
HAL Id: hal-02433784
https://hal.science/hal-02433784v1

Preprint submitted on 9 Jan 2020 (v1), last revised 27 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust output feedback stabilization for two
heterodirectional linear coupled hyperbolic PDEs

Jean Auriol, Florent Di Meglio

To cite this version:
Jean Auriol, Florent Di Meglio. Robust output feedback stabilization for two heterodirectional linear
coupled hyperbolic PDEs. 2020. �hal-02433784v1�

https://hal.science/hal-02433784v1
https://hal.archives-ouvertes.fr


Robust output feedback stabilization for two
heterodirectional linear coupledhyperbolicPDEs

Jean Auriol, Florent Di Meglio

aMINES ParisTech, PSL Research University, CAS - Centre automatique et systèmes, 60 bd St Michel, 75006 Paris, France

Abstract

We solve in this article the problem of robust output feedback regulation for a system composed of two hyperbolic equations
with collocated input and output in presence of a general class of disturbances and noise. Importantly, the robustness of the
controller is considered with respect to delays in the actuation and in the measurements but also with respect to uncertainties
on parameters, most importantly transport velocities. The proposed control law introduces three degrees of freedom (by means
of tuning parameters) on which we give general conditions to guarantee the existence of robustness margins. We show that to
tune these degrees of freedom and allow potential robustness trade-offs, it is necessary to consider all the different types of
uncertainties simultaneously as it is the only way to ensure the existence of non-zero robustness margins. Provided that these
conditions are satisfied, these tuning parameters enable a trade-off between performance and robustness, between disturbance
rejection and sensitivity to noise. The existence of robustness margins and the Input To State Stability of the system are
proved combining backstepping transformations and classical complex analysis techniques.
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1 Introduction

In this paper, we solve the problem of robust output
feedback regulation for a system of two linear hyperbolic
Partial Differential Equations (PDEs) with collocated
boundary input and output in presence of disturbances
and measurement noise. The robustness of this control
law is considered with respect to delays in the actuation
and in the measurements but also with respect to un-
certainties on parameters, most importantly transport
velocities. Inspired by the results of [4] and [24], the pro-
posed design combines a backstepping approach with an
integral action, which is used to ensure Input-to-State
Stability (ISS) and convergence of the output to zero
for constant disturbance. The resulting output feedback
controller presents three tuning parameters: the amount
of reflection to be cancelled at the boundary by the ac-
tuator, the gain of the integral action and the amount of
boundary reflection cancelled in the observer. We give
general conditions on these degrees of freedom that guar-
antee robustness. Provided that these conditions are sat-
isfied, these tunable parameters enable various trade-
offs between performance and robustness, e.g. between
disturbance rejection and noise sensitivity.

Most physical systems involving a transport phe-
nomenon can be modelled using hyperbolic partial
differential equations (PDEs): heat exchangers [34],
open channel flow [16], multiphase flow [19] or power
systems [32]. The backstepping approach [13,22] has
enabled the design of stabilizing full-state feedback

laws for these systems. The generalization of these sta-
bilization results for a large number of systems has
been a focus point in the recent literature (details
in [6,10,13,22]). The main objective of these controllers
is to ensure convergence in the minimum achievable
time (as defined in [11,27]), thereby omitting the robust-
ness aspects that are known to be the major limitation
for practical applications. It has been for instance ob-
served (see [15,28]) that for many feedback systems, the
introduction of arbitrarily small time delays in the loop
may cause instability for any feedback. In particular,
in [28], a systematic frequency domain treatment of
this phenomenon for distributed parameter systems is
presented. This has induced the notion of delay-robust
stabilization. For linear first order hyperbolic PDEs,
considering uncertainties in different parameters pa-
rameters, the notion of w-stability has been introduced
in [14]. These robustness aspects have been the purpose
of recent investigations: in presence of uncertainties in
the system, the design of adaptive control laws using
filter or swapping design is the purpose of [1,2]. Consid-
ering scalar linear hyperbolic systems, recent contribu-
tions [4] have stressed the necessity of a change of strat-
egy to guarantee the existence of robustness margins for
the closed loop system. In particular the authors have
proved the necessity to preserve some reflection terms
in the control law to ensure delay-robustness. This has
been done by means of a tuning parameter introduced
in the design of the control law. The robustness analy-
sis has been done rewriting the hyperbolic system as a
difference system, as these two classes of problems have
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been proved to be equivalent [7].
The control law proposed in [4] has been modified in [24],
combining it with an integral action (to ensure the out-
put regulation in presence of noise and disturbances)
and a state-observer (to ensure the output-feedback sta-
bilization). The resulting closed loop system has been
proved to be Input-to-State Stable (ISS) and to ensure
the stabilization of the output in presence of constant
disturbances. Besides, the class of disturbances consid-
ered in [24], namely bounded signals, is more general
than the one proposed in [17,18] in which the distur-
bance signal is generated by an exosystem of finite
dimension, or than the smooth disturbances considered
in [26,25]. However, the control law proposed in [24]
only proves the ISS of the closed loop system without
assessing any robustness of the closed loop system with
respect to delays and uncertainties. This control law in-
troduces three degrees of freedom but the choice of these
tuning parameters and the underlying trade-offs still
have to be qualitatively and quantitatively analysed.

