DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

INFLUENCE DE LA SURFACE DES FIBRES DE CARBONE SUR LE COMPORTEMENT MECANIQUE DES COMPOSITES C/SiC

Clémentine FELLAH ^{1,2}

James BRAUN ¹, Cédric SAUDER ¹, Marie-Hélène BERGER ²

¹ DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA ² MINES ParisTech, PSL Research University, MAT - Centre des matériaux

SFEC 2017

Composites C/SiC :

Avantages : grande résistance mécanique, bon comportement aux chocs thermiques → applications thermostructurales
 Axes d'amélioration : dégradation après de longues expositions à des environnements agressifs et tolérance à l'endommagement

Traitement thermique des fibres de carbone haute résistance à 1600°C

Influence des caractéristiques de surface des fibres sur le comportement mécanique des composites C/SiC ? <u>Après THT :</u> → Amélioration des propriétés mécaniques (↑ contrainte à la rupture et tolérance à la déformation) → Réorganisation microstructurale

- 1. Composites C/SiC
- 2. Chimie et structure de surface des fibres de carbone
- 3. Couplage F/M des composites C/SiC
- 4. Influence de la surface des fibres de carbone sur l'endommagement des composites C/SiC
- 5. Conclusion

DE LA RECHERCHE À L'INDUSTRI

COMPOSITES C/SIC

Composition des composites C/SiC :

- Renfort : fibres de carbone
- Matrice : SiC
- Interphase : Pyrocarbone (PyC)

SiC monolithique :

- Bonne stabilité thermique (T > 2000°C et $\alpha_L = \alpha_T = 2-5.10^{-6} \text{ K}^{-1}$ de 20 à 500°C)
- Bonne résistance à l'oxydation (formation d'une couche passivante)
- Fragilité (K_{1c} = 2-3 MPa.m^{1/2})

SFEC | MAI 2017 | PAGE 4

COMPOSITES C/SIC

Fibres de carbone à haute résistance : Fibres T300 (Toray)
 Fabriquées à partir d'un précurseur polyacrylonitrile (PAN)
 E ≈ 230 GPa et ε_r ≈ 0,95 %
 A 20%C σ = 0.4 à 0.7 40 6 K 1

- A 20°C, $\alpha_L = -0,1$ à -0,7.10⁻⁶ K⁻¹
- A 20°C, α_T = 8,6 à 9.10⁻⁶ K⁻¹

Pyrocarbone hautement anisotrope : Feuillets de graphène empilés parallèlement avec des orientations aléatoires dans le plan 002 du carbone

Echantillons à chaque étape de fabrication des composites C/SiC

Procédé CVI (Chemical Vapor Infiltration)

Fibres T300/T300THT + PyC

Procédé CVI

Composites : T300/SiC, T300THT/SiC, T300/PyC/SiC, T300THT/PyC/SiC

CHIMIE ET STRUCTURE DE SURFACE DES FIBRES DE CARBONE

Analyse de surface des fibres T300 désensimées (XPS, ligne TEMPO - synchrotron SOLEIL):
800E+07 -

Paramètres modulables sur la ligne TEMPO :
/ Décolution on énorgia

- Résolution en énergie
- ✓ Profondeur d'analyse (inférieur à 10 nm)

Fibre T300	C1s (% at.)	O1s (% at.)	N1s (% at.)
700 eV (~ 5 nm)	85,8	3,7	10,5
1000 eV (~ 7 nm)	87,7	2,6	9,7

- ✓ Composition riche en carbone
- Pourcentages significatifs d'azote et d'oxygène
- Diminution de l'azote et de l'oxygène en profondeur

majoritairement hybridée sp²

DE LA RECHERCHE À L'INDUSTRIE

CHIMIE ET STRUCTURE DE SURFACE DES FIBRES DE CARBONE

Analyse de surface des fibres T300 traitées thermiquement à 1600°C (T300THT) (XPS, ligne TEMPO - synchrotron SOLEIL):

Fibre T300THT	C1s	01s	N1s
700 eV (~ 5 nm)	96,3	1,9	1,8
1000 eV (~ 7 nm)	96,6	1,6	1,8

Après traitement thermique :

- Composition surfacique appauvrie en oxygène et en azote
- Homogénéisation de la composition chimique de la surface des fibres

Déconvolution du pic C1s :

- ✓ Surface carbonée majoritairement hybridée sp²
- ✓ \downarrow contribution des liaisons C-CO, C-O et C-N
- Diminution des groupements fonctionnels d'extrême surface

CHIMIE ET STRUCTURE DE SURFACE DES FIBRES DE CARBONE

Observations de la surface des fibres T300 désensimées et T300THT :

COUPLAGE F/M DES COMPOSITES C/SIC

SiC

Observations microstructurales du composite T300/SiC :

Décohésion entre la matrice et la fibre :

→ Propriétés thermoélastiques dont coefficients de dilatation thermique \neq entre la matrice SiC et les fibres T300

 \rightarrow Contraintes résiduelles d'origine thermique au sein des ≠ phases lors du refroidissement des composites

DE LA RECHERCHE À L'INDUSTRI

Cez

COUPLAGE F/M DES COMPOSITES C/SIC

DE LA RECHERCHE À L'INDUSTRI

COUPLAGE F/M DES COMPOSITES C/SIC

Décohésion entre les fibres T300THT et la matrice SiC :

- ✓ Décohésion nette
- Phase entre les fibres et la matrice présentant des zones plus ou moins affectées par la décohésion
- Décohésion induite dans les dix premiers nanomètres de la surface des fibres

cea

COUPLAGE F/M DES COMPOSITES C/SIC

Observations microstructurales du composite T300THT/PyC/SiC :

Cea

INFLUENCE DE LA SURFACE DES FIBRES DE CARBONE SUR L'ENDOMMAGEMENT DES COMPOSITES C/SIC

Essais de traction sur les composites C/SiC avec et sans interphase PyC

SFEC | MAI 2017 | PAGE 14

INFLUENCE DE LA SURFACE DES FIBRES DE CARBONE SUR L'ENDOMMAGEMENT DES COMPOSITES C/SIC

Composites T300/SiC et T300/PyC/SiC après endommagement

Pas de déviation des fissuresPropagation des fissures jusqu'aux fibres

Composites T300THT/SiC et T300THT/PyC/SiC après endommagement

- Régions interfaciales :
 - Pas de rôle du PyC en tant que déviateur de fissures
 - Décohésions entre le PyC et la surface des fibres ou dans l'extrême surface des fibres
 - Influence du traitement thermique des fibres évident

SFEC| MAI 2017 | PAGE 15

CONCLUSION

- Traitement thermique des fibres T300 :
 - **Evolution de la chimie de surface** : homogénéisation de la composition chimique et diminution des groupements fonctionnels de surface
 - Evolution de l'organisation microstructurale de surface : réorganisation des plans carbonés, formation de nano-porosités et organisation microstructurale de l'extrême surface plus importante
- Pas d'influence de la présence d'une interphase de pyrocarbone sur les propriétés mécanique des composites C/SiC
- Influence de l'évolution des caractéristiques de surface des fibres après traitement thermique :
 - Interaction des fibres avec PyC
 - Mécanismes locaux d'endommagement
- Amélioration du comportement mécanique des composites C/SiC après traitement thermique des fibres

Merci de votre attention !

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 11 78 |

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département des Matériaux pour le Nucléaire Service de Recherches Métallurgiques Appliquées