
HAL Id: hal-02433834
https://hal.science/hal-02433834

Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization of system architecture, multi-physics
and safety models

Michel Batteux, Jean-Yves Choley, Faida Mhenni, Luca Palladino, Tatiana
Prosvirnova, Antoine Rauzy, Maurice Theobald

To cite this version:
Michel Batteux, Jean-Yves Choley, Faida Mhenni, Luca Palladino, Tatiana Prosvirnova, et al.. Syn-
chronization of system architecture, multi-physics and safety models. Proceedings of the Tenth In-
ternational Conference on Complex Systems Design & Management, CSD&M 2019, Dec 2019, Paris,
France. �hal-02433834�

https://hal.science/hal-02433834
https://hal.archives-ouvertes.fr

Synchronization of system architecture,
multi-physics and safety models

Michel Batteux1, Jean-Yves Choley2, Fäıda Mhenni2, Luca Palladino5, Tatiana
Prosvirnova3,4, Antoine Rauzy6, and Maurice Theobald5

1 IRT SystemX, Palaiseau, France
2 Quartz Laboratoire, Supmeca, Saint-Ouen, France

3 Laboratoire Genie Industriel, CentraleSupélec, Gif-sur-Yvette, France
4 ONERA/DTIS, UFTMiP, Toulouse, France

5 SAFRAN Tech, Châteaufort, France
6 Norwegian University of Science and Technology, Trondheim, Norway

Abstract. To face the growing complexity of technical systems, engi-
neers have to design models in order to perform simulations. To avoid
inconsistencies, the integration of different models coming from various
engineering disciplines is one of nowadays main industrial challenges. In
this article we present model synchronization, a framework to ensure
consistency between models coming from different engineering domains,
based on S2ML (System Structure Modeling Language). We show how
the introduced framework can be used to handle consistency between
system architecture models (using SysML language), safety models (us-
ing AltaRica 3.0 language) and multi-physics simulation models (using
Modelica language).

Keywords: Heterogeneous models · model synchronization · model struc-
turing · AltaRica · SysML · Modelica

1 Introduction

Technical systems are getting more and more complex. To face the increasing
complexity of systems, engineers are designing models. These models have dif-
ferent maturity levels and are designed at different abstraction levels and for
different purposes. The integration of models coming from various engineering
disciplines, such as system architecture, control, multi-physics simulation, au-
tomatic code generation, safety and performances analyses, is one of today’s
industrial challenges.

Collaborative data bases (PDM/PLM) and tools to set up traceability links
between models provide a support to manage models in version and configura-
tion, but not to ensure consistency between them. Model transformation tech-
niques (e.g. [7], [12], [3], [10]) assume a master/slaves organization of models,
which is not realistic in practice.

In this article we present model synchronization – a framework to ensure
consistency between models coming from different engineering domains. In this

2 M. Batteux et al.

approach each engineering discipline uses its own modeling languages and tools
which makes it possible to have flexibility and to be efficient in conducting virtual
experiments on the system under study.

The framework is based on the thesis that systems engineering modeling
formalisms are made of two parts:

– An underlying mathematical framework, which aims at capturing some as-
pects of the system behavior, e.g. differential equations for Modelica [5] and
Matlab-Simulink, Data-Flow equations for Lustre, Guarded Transition Sys-
tems for AltaRica 3.0;

– A structuring paradigm that makes it possible to build and organize models
by assembling parts into hierarchical descriptions.

Behavioral descriptions are specific to each engineering domain. On the contrary,
the structures of models reflect to some extent the structure of the system under
study. Therefore, our framework focuses on structural comparisons and is based
on S2ML (System Structure Modeling Language) [1]. Models from different en-
gineering domains cannot be compared directly. First, they are abstracted into
a pivot language (S2ML). Second, their abstractions are compared. To support
model synchronization we develop the SmartSync platform, which is used to
compare S2ML abstractions of heterogeneous models.

To illustrate our proposal we use a case study – an Electro-Mechanical Ac-
tuator (EMA) of an aileron for a small aircraft. We show how the introduced
framework can be used to handle consistency between system architecture mod-
els (designed in SysML [4]), multi-physics models (designed in Modelica [5]) and
safety models (designed in AltaRica 3.0 [2]).