The main contribution of this article is to give a set of
sufficient conditions for robustness on the degrees of free-
dom of the control law derived in [24]. These three tuning
parameters are the amount of reflection to be cancelled
by the actuator at the boundary, the gain of the inte-
gral action and the amount of boundary reflection can-
celled in the observer. Importantly, we show that is nec-
essary to consider uncertainties on the transport veloc-
ities, delay on the actuation and delay on the measure-
ments simultaneously while tuning these parameters as
it is the only way to ensure the existence of non-zero ro-
bustness margins. The introduced tuning parameters en-
able multiple trade-offs (performance-robustness, noise
sensitivity-disturbance rejection) that are qualitatively
analysed on a toy example. Our approach is the follow-
ing: considering the output-feedback control law pro-
posed in [24] we prove, by means of backstepping trans-
formations and using the characteristics method, that
the resulting closed loop system can be transformed into
a Neutral Differential System. Under some conditions
on the introduced degrees of freedom, this later system
is proved to be robust to delays and uncertainties. This
is done using classical Laplace analysis techniques [20].
The ISS property can then be obtained, adjusting the
techniques developed in [24].

The paper is organized as follows. In Section 2, we in-
troduce the system under consideration (with delays,
uncertainties or disturbances) and recall the results ob-
tained in [24] in which a stabilizing output feedback law
has been designed for the nominal system (i.e. the one
without any uncertainty). This control law introduces
three degree of freedom that can be tuned to ensure
robust stabilization and potential robustness trade-offs.
We then give some general definitions regarding the sta-
bility and robustness properties of the considered sys-
tem. We conclude this section giving the main result of
this paper that is a set general conditions on the tuning
parameters to guarantee the robustness of the uncertain
real system. As the robustness analysis requires techni-
cal and long computations, we introduce in Section 3 an
operator framework to simplify to make the proof eas-
ier to follow. The robustness of the closed loop system

with respect to uncertainties and delays in proved in Sec-
tion 4. This is done combining backstepping transfor-
mations to rewrite the system as a Neutral Differential
System, which is then proved to be exponentially stable
using classical complex analysis techniques. Adjusting
the techniques developed in [24] the ISS property of the
feedback law is stated in Section 5. Finally, some simula-
tions results on a toy problem are proposed in Section 6.
These simulations highlight the different trade-offs that
can be considered, using the previously introduced de-
grees of freedom. They constitutes a first step towards a
quantitative analysis of these tuning parameters. Some
concluding remarks are given in Section VII.

2 Problem under consideration and main re-
sults

2.1 Problem under consideration

In this paper, we consider the following uncertain linear
hyperbolic system

∂tu(t, x) + λ̄∂xu(t, x) = σ̄+−(x)v(t, x) + d1(t, x), (1)

∂tv(t, x)− µ̄∂xv(t, x) = σ̄−+(x)u(t, x) + d2(t, x), (2)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

u(t, 0) = q̄v(t, 0) + d3(t), (3)

v(t, 1) = ρ̄u(t, 1) + (1 + δV )V (t− δ0) + d4(t). (4)

Such systems model, e.g. open channel flows of
traffic flows [8]. The uncertain in-domain coupling
terms σ̄+−(x) and σ̄−+(x) are assumed to belong
to C([0, 1],R)2. More precisely, they are defined by

σ̄+−(x) = σ+−(x) + δ+−
σ (x), (5)

