-TR-Lan({(wi,wi)}ki=1, v̂1, `), k
others in SLO-TR-Lan({(wi,wi)}ki=1, v̂1, `− 1), and a restart vector v̂1. As this process is repeated,
the overall number of Lanczos vectors generated is denoted by m, so that the current search space
can be put in the form of Eq. (5.9) for all m > k + `. Similarly as for the standard thick-restart,
the choice of v̂1 bears important consequences on the behavior of this procedure.

In practice, the pairs (w1,w1) through (wk,wk) tend to be co-linear. Although this can be
interpreted as a sign of convergence of the procedure, when building approximations with unit
norms, we actually observe wT

i wj ≈ δij directly after the first restarts. So that, if convergence
there is, this is a rather slow one. These near linear dependences can cause some loss of rank to
appear in the matrices of the reduced eigen-problem, eventually leading to spurious approximations.
A simple solution to this problem is obtained when substituting w1,w1, . . . ,wk,wk by all the q
eigenvector approximations ŵ1, . . . , ŵq computed in a subspace

R(Vk+`Q) = Span{w1,w1, . . . ,wk,wk},

where Q has full column rank q with k < q ≤ 2k. More particularly, the columns of Q form an
orthonormal basis of

R(Q) = Span

{
y1,

[
y1

0

]
, . . . ,yk,

[
yk
0

]}
,
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where y1, . . . ,yk and y1, . . . ,yk are the reduced eigenvectors which, in the case of the first restart,
are such that wi = V2k+`yi and wi = V2k+`−1yi, respectively. This solution, which was adopted
in [35], allows for an efficient orthogonalization ofw1,w1, . . . ,wk,wk, using only (2k+`)-dimensional
vectors.

5.2.1. Rayleigh-Ritz. First, we consider the case in which w1, . . . ,wk and w1, . . . ,wk are
Rayleigh-Ritz approximations in R(V2k+`) and R(V2k+`−1), respectively. An important observa-
tion is that, irrespective of v̂1, there is at least one vector ŵi among ŵ1, . . . , ŵq, such that

Kd(A, ŵi) 6⊂ SLO-TR-Lan({ŵr}qr=1, v̂1, j) for all d > 1.(5.10)

Proof. Let ŵi := V2k+`Qq̂i for 1 ≤ i ≤ q, where (λi, q̂i) is an eigen-pair ofQTVT
2k+`AQV2k+`.

For a Krylov subspace of dimension d > 1 generated by ŵi, to be contained in SLO-TR-Lan, there
must exist some constants a(i)1 , . . . , a

(i)
q , b

(i)
1 , . . . , b

(i)
j such that

Aŵi =

q∑
r=1

a(j)r ŵr +

j∑
s=1

b(i)s v̂s.(5.11)

By short recurrence of the Lanczos vectors, this implies

V2k+`T2k+`Qq̂i + β2k+`v2k+`+1e
T
2k+`Qq̂i = V2k+`

q∑
r=1

a(i)r Qq̂r +

j∑
s=1

b(i)s v̂s,

where T2k+` := VT
2k+`AV2k+` The vectors v̂1, . . . , v̂j being orthogonal to ŵ1, . . . , ŵq, they are also

orthogonal to the Lanczos vectors in V2k+`, so that we must have

VT
2k+`AV2k+`Qq̂i =

q∑
r=1

a(i)r Qq̂r.

But, because q > k, there exists q̂i with i ∈ [1, q] such that Qq̂i is not an eigenvector of
VT

2k+`AV2k+`. Moreover, A being definite, ` > 0 implies that R([Qq̂1, . . . ,Qq̂q]) does not contain
R(T2k+`). We say that a(i)1 , . . . , a

(i)
q can not exist for this q̂i.