This work continues the work on model synchronization presented in [9]
and [6]. An interesting study [8] uses model synchronization techniques with
hierarchical graphs.

The remainder of this article is organized as follows. Section 2 introduces the
case study. Section 3 describes the model synchronization framework. Section 4
presents the results. Finally, section 5 concludes this article and discusses future
works.

2 Case study

The considered case-study is an Electro-Mechanical Actuator (EMA) for general
aviation small aircraft. The EMA is intended to actuate the aileron, replacing
the usual rod, cables and lever mechanisms. The proposed actuator is driven by
the aircraft electrical networks, controlled by the on-board FCC (Flight Control
Computers) with a set point consistent with the pilot instructions, taking into
account the aileron feedback position and the EMA feedback.

There are different relevant kinematic architectures such as a 4-bars with a
crank and rod mechanism, a 3-bars with an electric cylinder or a direct drive
with a motor and a gearbox mounted on the axis of the revolute joint between
the wing and the aileron. In this work, we will focus on the 3-bars architecture.

Synchronization of system architecture, multi-physics and safety models 3

This architecture is illustrated in Fig.1. Linked to the wing and the aileron
with two spherical joints, the EMA is made up of a housing that encapsulates
all the components, a DC motor controlled by a Micro Controller Unit (MCU)
(not represented), a gearbox and a screw and nut assembly to transform the
gearbox output rotation into a translation of a rod that will in turn push or pull
the aileron.

Fig. 1. EMA 3-bars architecture.

3 Model synchronization

3.1 Principle

Integration of engineering models can be achieved by model synchronization
process, i.e. the process by which one can ensure that two possibly heteroge-
neous models are “speaking” about the same system. Two models, written into
two different languages, can generally not be directly compared. The idea is
thus to abstract them into a pivot language and to compare their abstractions
(see Fig. 2). The synchronization of models goes in two steps. The first step of
model synchronization process is the abstraction, which consists in extracting
the common part that can be compared from the models. The second step is to
compare the abstractions. The third step, the so-called concretization, consists
in eventually adjusting initial models if inconsistencies have been detected.

3.2 S2ML as a pivot language

S2ML (System Structure Modeling Language) [1] aims at providing a struc-
turing paradigm of systems engineering modeling languages. It unifies concepts
coming from object-orientedand prototype-orientedprogramming languages. As
heterogeneous models can be essentially compared by their structure, S2ML is
a perfect candidate as a pivot language for the abstraction.

S2ML is made of the four basic elements: ports, connections, blocks and at-
tributes. Ports are basic objects of models (e.g. variables, events, parameters).
Connections are used to describe relations between ports (e.g. equations, tran-
sitions, assertions). Blocks are containers composed of ports, connections and

4 M. Batteux et al.

Fig. 2. Model synchronization: principle.

other blocks. Attributes are couples (name = value) used to associate informa-
tion to ports, connections and blocks.
Example: Consider a non repairable component (NRComponent) in AltaR-
ica 3.0 having a Boolean state variable vsWorking and a failure event evFailure.
Its S2ML abstraction would be as illustrated in Fig. 3.

class NRComponent
port vsWorking(kind="variable", type="Boolean", init="true");
port pLambda(kind="parameter", type="Real", value="1.0e-5");
port evFailure(kind="event", delay="exponential(pLambda)");
connection [evFailure, vsWorking](type="transition", guard="vsWorking",

action="vsWorking := false");
end

Fig. 3. S2ML code for the block NRComponent.

The class NRComponent contains three ports vsWorking, evFailure and pLambda
having different attributes, and a connection, which represents the transition la-
beled by the event evFailure. In S2ML, ports, connections and blocks are inter-
preted by themselves. But a particular modeling language, implementing S2ML
as its structuring paradigm, can give a concrete interpretation to ports, connec-
tions and blocks. For example, in AltaRica 3.0 variables, parameters, events and
observers are interpreted by ports; transitions and assertions are interpreted by
connections, blocks are interpreted by blocks.

S2ML provides three relations: composition, inheritance and aggregation.
Composition is the simplest structural relation: a system composes a com-

ponent means that the component “is part of” the system. In S2ML, the com-
position is represented by adding different components within the code of the
system as shown in the example below.
Example: In the example given in Fig. 4, the block EMASystem 1 contains
blocks ElectricPower, MCU and Motor and also other blocks, ports and con-
nections not represented here.