σ̄−+(x) = σ−+(x) + δ−+
σ (x), (6)

where the functions σ+−(x) and σ−+(x) belong
to C([0, 1],R)2 and represent known in-domain cou-
pling terms, while the continuous functions δ+−

σ (x)
and δ−+

σ (x) represent uncertainties acting on these cou-
pling terms. The velocities λ̄ > 0 and µ̄ > 0 are defined
as λ̄ = λ + δλ, µ̄ = µ + δµ, where λ > 0 and µ > 0 are
known constant velocities, while the terms δλ and δµ
represent constant uncertainties on these velocities. We
assume that µ−|δµ| ≤ µ+ |δµ| < 0 < λ−|δλ| ≤ λ+ |δλ|.
Note that the velocities are assumed to be constant,
but the results of this paper can extended (with some
technical adjustments) to spatially varying velocities
(and spatially varying uncertainties). The boundary
couplings q̄ 6= 0 (distal reflection) and ρ̄ (proximal re-
flection) are defined as q̄ = q + δq, ρ̄ = ρ + δρ, where q
and ρ are known boundary couplings, while the terms δq
and δρ represent constant uncertainties on the distal and
proximal reflections. We assume that q̄ 6= 0 and |q̄ρ̄| < 1
and |ρq| < 1, in order to guarantee the existence of a
delay-robust linear feedback control law (see [4,28]). The
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function V is an input function (control law) that has
values in R, while the term δV 6= −1 is a constant uncer-
tainty acting on the actuation. We assume that there is
a delay, denoted δ0, acting on the actuation. The func-
tions d1 and d2 correspond to disturbances acting on the
right-hand side of (1) and (2). The functions d3 and d4
correspond to disturbances acting on the right-hand
side of (3) and (4), respectively. Finally, we consider the
case of delayed noisy collocated measurements, i.e.

ym(t) = u(t− δ1, 1) + n(t) , (7)

where we have denoted δ1 the delay acting on the mea-
surements. The initial conditions denoted u0 and v0
are assumed to be bounded and therefore belong
to L∞([0, 1])2. In the following, we define the character-
istic time τ and τ̄ as

τ =
1

λ
+

1

µ
, τ̄ =

1

λ̄
+

1

µ̄
. (8)

We denote κ the maximal bound for the uncertainties:

κ = max{ max
x∈[0,1]

(δ+−
σ (x)), max

x∈[0,1]
(δ−+
σ (x)), δλ,

δµ, δρ, δq, δV }. (9)

We make the following assumption on the disturbances
and on the noise.

Assumption 1 The disturbances d1(·, x), d2(·, x), d3, d4,
are in W 2,∞ ((0,∞); R), the noise n is assumed to be
in L∞((0,∞); R). We also have d1(t, ·) and d2(t, ·) that
are in C ([0, 1]; R+).

With this assumption, using the method of character-
istics and classical fixed point arguments we have the
following result (see e.g. [9]).

Theorem 2 [9] The open loop system (1)-(4) with

bounded initial condition (u0, v0)
>

admits a unique so-
lution in C

(
[0,∞) ;L∞

(
(0, 1); R2

)
∩ L1

(
(0, 1); R2

))
.

2.2 Observer design

In this section, we consider the nominal system associ-
ated to (1)-(4), i.e. we assume κ = 0, di(t) ≡ 0, n(t) ≡ 0
and δi = 0 (absence of uncertainties, disturbances, noise
and delays). For such a nominal system, a stabilizing
output feedback law has been designed in [24]. Let us
consider the following observer (defined in [24])

∂tû+ λ∂xû = σ+−(x)v̂ − P+(x)(û(t, 1)− ym(t)), (10)

∂tv̂ − µ∂xv̂ = σ−+(x)û− P−(x)(û(t, 1)− ym(t)), (11)

with the boundary conditions

û(t, 0) = qv̂(t, 0), (12)

v̂(t, 1) = ρ(1− ε)û(t, 1) + ρεym(t) + V (t). (13)

The gains P+(·) and P−(·) are defined as

P+(x) = −λPuu(x, 1) + µρ(1− ε)Puv(x, 1), (14)