A fortiori, letting v̂1 := v2k+`+1—analogously to what was done in Section 5.1 when restarting
with Raleigh-Ritz vectors computed in a single Krylov subspace—has for consequence that at least
one vector ŵi among ŵ1, . . . , ŵq is such that no Krylov subspace Kd(A, ŵi) of dimension d > 1
is contained within SLO-TR-Lan. More importantly, it can also be shown that SLO-TR-Lan, in its
whole, is not a Krylov subspace, although it does contain smaller Krylov subspaces. Therefore,
using SLO-TR-Lan({ŵr}qr=1, v̂1, `) and SLO-TR-Lan({ŵr}qr=1, v̂1, `−1) to generate a search space and
then compute new vectors ŵ1, . . . , ŵq, has important consequences on the next restart. Indeed,
the newly restarted subspace SLO-TR-Lan will not contain any Krylov subspace of dimension d > 1
generated by either of the approximations ŵ1, . . . , ŵq. Not only will this cause short recurrence
relations to fail—thus increasing the cost of the Gram-Schmidt orthogonalization—but also, as our
numerical results show, to severely hinder the convergence of this procedure.

Although it is not possible to set v̂1 so that SLO-TR-Lan is a Krylov subspace, it still can be
reset for each restart so that SLO-TR-Lan({ŵr}qr=1, v̂1, j) contains a Krylov subspace Kj+1(A, ŵi)
for some ŵi. Assuming ŵ1, . . . , ŵq are ordered from least to most dominant, the following strategies
are considered:
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• Least dominant eigen-residual : Let v̂1 := r̃1/‖r̃1‖2, where r̃i := Aŵi − λiŵi.
• Cyclic eigen-residual selection: A new index t ∈ [1, k] is picked for each restart, and
v̂1 := r̃t/‖r̃t‖2.

While we expect the first strategy to yield a better convergence of the least dominant approximate
eigen-pair, the latter should enable a better convergence of the whole approximated subspace. In
either case, the cost of the Gram-Schmidt orthogonalization is the same, still affected by the fact
that short recurrence relations do not hold after the first restart. Note that another alternative
would be to let v̂1 be a linear combination of eigen-residuals, this would however require to compute
several eigen-residuals for each restart.

5.2.2. Harmonic Rayleigh-Ritz. Analogous procedures are implemented with harmonic
Rayleigh-Ritz projections.

5.3. Numerical results. First, we present numerical results for TR-Lan in Fig. 3. Once again,
only the 3 LD eigenvector approximations are considered, and the search space is restarted every
time it reaches a dimension of 20. Clearly, restarting with v̂k+1 := vm+1 has serious consequences
on the convergence of the harmonic procedure which, unlike Rayleigh-Ritz, stagnates both in terms
of approximate eigenvectors and Rayleigh quotients. As explained before, this issue of harmonic
approximations is solved when setting v̂k+1 := r̃. However, once again, while leading to a faster
convergence of eigen-residuals and Rayleigh quotients, the resulting procedure does not exhibit a
faster convergence of the eigenvectors and the subspace they span, than the approximations obtained
by Rayleigh-Ritz.

Second, corresponding results obtained for LO-TR-Lan are presented in Fig. 4. Now, just
as explained before, letting v̂q+1 := vm+1 severely alters the behavior of both the harmonic and
Rayleigh-Ritz procedures. Fortunately, letting v̂q+1 be a selected eigen-residual makes up for these
limitations. In particular, consistently picking the eigen-residual of the LD approximation, causes
this pair to converge faster while the other approximations stagnate; and alternating between
eigen-residuals from one restart to another, enables all the approximated eigenpairs to convergence
simultaneously. Note that the effects of the locally optimal restart, in comparison to the behavior
of TR-Lan, seem to appear once the Rayleigh quotients have converged. Then, once again, the
harmonic procedure shows faster convergence of eigen-residuals and Rayleigh quotients. In both
cases, this only translates to an increase in the convergence rate of the approximated eigenvectors
once the Rayleigh quotients have converged.

6. Recycling linear conjugate gradient solvers. Consider a CG algorithm started with
x0, and the iterates x1,x2, . . . generated as approximate solutions of Ax = b. The underlying
sequence of residuals rr := Axr − b is such that {vr}jr=1, in which vr := (−1)rrr/‖rr‖2, are the
Lanczos vectors of Kj(A, r0). By default, CG does not require to store these residuals, so that
a recycling scheme remains to be defined in order to construct the basis of a search space within
which eigenvectors of A are ought to be approximated. For the same reasons that thick-restarts
are considered over un-restarted Lanczos methods, we want to sequentially re-define smaller search
spaces rather than storing a large number of residual vectors. However, the difference with thick-
restart strategies is that, here, the restarted search space is directly augmented with the vectors
generated by the solver, whereas a thick-restart would generate this new sequence of vectors by
orthogonalizing with respect to the approximations used to restart the search space.