Inheritance makes it possible to an element (block or class) to acquire all
the properties of another element without explicitly duplicating them. Inheri-

Synchronization of system architecture, multi-physics and safety models 5

class Motor
extends NRComponent;
port vfFromMCU (type ="Boolean", reset = "false");
port vfToGearbox (type="Boolean", reset = "false");
connection assertion [vfToGearbox, vsWorking, vfFromMCU];

end
block EMASystem_1
// ports
block ElectricPower
extends NRComponent;
port vfToMCU (type = "Boolean", reset = "false");
connection assertion[vfToMCU, vsWorking];

end
block MCU
extends NRComponent;
// the remainder of the block MCU

end
Motor Motor;
// the remainder of the block EMASystem_1

end

Fig. 4. S2ML abstraction of the AltaRica 3.0 model of the EMA system.

tance implements the “is a” relation between modeling elements. In S2ML, the
inheritance is represented by the keyword “extends”.
Example: In the AltaRica 3.0 model of the EMA system, all the components
extend the class NRComponent (see Fig. 3) as they may fail in operation. In
the example given in Fig. 4, the block ElectricPower extends the class NRCom-
ponent defined previously. It contains all the ports and connections of the class
NRComponent and adds a port vfToMCU and a connection assertion.

Aggregation is a “uses” relation between modeling components. It makes it
possible to represent components which are not a part of the subsystem and
may be shared by several subsystems. The clause “embeds” in S2ML refers to
an aggregation.

S2ML also proposed two different ways to reuse modeling elements: Proto-
type/Cloning and Class/Instance mechanisms.

The first way comes from prototype-oriented programming languages. A
block is a container for ports, connections and other blocks. Each block is a
prototype, i.e. it has a unique occurrence in the model. A system may contain
similar components or subsystems. To avoid duplicating the description of a
block, it is possible to clone an already existing one. In S2ML, the cloning of a
block is obtained by the keyword “clones”.

The second way to avoid duplicating the description of a block originates
from object-oriented programming languages and consists in declaring a model
of the duplicated block in a separate modeling entity, the so-called class, and
then in instantiating this class wherever we need to use it again. Obviously, the
class is referred to by the keyword “class” in S2ML. Each instance of the class
is obtained by writing the name of the class followed by names of the created
instances.
Example: In the example given in Fig. 4 a class Motor is defined. It is instan-
tiated inside the block EMASystem 1.

6 M. Batteux et al.

Unfolded model Any hierarchical model is semantically equivalent to an un-
folded (also called instantiated) one. An unfolded S2ML model is a model made
of a hierarchy of nested or aggregated blocks, connections and ports. This model
is obtained by applying recursively rewriting rules, the so-called unfolding rules.
These rules resolve inheritance, classes instantiation, blocks cloning and paths
of aggregated elements. An unfolded (or instantiated) model is used in the com-
parison step of the model synchronization.

3.3 SmartSync platform

The proposed platform for model synchronization SmartSync is illustrated in
Fig. 5. The first step of the model synchronization is the abstraction, which

Fig. 5. Models synchronization process.

consists in translating models into S2ML. This step is still done manually for
the moment but it can be automated. In the next step, the abstractions of the
different models are compared two by two and a report of the comparison is gen-
erated. This report is then analyzed by the members of the different teams that
built the initial models. Together, they produce a matching file that matches
the same elements in the two models. The next step of the comparison process
consists in comparing the initial models using the matching file. Another report
is then generated that contains a list of inconsistencies. This report is analyzed
again by the members of both teams. The matching file is updated with new cor-
responding elements. The updated matching file is used again in the comparison
of the model abstractions and so on. The process iterates until all the inconsis-
tencies have been resolved. At each iteration, if an inconsistency is detected, one
or both models should be updated.

The outcome of the model synchronization is twofold. First, it allows to
detect model inconsistencies in which case models need to be updated. Second,
it allows to validate the model consistency. Models can then be used to produce
performance indicators and so on.

Different types of comparators (see [11] for an interesting survey on model
comparison techniques) for S2ML models can be defined, for instance:

Synchronization of system architecture, multi-physics and safety models 7

– Dictionary, which consists in matching the names of different elements (ports,
nested/aggregated blocks and connections);

– Structural, which consists in matching the names of different elements and
the structure of the model;

– Topological, which consists in matching the names of different elements, the
structure of the model and the connections between ports.