P−(x) = −λP vu(x, 1) + µρ(1− ε)P vv(x, 1), (15)

where the kernels Puu, Puv, P vu, and P vv belong
to L∞(Tu) (where Tu = {(x, ξ) ∈ [0, 1]2| ξ ≥ x}) and
are defined in [24]. The initial conditions û0 and v̂0 are
assumed to be bounded. The degree of freedom ε ∈ [0, 1]
that appears in (13) can be seen as a measure of trust
in the measurements relative to the model where ε = 1
results in relying more on the measurements and ε = 0
relying more on the model. We now consider the output
feedback law given in [24] and defined by

V (t) = VBS(t) + kIη(t) + kIVI(t), (16)

η̇(t) = ym(t), (17)

where the initial condition of η is denoted η0 and where

VBS(t) = −ρ̃(1− ε)û(t, 1)− ρ̃εym(t)

− (ρ− ρ̃)

∫ 1

0

(Kuu(1, ξ)û(t, ξ) +Kuv(1, ξ)v̂(t, ξ))dξ

+

∫ 1

0

(Kvu(1, ξ)û(t, ξ) +Kvv(1, ξ)v̂(t, ξ)) dξ, (18)

VI(t) = −
∫ 1

0

l1(ξ)(û(t, ξ)−
∫ ξ

0

Kuu(ξ, ν)û(t, ν)dν

−
∫ ξ

0

Kvu(ξ, ν)v̂(t, ν)dν)dξ −
∫ 1

0

l2(ξ)(v̂(t, ξ)−∫ ξ

0

Kvu(ξ, ν)û(t, ν) +Kvv(ξ, ν)v̂(t, ν)dν)dξ. (19)

The kernels Kuu, Kuv, Kvu, Kvv belong to L∞(Tb)
(where Tb = {(x, ξ) ∈ [0, 1]2| ξ ≤ x}) and are defined
by a set of PDEs given in [33]. The corresponding in-
verse kernels are denoted Lαα, Lαβ , Lβα and Lββ . They
also belong to L∞(Tb) and are also defined by a set of
PDEs given in [33]. The functions l1 and l2 are defined
on the interval [0, 1] as the solutions of the system

λl′1(x) = Lαα(1, x), µl′2(x) = −Lαβ(1, x) , (20)

with the boundary conditions

l2(1) = 0 , l1(0) =
µ

qλ
l2(0). (21)

The control law V defined in (16) has three compo-
nents: VBS(t), VI(t) and kIη. The component VBS corre-
sponds to the control law derived in [4]. Its purpose is to
cancel the effect of the potentially destabilizing in-domain
coupling terms. It stabilizes the system (1)-(4) in the ab-
sence of uncertainties, disturbance, noise in the measure-
ments or delays in the loop. Note that the purpose of the
term ρ̃û(t, 1) is to avoid a complete cancellation of the
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proximal reflection and thus to guarantee some delay-
robustness [4]. The purpose of the integral term kIη is
to enable rejection of constant disturbance [24]. Finally,
the last term of the control law (kIVI(t)) is related to
the presence of the integrator kIη. More precisely, the
term kIη which is used to enable disturbance rejection
may have an effect on the stability of the system. This
has to be compensated by the term (kIVI(t)) (see [24]
for details). The stability of the closed loop system has
been assessed in [24] under some conditions. The first
one is given by the following assumption.

Assumption 3

1 +

∫ 1

0

Lαα(1, ξ)dξ +
1

q

∫ 1

0

Lαβ(1, ξ)dξ 6= 0 . (22)

Unfortunately, no physical interpretation has been found
for this assumption, which is necessary to guarantee the
effect on the integral action. The second condition is
a condition on the tuning parameter kI and explicitly
depends on Assumption 3.

Condition 4 Let us define k1 = (ρ − ρ̃)q and k2 =
q(1 + l1(1)λ). We have assumed that |k1| < 1 and we
impose kIk2 < 0. Moreover kI is chosen such that

|kI | < −
√

1− k2
1

|k2| τ
arctan

(√
1− k2

1

|k1|

)

+
π
√

1− k2
1

|k2| τ
, if k1 ∈ (−1, 0) , (23)

|kI | <
π

2 |k2| τ
, if k1 = 0 , (24)

|kI | <
√

1− k2
1

|k2| τ
arctan

(√
1− k2

1

k1

)
, else . (25)

This condition implies that the magnitude of kI is di-
rectly related to the one of τ . Note that this condition
is directly related to Assumption 3 (since 1 + l1(1)λ =