6.1. Thick recycling. Let w1, . . . ,wk be the k LD eigenvector approximations in a search
space R(Vk+`) where the columns of Vk+` are the Lanczos vectors obtained from the (k + `) first
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Figure 3: Results of thick-restart Lanczos procedures (TR-Lan) with RR/HR approximations and
` = 20. The LD eigenvectors ui of A are approximated by wi for i = 1 ( ), i = 2 ( ), i = 3 ( ).
The black ticks on the third column represent the spectrum Sp(A).

residuals generated by the linear solver. Then, the most straightforward recycling strategy consists
of using these k approximations as a basis along with the Lanczos vectors which correspond to the
very next residuals rk+`+1, rk+`+2, . . . of the linear system. Once ` new such vectors have been
generated and stored, the so-formed basis is used to compute k new eigenvector approximations. As
this process is repeated over and over again, the current search space after m+ j solver iterations
can be put in the form

STR-CG({wr}kr=1, j) = Span{w1, . . . ,wk,vm+1, . . . ,vm+j},
= Span{w1, . . . ,wk,vm+1,Avm+1 . . . ,A

j−1vm+1},
(6.1)

where m is the number of linear solver iterations completed just before the last restart.
This procedure is implemented using both Rayleigh-Ritz and harmonic Rayleigh-Ritz projec-

tions. In both cases, it can be shown that the search spaces generated by this procedure are not
Krylov. Also, no property analogous to the one given by Eq. (5.7) seem to hold, for either projection
technique.

6.2. Locally optimal recycling. Similarly as for locally optimal thick-restart strategies, one
could think of using eigenvector approximations from both the current and the previous search
spaces. Therefore, we consider the following procedure. First, let w1, . . . ,wk be the k LD eigenvec-
tor approximations computed in the search space R(V2k+`) where the columns of V2k+` are the
Lanczos vectors obtained from the (2k+ `) first residuals generated by the linear solver. Addition-
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Figure 4: Results of locally optimal thick-restart Lanczos procedures (LO-TR-Lan) with RR/HR
approximations and ` = 20. The LD eigenvectors ui of A are approximated by wi for i = 1 ( ),
i = 2 ( ), i = 3 ( ). The black ticks on the third column represent the spectrum Sp(A).

ally, let w1, . . . ,wk be the k LD approximations in R(V2k+`−1). Then, all these 2k approximations
are used as a basis along with the Lanczos vectors which correspond to the very next residuals
r2k+`+1, r2k+`+2, . . . of the linear system. Once ` new such vectors have been generated and stored,
the so-formed basis is used to compute k new eigenvector approximations from each of the current
and previous search spaces. As this process is repeated over and over again, the current search
space after m+ j solver iterations can be put in the form

SLO-TR-CG({(wr,wr)}kr=1, j) = Span{w1,w1, . . . ,wk,wk,vm+1, . . . ,vm+j},
= Span{w1,w1, . . . ,wk,wk,vm+1,Avm+1 . . . ,A

j−1vm+1},
(6.2)

where m is the number of linear solver iterations completed just before the last restart.
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Just as it happens with locally optimal thick restarts, the pairs (w1,w1) through (wk,wk) tend
to be co-linear. Consequently, the same solution is applied. For instance, at the first restart, instead
of using w1,w1, . . . ,wk,wk directly, we rather use all the q eigenvector approximations ŵ1, . . . , ŵq

of the subspace R(V2k+`Q) = Span{w1,w1, . . . ,wk,wk}, where Q has full column rank q with
k < q ≤ 2k. More particularly, the columns of Q form an orthonormal basis of

R(Q) = Span

{
y1,

[
y1

0

]
, . . . ,yk,

[
yk
0

]}
,

where y1, . . . ,yk and y1, . . . ,yk are the reduced eigenvectors such that wi = V2k+`yi and wi =
V2k+`−1yi, respectively.