Note that the choice of abstractors and comparators depends on the system
under development and the level of maturity of the project.

4 EMA case study: model synchronization

We present a collaborative design of the EMA system introduced in Section 2.
The collaboration is between three teams: system architecture, multi-physics
simulation and safety. Each team performs different activities. The first activity
is modeling, i.e. the creation of models, which is performed independently by
members of each team using different modeling languages and tools. The second
activity is model synchronization, i.e. the verification of consistency between
models that ensures that models are describing the same system. This activity is
performed by the members of both teams (for example, system architecture and
safety teams) and involves the SmartSync platform. The results of this activity
can be twofold: models can be validated or inconsistencies can be detected.

4.1 Modeling

The EMA system is modelled from three different points of view: system archi-
tecture, multi-physics simulation and safety.

Fig. 6. SysML and Modelica models of the EMA system.

System architecture model is created using SysML [4] with a particular focus
on system physical architecture. The internal block diagram representing the

8 M. Batteux et al.

EMA physical architecture is given Fig. 6 on the left. It has been done using
SysML plugin of MagicDraw modeling tool. This model has no redundancies and
does not represent the system environment. The incidence sensor is supposed to
be a part of the block Motor ; it is represented by a port Motor Position of the
block Motor connected to the port Motor Position of the block MCU.

The multi-physics model of the EMA is designed with Modelica [5] modeling
language and the OMEdit tool 7. Its graphical representation is given Fig. 6 on
the right. It represents not only the EMA system itself but also its environment
(e.g. the wing, the aileron, the pilot commands, etc.) in order to be simulated.

The safety model is created using AltaRica 3.0 modeling language [2] and
the OpenAltaRica platform 8. Fig. 7 shows the graphical representation of the
AltaRica 3.0 model of the EMA system. This model is an extended reliability
block diagram, where blocks represent system components and their failures,
connections between blocks – the propagation of failures. The block Observer
models the failure condition – loss of the aileron incidence control.

Fig. 7. Graphical representation of the AltaRica 3.0 model of the EMA system.

4.2 Synchronization of system architecture and multi-physics
models

First, both models are abstracted, i.e. transformed into S2ML. For SysML inter-
nal block diagrams the transformation is quite simple: blocks/parts are trans-
formed into S2ML blocks, ports into S2ML ports and connections between ports
are transformed into S2ML connections between the corresponding S2ML ports.

For Modelica the choice has been done to completely abstract the internal be-
havior of each Modelica class, only variables involved in the ”connect” clause are
considered. Thus, Modelica classes are transformed into S2ML classes, instances
of classes are transformed into instances of the corresponding S2ML classes,
variables involved in the ”connect” clause are transformed into S2ML ports,

7 https://openmodelica.org/
8 https://www.openaltarica.fr/

Synchronization of system architecture, multi-physics and safety models 9

”connect” clauses between variables are transformed into connections between
the corresponding ports in S2ML. All the other Modelica elements (variables,
parameters, equations, etc.) are not considered in the S2ML abstraction.

In the next step, the abstractions are compared and a report is generated.
This report is analyzed by members of both teams. The following differences are
detected:

– Different names of blocks (e.g. the block Motor in the SysML model corre-
sponds to the block dcpm in the Modelica model);

– SysML block corresponding to several Modelica blocks (e.g. the block BallScre-
wAndNutAssembly in the SysML model corresponds to the blocks ideal-
GearR2T1, prismatic1, bodyBox3 and bodyBox4 in the Modelica model);

– Elements of the multi-physics simulation model not represented in the system
architecture model (e.g. blocks world, Aileron, wing have no equivalent in
the system architecture model as they are part of the system environment).

All the differences are listed in the matching file, which makes it possible to
establish the correspondence between the two models. The following table shows
an extract of a matching file.

Type Model1 (SysML) Model2 (Modelica)

block main.EMASystem 1 main.EMA 3bars BF sin2PID

block BallScrewAndNutAssembly idealGearR2T1, prismatic1, bodyBox3, bodyBox4
block EMAAileronJoint spherical1
block EMAWingJoint universal1
block Gearbox idealGear1
block MCU PID, signalVoltage1
block Motor dcpm
block forget wing
block forget Aileron
block forget world
...