1 +
∫ 1

0
Lαα(1, ξ)dξ + 1

q

∫ 1

0
Lαβ(1, ξ)dξ). Thus, Assump-

tion 3 is required to guarantee k2 6= 0 and the possibility
to have an integral action. With this choice of kI and ρ̃,
the complex equation s− (k1s+k2kI)e

−sτ = 0 (where s
denotes the Laplace variable) has all its solutions in the
complex left-half plane [12]. We can finally write the fol-
lowing theorem that assesses the stability of the closed
loop system (1)-(4) in the absence of uncertainties, dis-
turbance, noise in the measurements or delays in the
loop

Theorem 5 Nominal Stabilization [24, Theorem 5].
Consider the nominal system composed of (1)-(4) (in
the absence of uncertainties, disturbance, noise in the
measurements or delays in the loop) and of the ob-
server system (10)-(13) along with the control law (16).

If Assumption 3, and Condition 4 are satisfied, then,
for any bounded initial condition (unom0 , vnom0 ), for any
bounded observer initial condition (û0, v̂0), the solu-
tion (unom, vnom, û, v̂) converges (in the sense of the
L∞-norm) to zero.

2.3 Robustness aspects

A controller ensuring stability of a PDE system may
exhibit poor closed-loop behavior and even instability in
practice due to vanishing delay margins. For this reason,
several concepts of robust stability have been introduced
to ensure that the stability holds even in the presence of
(possibly small) uncertainties on the delays. We recall
here several definitions relevant to our control problem.

Definition 6 (Delay-robust stabilization [28])
Consider a plant transfer function G and a feedback
controller K such that GK is regular 1 . The closed-
loop system is robustly stable with respect to delays if
and only if there exists ε0 such that, for all ε ∈ [0, ε0]
the closed-loop transfer function in the presence of a

delay ε in the actuation (i.e. GK (I + e−εsGK)
−1

is
stable. Let us denote H = GK and PH the (discrete)
set of its poles in C+ = {s ∈ C | Re(s) > 0}. Let us
define γ = lim

|s|→∞
s∈C+\PH

Sp(H(s)), where Sp stands for the

spectral radius. If γ < 1, then the closed-loop system is
robustly stable with respect to delays. If γ > 1, then the
closed-loop system is not robustly stable with respect to
delays.

The more general concept of w-stability proves more use-
ful in this context.

Definition 7 (w-stability [14]) Consider a plant
transfer function G and a feedback controller K such
that GK is regular. The closed-loop system is w-stable if
and only if for any approximate identity Iδ, the closed-
loop transfer function GK (I + IδGK)

−1
is stable. An

approximate identity is a family of transfer functions Iδ
such that

(1) ‖Iδ‖∞ < 1, I0 = I;
(2) On every compact set of the open Right-Half Plane,

Iδ converges to I when δ goes to zero.

Suppose that (G,K) is input-output stable. Then (G,K)
is w-stable if there exists a ρ > 0 such that

lim
{s∈ C̄+| |s|>ρ}

||G(s)K(s)|| < 1. (26)

Approximate identities may include more general trans-
fer functions than the ones stemming from uncertain-
ties on the delays. Thus, w-stability implies delay-robust

1 i.e. GK is bounded on some Right-Half plane has a limit
at +∞ along the real axis, see [28, Section 2] for details.
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stability. Moreover it is easy to show that the condi-
tion γ < 1 implies (26). Hence the conditions for delay-
robustness and w-stability are the same, possibly except
for the case γ = 1. Uncertainties in the transport veloc-
ities result in additional terms in the closed-loop trans-
fer functions that do not take the form of approximate
identities. This is illustrated by the following example.

Example 1 Consider the following linear hyperbolic
system

ut + (1 + δ)ux = 0, vt − vx = 0 (27)

u(0, t) = qv(0, t), v(1, t) = ρu(1, t) + V (t) (28)

where ρ and q are positive, |ρq| < 1 and δ is the uncer-
tainty on the transport velocity of u. Then, the transfer
function between v(1, ·) and V reads

v(1, s) =
1− ρqe−2s

1− ρqe−(1+ 1
1+δ )s︸ ︷︷ ︸

Iδ

1

1− ρqe−2s
V (s) (29)

The function Iδ is not an approximate identity since
||Iδ||∞ = 1+ρq

1−ρq > 1.

It has been proved in [7] that linear hyperbolic PDEs
system have equivalent stability properties to those of a
specific class of neutral systems. For this class of system,
the notion of strong stability has been considered in the
literature [21,20,29,30].