6.2.1. Rayleigh-Ritz. The case in which all the pairs (w1,w1) through (wk,wk) are Rayleigh-
Ritz approximations was originally proposed in [35], where it is referred to as eigCG, and used to
solve sequences of linear systems with multiple right-hand sides. This method is known to exhibit
convergence behaviors which are as good as unrestarted Lanczos procedures, although little seems
to be known as to why [35, ?]. We believe this is because, for each approximation wi, there exists
some w̃i such that ‖wi − w̃i‖2 � 1, and which satisfies

Kj+1(A, w̃i) ⊂ SLO-TR-CG({(wr,wr)}kr=1, j).(6.3)

This property, in turn, is believed to strongly influence the convergence behavior of the procedure.
To show that Eq. (6.3) holds, we consider SLO-TR-CG({(wr,wr)}kr=1, `) where wr := Vmyr is the
r-th LD Rayleigh-Ritz vector of A in R(Vm), as opposed to ws := Vm−1ys, which is the s-th
one in R(Vm−1). Let W := [w1, . . . ,wk], W := [w1, . . . ,wk] and V̂ := [W,W,vm+1, . . . ,vm+`].
Then, remarkably, even though R(V̂) is not a Krylov subspace, it contains Rayleigh-Ritz pairs
(ϑ, V̂z) of A with eigen-residual r̃(ϑ, z) := AV̂z− ϑV̂z such that

lim
‖Ik−WTW‖2→0

r̃(ϑ, z) = βm+`+1(e
T
2k+`z)v̂m+`+1.(6.4)

Proof. Since the Rayleigh-Ritz pairs (λr,wr) and (λs,ws) are computed in Krylov search
spaces, they satisfy the following equations:

Awr = λrwr + βm(eTmyr)vm+1(6.5)

Aws = λsws + βm−1(e
T
m−1ys)vm(6.6)

where e• is the last column of the •-dimensional identity matrix. Meanwhile, the vectors vm+1, . . . ,vm+`

satisfy the following short recurrence relation:

Avm+j = αm+jvm+j + βm+j+1vm+j+1 + βm+jvm+j−1.(6.7)

Eqs. (6.5) through (6.7) can then be recast into the following matrix form:

AV̂ = V̂M̂+

k∑
s=1

βm−1(e
T
m−1ys)vmêTk+s + βm+1vmêT2k+1 + βm+`+1vm+`+1ê

T
2k+`,(6.8)
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where ê• is the •-th column of the (2k + `)-dimensional identity matrix, and

M̂ :=

k∑
r=1

λrêrê
T
r +

k∑
s=1

λsêk+sê
T
k+s +

k∑
r=1

βm(eTmyr)ê2k+1ê
T
r

+

k∑
r=1

αm+j ê2k+j ê
T
2k+j +

k∑
r=1

βm+j

(
ê2k+j ê

T
2k+j−1 + ê2k+j−1ê

T
2k+j

)
.

(6.9)

Note that AV̂ can not be put in the form of a rank-1 update, so that R(V̂) is not a Krylov
subspace [37]. Consequently, the usual expressions for the eigen-residuals of Rayleigh-Ritz pairs
in Krylov search spaces do not apply to approximations in R(V̂). To find expressions for those
eigen-residuals, we first search an expression for T̂ := V̂TAV̂. Using Eq. (6.8)–(6.9), we get:

T̂ = V̂T (AV̂) = M̂+

k∑
r=1

k∑
s=1

λr(w
T
r ws)êk+sê

T
r +

k∑
r=1

k∑
s=1

λs(w
T
r ws)êrê

T
k+s

+

k∑
r=1

k∑
s=1

βm−1(e
T
myr)(e

T
m−1ys)êrê

T
k+s +

k∑
r=1

βm+1(e
T
myr)êrê

T
2k+1.

(6.10)

Note that the approximations w1, . . . ,wk and w1, . . . ,wk are linearly independent, but not or-
thogonal, i.e. wT

r ws 6= 0. Therefore, the Rayleigh-Ritz pair (ϑ, V̂z) of A in R(V̂) is such that
T̂z = ϑV̂T V̂z. Then, using Eqs. (6.8)–(6.10), we obtain:

AV̂z = ϑV̂z+ βm+`+1(ê
T
2k+`z)vm+`+1

+

k∑
s=1

βm−1(e
T
m−1ys)(ê

T
k+sz)vm + βm+1(e

T
2k+1z)vm

−
k∑
r=1

k∑
s=1

λr(w
T
r ws)(ê

T
r z)ws −

k∑
r=1

k∑
s=1

λs(w
T
r ws)(ê

T
k+sz)wr

−
k∑
r=1

k∑
s=1

βm−1(e
T
myr)(e

T
m−1ys)(ê

T
k+sz)wr −

k∑
r=1

βm+1(e
T
myr)(ê

T
2k+1z)wr.