The first column is the element type (port, block, aggregated block or connec-
tion). The second column is the name of the element of the first model, the third
column is the name of the corresponding element in the second model. When
there is no correspondence, the keyword forget is used. It is possible to add a
fourth column with comments to justify matching decisions.

As we can see, for example the block wing of the Modelica model has no
correspondence in the system architecture model because it belongs to the system
environment but it is needed to be able to perform multi-physics simulations.
The block MCU in the SysML model corresponds to two blocks in the Modelica
model: PID and signalVoltage1.

The produced matching file is used to compare again the abstractions of the
system architecture and multi-physics simulation models. In the next step of
the comparison, new differences are detected. They are analyzed again by the
members of both teams and several inconsistencies are detected. Some of them
are summarized in the following table.

10 M. Batteux et al.

Type Model1 (SysML) Model2 (Modelica) Comments

block EMASystem 1 EMA 3bars BF sin2PID

block EMAWingJoint universal1

port MechanicalActionHW Error in SysML
port WingMechanicalAction frame a
port frame b Error in SysML

block Gearbox idealGear1

port AdaptedMechanicalRotPower flange a
port MechanicalRotPower flange b

block Motor dcpm

port MechanicalAction Not implemented
in Modelica

port MechanicalRotPower flange
port RegulatedElectricalPower pin ap
port forget pin an
...

There is an error in SysML model: the connection MechanicalActionHW be-
tween Housing and EMAWingJoint has to be replaced by a connection between
BallScrewAndNutAssembly and EMAWingJoint.

As we can see, one of the possible outcomes of the model synchronization is
the detection of inconsistencies. In this case initial models should be adjusted.

There are other approaches to create links between SysML and Modelica
models, for instance ModelicaML [10].

4.3 Synchronization of system architecture and safety models

As previously, first, both models are abstracted. For AltaRica 3.0 the transfor-
mation is straightforward, as the language uses S2ML as its structural paradigm.
State and flow variables, events and parameters are abstracted to S2ML ports;
transitions and assertions are transformed into connections; different structural
constructs like inheritance, cloning, instantiation, etc. are transformed into their
equivalents in S2ML.

Then the abstractions are compared and a report is generated. This report
is analyzed by members of both teams. The following differences are detected:

– Different names of blocks (e.g. the block BallscrewAndNutAssembly in the
SysML model corresponds to the block BallsCrewNutAssembly in the Al-
taRica 3.0 model);

– Different names of ports (e.g. the port Motor.RegulatedElectricPower in the
SysML model corresponds to the port Motor.vfFromMCU in the AltaR-
ica 3.0 model);

– Elements of the system architecture model not represented in the safety
model (e.g. Motor.MechanicalActionHM has no correspondence in the safety
model);

– Elements of the safety model not represented in the system architecture
model (e.g. state variables, failure events, parameters, etc. have no equivalent
in the system architecture model).

Synchronization of system architecture, multi-physics and safety models 11

The following table shows an extract of a matching file.

Type Model1 (SysML) Model2 (AltaRica 3.0)
block EMASystem 1 EMASystem 1
port ElectricalPower ElectricPower.vfToMCU
port InstructionAndFeedback Instructions.vfToMCU
block forget Observer
block BallScrewAndNutAssembly BallScrewNutAssembly
block EMAAileronJoint EMAAileronJoint
port AileronMechanicalAction vfOut
port MechanicalTransmissionPower forget
port forget evFailure
port forget pLambda
port forget vsWorking
.

As we can see, the block Observer of the safety model has no correspondence in
the system architecture model because it represents safety related information
(i.e. the failure condition to study). The port ElectricalPower in the SysML
model corresponds to the port ElectricPower.vfToMCU in the AltaRica 3.0.
It is important to note that the block ElectricPower of the safety model has
no equivalent in the architecture model. In the system architecture model this
block is not represented as it belongs to the system environment, whilst the
safety analyst decided to represent it in his model because the failure of the
electric power causes the occurrence of the failure condition.