Definition 8 (Strong Stability [20]) . The following
difference system

x(t) =

n∑
k=1

x(t− τk) +

∫ τn

0

g(s)x(t− s)ds (30)

is strongly stable if it is stable when subjected to small
variations in the delays τk.

In what follows, we show strong stability of the closed-
loop system, in the presence of additional uncertainties
on the coupling coefficients of the PDE. Regarding the
effect of the noise and disturbances, we show in this pa-
per the Input-to-State Stability of the closed loop sys-
tem in the sense of the following definition.

Definition 9 Input-to-State Stability (ISS). The out-
put of the closed loop system (1)-(4) along with the con-
trol law (16) and the observer (10)-(13) is ISS with re-
spect to n and di, i = 1, . . . , 4 if there exist a KL func-
tion h1 and a K function h2 such that for any bounded

initial condition (u0, v0, û0, v̂0)
>

and any measurable lo-
cally essentially bounded inputK(t) (that depends on n(t)
and di(t)), the following holds

||(u, v)||L2 ≤ h1

(
(u0, v0, û0, v̂0)

>
, t
)

+ h2

(
‖K (t)‖L∞((0,t);R)

)
. (31)

2.4 Main result

We now give the main result of the paper. Under some
conditions on the three degrees of freedom: ρ̃, ε
and kI , the control law V (t) defined by (16) ensures
the robust-stabilization of the closed loop system (1)-
(4) with the observer (10)-(13), in the absence of noise
and disturbance. These degrees of freedom can then
be tuned inside the obtained stability domain to allow
multiple trade-offs. To conditions (23)-(25) on kI , we
add the following one on (ρ, ε).

Condition 10 Let us consider three integers i, j, k and
denote Ekij the square matrix of dimension k whose all
components are equal to zero except the one located at
the intersection of the ith row and the jth column. Let us
consider the following matrices

A1 = ρqE4
11 − ρ̃q(1− ε)E4

12 + (qε(ρ− ρ̃) + qρ̃)E4
31

− ρ̃q(1− ε)E4
32, (32)

A2 = ρ̃q(1− ε)E4
14 + (ρ− ρ̃)q(1− ε)E4

33

+ ρ̃q(1− ε)E4
34, (33)

A3 = E4
21 + E4

43, (34)

A4 = −ρ̃qεE4
12 + (ρ̃− ρ)qεE4

31 − ρ̃qεE4
32. (35)

The parameters ρ̃ and ε are chosen such that

sup
θk∈[0,2π]4

Sp(

4∑
k=1

Ak exp(iθk)) < 1, (36)

where Sp stands for the spectral radius.

Note that since |ρq| < 1, Condition 10 is always satisfied
for e.g. ε = 1 and ρ̃ = 0. We have the following theorem

Theorem 11 Suppose that Assumption 3, and Con-
ditions 4 and 10 are satisfied. There exist δmarg > 0
and κ0 > 0 such that if δ0 < δmarg, δ1 < δmarg and κ < κ0
and if d1 ≡ d2 ≡ d3 ≡ d4 ≡ n ≡ 0, then, the closed loop
system (1)-(4) along with the control law (16) and the
observer (10)-(13) is exponentially stable.

This theorem assesses the robustness of the closed loop
system with respect to delays and uncertainties on the
parameters. Its proof is based on a rewriting of the
closed loop system as a neutral system and analyzing
the root location for the associated characteristic equa-
tion. This theorem is stronger (and consequently more
restrictive in its requirements) than [14, Theorem 9.5.4].
It implies w-stability as we will have ||G(s)K(s)|| < 1.
However, the condition we give may be easier to verify
than ||G(s)K(s)|| < 1 Regarding the effect of noise and
disturbances, we have the following theorem.