(6.11)

By definition of Rayleigh-Ritz pairs, the eigen-residual r̃(ϑ, z) := AV̂z − ϑV̂z is orthogonal to
R(V̂). Therefore, applying V̂T r̃(ϑ, z) = 0 to Eq. (6.11), we get:

λs(ê
T
k+sz) = −

k∑
r=1

λr(w
T
r ws)(ê

T
r z) for 1 ≤ s ≤ k,(6.12)

as well as

λr(ê
T
r z) +

k∑
s=1

λs(w
T
r ws)(ê

T
k+sz) = −

k∑
s=1

βm−1(e
T
myr)(e

T
m−1ys)(ê

T
k+sz)

− βm+1(e
T
myr)(ê

T
2k+1z)

(6.13)
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for 1 ≤ r ≤ k. Using Eqs. (6.12)–(6.13) into Eq. (6.11), we obtain the following expression for the
eigen-residual:

r̃(ϑ, z) = βm+`+1(ê
T
2k+`z)vm+`+1 +

k∑
r=1

λr(ê
T
r z)

(
wr −

k∑
s=1

(wT
r ws)ws

)

+

(
βm+1(ê

T
2k+1z) +

k∑
s=1

βm−1(e
T
m−1ys)(ê

T
k+sz)

)
vm.

(6.14)

However, when wT
r ws ≈ δrs, i.e. as ‖Ik −WTW‖2 goes to zero, we have

wr −
k∑
s=1

(wT
r ws)ws ≈ wr − (wT

r wr)wr ≈ wr −wr ≈ 0.

Similarly, using Eq. (6.12), we can see that the left-hand side of Eq. (6.13) nearly cancels when
‖Ik −WTW‖2 ≈ 0, in which case the term multiplying vm in Eq. (6.14) also vanishes.

Note that, as mentioned earlier, we do observe wT
i wj ≈ δij directly after the first restart. Letting

wi be a Rayleigh-Ritz approximation in a search space between the first and second restarts, there
exists w̃i such that ‖wi − w̃i‖2 � 1, and for which we have r̃(ϑ, w̃i) ∝ v̂m+`+1. This, in turn,
implies Eq. (6.3). Note that, although the search space is not Krylov, this property remains valid
after further restarts.

6.2.2. Harmonic Rayleigh-Ritz. The same procedure can be applied with harmonic Rayleigh-
Ritz approximations. However, it does not seem to admit the same property.

6.3. Numerical results. TR-CG and LO-TR-CG are tested on a sequence of linear systems
Ax(t) = b(t) with random b(t). Every solver run is initialized with an iterate x0 = 0. The forward
error of the eigenvector, the eigen-residual and the Ritz quotients of the 3 LD approximations ob-
tained while recycling the matrix-vector products of four iterative system resolutions, are presented
in Fig. 5. Note that both harmonic and standard Rayleigh-Ritz projections are used to generate
the results, for which the search space is restarted every time its dimension reaches 20. Clearly, the
LO-TR-CG procedure based on a Rayleigh-Ritz projection is the only one which seems to converge
within the first couple of systems. Actually, it does so so well, that it closely matches the behavior
of the (orthogonalized) unrestarted Lanczos procedure, see Fig. 2. Note that this approach, when
initialized properly, corresponds to eigCG, which was introduced by [35].