The produced matching file is used to compare again the abstractions of ar-
chitecture and safety models. In the next step of the comparison, new differences
are detected. They are analyzed again and the matching file is populated with
new matching information. Models are compared again. Finally, no more dif-
ferences are detected. The consistency between system architecture and safety
models is verified. The matching file establishes the correspondence between the
two models.

5 Conclusion and perspectives

In this article, we presented experiments on the synchronization of system ar-
chitecture, multi-physics simulation and safety models of an electro-mechanical
actuator for an aileron of a small aircraft. We showed that model synchroniza-
tion can be used to ensure the consistency of heterogeneous models, designed
within different formalisms and different modeling environments.

To support model synchronization, we developed the SmartSync platform,
which relies on S2ML as a pivot language. With SmartSync, we studied the EMA
system. We checked consistency between system architecture and safety models
and detected inconsistencies between system architecture and multi-physics sim-
ulation models. The process of making models consistent is iterative and involves
representatives of the engineering disciplines at stake. The SmartSync platform

12 M. Batteux et al.

helps not only to check the consistency between models, but also to detect in-
consistencies within models and to support the dialog between stakeholders.

As future works, we plan to improve the SmartSync platform, notably by
developing new comparison algorithms and abstraction methods.

References

1. Batteux, M., Prosvirnova, T., A.Rauzy: From models of structures to structures
of models. In: 4th IEEE International Symposium on Systems Engineering, ISSE
2018. Rome, Italy (October 2018)

2. Batteux, M., Prosvirnova, T., A.Rauzy: Altarica 3.0 in 10 modeling patterns. In-
ternational Journal of Critical Computer-Based Systems (IJCCBS) 9, 133 (2019).
https://doi.org/10.1504/IJCCBS.2019.10020023

3. David, P., Idasiak, V., Kratz, F.: Reliability study of complex physical systems
using sysml. Reliability Engineering & System Safety 95(4), 431–450 (2010)

4. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann. The MK/OMG Press, San Francisco, CA
94104, USA (2011)

5. Fritzson, P.: Principles of ObjectOriented Modeling and Simulation with Modelica
3.3: A CyberPhysical Approach. Wiley-IEEE Press, Hoboken, NJ 07030-5774, USA
(2015)

6. Legendre, A., Lanusse, A., Rauzy, A.: Toward Model Synchronization Between
Safety Analysis and System Architecture Design in Industrial Contexts. In:
Marco Bozzano, Y.P. (ed.) Model-Based Safety and Assessment. vol. 10437, pp.
35–49. Springer (2017). https://doi.org/10.1007/978-3-319-64119-5 3, proceedings
of the 5th International Symposium, IMBSA 2017, Trento, Italy, September 11–13,
2017

7. Mauborgne, P., Deniaud, S., Levrat, E., Bonjour, E., Micaëlli, J.P., Loise, D.:
Operational and system hazard analysis in a safe systems requirement engineering
process application to automotive industry. Safety Science 87, 256–268 (August
2016)

8. Missaoui, S., Mhenni, F., Choley, J., Nguyen, N.: Verification and valida-
tion of the consistency between multi-domain system models. In: 2018 An-
nual IEEE International Systems Conference (SysCon). pp. 1–7 (April 2018).
https://doi.org/10.1109/SYSCON.2018.8369561

9. Prosvirnova, T., Saez, E., Seguin, C., Virelizier, P.: Handling consistency
between safety and system models. In: IMBSA 2017 (International Sym-
posium on Model-Based and Assessment). pp. 19–34. Trento, Italy (2017).
https://doi.org/10.1007/978-3-319-64119-5 2

10. Schamai, W., Fritzson, P., Paredis, C., Pop, A.: Towards unified system modeling
and simulation with modelicaml: Modeling of executable behavior using graphical
notations. In: Proceedings of the 7th International Modelica Conference (2009).
https://doi.org/10.3384/ecp09430081

11. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD 2013 - Proceedings of the 1st International Conference
on Model-Driven Engineering and Software Development, Barcelona, Spain, 19 -
21 February, 2013. pp. 265–277 (2013). https://doi.org/10.5220/0004311102650277

12. Yakymets, N., Julho, Y.M., Lanusse, A.: Sophia framework for model-based safety
analysis. In: Actes du congrès Lambda-Mu 19 (actes électroniques). Institut pour
la Mâıtrise des Risques, Dijon, France (October 2014)