Theorem 12 Suppose that Assumption (3), and Con-
ditions (4) and (10) are satisfied. There exist δmarg > 0
and κ0 > 0 such that if δ0 < δmarg, δ1 < δmarg and κ <
κ0 then, the output of the closed loop system (1)-(4)
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along with the control law (16) and the observer (10)-
(13) is ISS. Moreover, for any bounded initial condi-
tions (u0, v0, û0, v̂0, η0), there exists a positive constant
M such that the controlled output y(t) satisfies

|y(t)| ≤M . (37)

Furthermore, if ḋ1(t) = ḋ2(t) = ḋ3(t, ·) = ḋ4(t, ·) =
n(t) = 0, then the controlled output satisfies

lim
t→∞

|y(t)| = 0 . (38)

3 Operator framework and preliminary results

In this section, we introduce some important prelimi-
nary results that make the proof of Theorem 11 sim-
pler. We recall that we denote C([a, b],Rn) the Banach
space of continuous functions mapping the interval [a, b]
into Rn with the topology of the uniform convergence.
For a function φ : [−τ,∞) → R, we define its partial
trajectory φ[t] ∈ L2([−τ, 0],R) by

φ[t](θ)=̇φ(t+ θ), − τ ≤ θ ≤ 0. (39)

Consider a strictly positive integer p, two collec-
tions of strictly positive constants R : (τ1, · · · , τp)
andE : (ε1, · · · , εp), and a collection of non-negative con-
stants U : (u1, · · · , up). We define τmax = max

1≤i≤p
(τi). The

sequence E represents a sequence of delays (namely δ0
and δ1). The sequence R represents a sequence of trans-
port times that appear in the robustness analysis. They
are linear combinations of the characteristic transport
times of the system (1)-(4) and (10)-(13) and of the
delays δ0 and δ1. Finally, the sequence U represents a se-
quence of small uncertainties. In order to have the same
number of elements in every collection R,E and U, some
elements can be repeated. We assume that all the ele-
ments of E and U can be considered as small as wanted
if κ (defined by (9)) and max(δ0, δ1) tend to zero. In
the presence of delays and uncertainties, the closed loop
system features operators with specific properties. We
classify these operators in the following three categories.

Definition 13 An operator I belongs to I if there ex-
ists a real τI ∈ R, a compact support function fI ∈
L1([0, τmax]) whose support is [0, τI ] such that

I : L2([−τmax, 0],R)→ R

φt 7→
∫ 0

−τmax

fI(−ν)φt(ν)dν. (40)

For all n ∈ N∗, we denote Mn(I) the set of square matrix
operators such that for any M ∈Mn(I), for all (i, j) ∈
[1, n]2,Mi,j ∈ I.

The class I corresponds to integral terms appearing
through backstepping transformations and posing no
threat to delay-robustness.

Definition 14 An operatorD belongs to D if there exists
a real εD ∈ E such that

D : L2([−τmax, 0],R)→ R
φt 7→ φt(−εD). (41)

The class D corresponds to delay operators appearing
due to the delays in the measurements and in the actu-
ation.

Definition 15 An operator W belongs to W if one of
the three following conditions is satisfied

(1) there exist I ∈ I andD ∈ D such that I ◦D ∈ I and

W : L2([−τmax, 0],R)→ R
φt 7→ I(φt −D(φt)), (42)

(2) there exist D ∈ D and u ∈ U such that

W : L2([−τmax, 0],R)→ R
φt 7→ uD(φt), (43)

(3) there exist I ∈ I,and u ∈ U such that

W : L2([−τmax, 0],R)→ R
φt 7→ uI(φt). (44)

For all n ∈ N∗, we denote Mn(W) the set of square
matrix operators such that for any M ∈ Mn(W), for
all (i, j) ∈ [1, n]2,Mi,j ∈W.

The class W corresponds in the first case to the differ-
ence between integral terms and the same delayed terms.
In the second case, it corresponds to delayed terms mul-
tiplied by arbitrarily small terms; while in the third case
are considered integral delayed terms multiplied by an
arbitrarily small term. These terms naturally appear in
the computations while using the method of character-
istics. These terms do not pose any threat for delay-
robustness provided the delays and uncertainties are
small enough. In what follows we denote Î the Laplace
transform of the operator I (provided it is well-defined).

Lemma 16 Consider a positive constant η > 0. There
exist ε0 > 0 and κ0 > 0 such that if for all i ∈ [1, p], εi <
ε0 and ui < κ0, then for any W ∈W, its Laplace trans-
form Ŵ satisfies |Ŵ(s)| < η for all s ∈ C+.

PROOF. If the operatorW satisfies (42), the proof is a
consequence of Riemann-Lebesgues lemma (see e.g. [31,
p.103] or [14, Property A.6.2, p.636]). Otherwise, it is a
consequence of the boundedness of the operators.