6.3.1. Deflation of linear systems with multiple right hand sides. The same sequence
of linear systems is considered, and extended in order to illustrate a longer term effect of recycling
strategies, on deflation. The same procedures are considered. Only this time, a Deflated-CG solver
is used in place of CG. At the end of each solver run, the 10 LD eigenvector approximations are
used as a basis of the deflation subspace used for the resolution of the next system in the sequence.
We plot the iterated residuals of 50 linear systems in Fig. 6, along with corresponding results
obtained by Init-CG, which is, simply by not forcing the iterated residual to remain orthogonal
to the deflation subspace. For each procedure tested, the search space is restarted every time its
dimension reaches 40. Note that, since LO-TR-CG starts every search space with more vectors
(up to 20 in this case), it needs to perform more restarts than TR-CG. Not only are these restarts
more frequent, they also require the resolution of two reduced eigenvalue problems, instead of one,
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Figure 5: Results of TR-CG and LO-TR-CG procedures with RR and HR approximations. The
LD eigenvectors ui of A are approximated by wi for i = 1 ( ), i = 2 ( ), i = 3 ( ). The black
ticks on the third column represent the spectrum Sp(A).

and a little more work than the restarts of TR-CG. The restarts based on harmonic Rayleigh-Ritz
projections are also more demanding.

Clearly, the first row of Fig. 6 shows that the Rayleigh-Ritz version of LO-TR-Deflated-CG
performs better than all the other procedures, as its effect on convergence is already completely
achieved by the resolution of the second system. Although the results are not presented here,
we tested the harmonic version of LO-TR-Deflated-CG, and it did not perform much better than
the corresponding LO-TR-Deflated-CG procedure. Now, while TR-Deflated-CG procedures seem
to require more systems to completely show their effect on convergence, they do yield similar
accelerations. Note however that only LO-TR-Init-CG seems to reach approximations which are
accurate enough so that Init-CG behaves similarly to Deflated-CG.

6.3.2. Deflation of linear systems with multiple operators. The same test is performed
again, only this time, the right-hand side stays unchanged while A(t) is randomly sampled after a
random walk. The results presented in Fig. 7 are similar to those obtained for the sequence with
multiple right-hand sides. Indeed, the Rayleigh-Ritz version of LO-TR-Deflated-CG shows quickly
an effect on convergence, after a couple of systems have been solved, while it takes more systems for
TR-Deflated-CG to reach the same acceleration. However, none of these strategies seem to enable
a robust use of Init-CG for stopping criteria under 10−2 × ‖b‖2.
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Figure 6: Norm of iterated residuals of recycled Deflated- and Init-CG procedures for a sequence
of linear systems with multiple right-hand sides. The search spaces are restarted every time their
dimension reaches 40. The reddest and blackest curves are for the first and last systems solved,
respectively.

7. Conclusion. Harmonic Rayleigh-Ritz and Raleigh-Ritz projection techniques were applied
to (i) locally optimal conjugate gradient (CG) methods, (ii) thick-restart Lanczos methods, and (iii)
recycled linear CG solvers. Attempts were made to adapt approaches based on principles of local
optimality and enable them to be used with harmonic projection techniques. While it seems that
LOBCG can be adapted to allow for harmonic projections, there remains to see if this is the case
when (i) introducing a shift so as to approximate eigen-pairs in the center of the spectrum, (ii) using
a preconditioner. Meanwhile, locally optimal thick-restarts were successfully applied to accelerate
restarted Lanczos procedures based on both harmonic and Rayleigh-Ritz approximations. However,
the search spaces generated are not Krylov, and the orthogonalization, which is an intrinsic part
of restarting, does not simplify. Perhaps the most surprising is that, locally optimal recycled CG,
when based on Rayleigh-Ritz projections as in [35], generates search spaces which nearly contain
all the Krylov subspaces of all the eigenvector approximations, up to some dimension, this while
simply recycling matrix-vector products of the solver, with no further orthogonalization. This
property, also used to explain the efficiency of thick-restart procedures, justifies why eigCG works
so well as a recycling strategy in comparison to the other procedures attempted. Nevertheless, while
thick-recycling procedures need to be applied to more systems before their effect on convergence
fully develops, they do seem to reach similar behaviors as LO-TR-CG. In general, it seems that
procedures which rely on harmonic Rayleigh-Ritz projection techniques yield faster convergence
of eigen-residuals than corresponding methods based on Rayleigh-Ritz projections. However, the
forward error of the approximated eigenvectors only start converging faster once the Rayleigh
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Figure 7: Norm of iterated residuals of recycled Deflated- and Init-CG procedures for a sequence
of linear systems with multiple operators (same right-hand side). The search spaces are restarted
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systems solved, respectively.

quotients have converged.
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