The following theorem proves that the operators that
belong to Mn(W) do not have any major impact on the
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stability properties, assuming that the εi and ui can be
chosen as small as we want.

Theorem 17 Consider n ∈ N∗ and an operator F :
L2([−τmax, 0],Rn) → Mn,n(R) such that there exists p
matrices Ai ∈ (Mn,n(R))p and I ∈Mn(I), such that for
all φ ∈ L2([−τmax, 0],Rn)

F(φt) = φt −
p∑
i=1

Aiφt(−τi)− I(φt). (45)

Consider an operator W ∈ Mn(W). If the semigroup
associated to the operator F is exponentially stable, then
there exists ε0 > 0 and κ0 > 0 such that the semigroup
associated to the operator F +W is exponentially stable
for all i ∈ [1, p], εi < ε0 and ui < κ0.

PROOF. Let us denote F̂(s) (resp. Ŵ(s)) the Laplace
transform of the operator F (resp W) (see [21]). The
proof can be done by contradiction, adjusting the proof
of [5, Theorem 2].

The following theorem guarantees that systems with a
strongly unstable principal part are necessarily unstable.

Theorem 18 Consider n ∈ N∗ and a differential delay
matrix operator F : L2([−τmax, 0],Rn)→Mn,n(R) such
that there exists p matrices Ai ∈ (Mn,n(R))p such that
for all φ ∈ L2([−τmax, 0],Rn)

F(φt) = φt −
p∑
i=1

Aiφt(−τi). (46)

If the characteristic equation associated to the opera-
tor F has a non finite number of zeros in the open-right
half plane, then, for any set of εi > 0 and ui > 0, for
any I ∈Mn(I) andW ∈Mn(W), the operatorF+I+W
generates an unstable semigroup.

PROOF. Let us consider an arbitrary set of strictly
positive coefficients E and positive coefficients U. Con-
sider I ∈ Mq(I) and W ∈ Mq(W). The operator W
can be rewritten as W = W1 +W2 where the compo-
nents of W1 are defined either by (42) or (44) and the
components ofW2 are defined by (43). Due to [21, The-
orem 6.1], the operator F + W2 has an infinite num-
ber of zeros in the right half-plane. Using Riemann-
Lebesgues’ lemma we have that the holomorphic func-
tion |Î(s) + Ŵ1(s)| converges to 0 for |s| large enough
(with <(s) ≥ 0). It implies (see [4, Lemma 3] for details)
that the characteristic equation associated to the oper-
ator F + I +W has an infinite number of zeros in the
right half-plane and consequently generates an unstable
semigroup.

Note that due to the vector space structure of Mn(W),
similar results hold if the operator W is replaced by a
linear combination of operators that belong to Mn(W).
In the next section, to prove Theorem 11, we express the
observer-controller equations as delay-differential equa-
tions (with potential integral terms). During the deriva-
tions, multiple terms that belong to Mn(W) appear.
Since they can be neglected for the stability analysis,
for the sake of simplicity and brevity, every time one of
this term appears we write it as O(Xt) (where Xt is re-
lated to the state of the system). In other words, all the
terms included in O(Xt) are terms that do not have any
influence on the stability if the delays and uncertainties
are small enough. This approach is consistent with the
one proposed in [14, Chapter 9]. For convenience, the

Laplace transform of such terms is denoted Ô(Xt)(s).

4 Robustness aspects: proof of Theorem 11

In this section we prove Theorem 11. In what follows we
assume that di ≡ 0 and n(t) ≡ 0. Using the backstepping
method, we first rewrite the closed loop (1)-(4) along
with the observer (10)-(13) and the control law (16) in
a simpler set of coordinates in which the in-domain cou-
pling terms have been removed. In this new set of coordi-
nates, it becomes possible to rewrite the corresponding
PDEs as delay differential equations. We finally analyse
the stability properties of this resulting neutral system.
In all this section we consider that Assumption 3, and
Conditions 4 and 10 are satisfied. For sake of clarity,
most of the proofs are given in Appendix. The global
strategy of the proof is summarized as follows

(1) Using backstepping transformations, we transform
the original and error systems (u, v) and (ũ =
u − û, ṽ = v − v̂) into simpler target sys-

tems (α, β), (α̃, β̃) from which the in-domain cou-
pling terms have been removed (Sections 4.1, 4.2).

(2) We can then express the state (β(t, 1), β̃(t, 1), V (t))
as the solution of a delay differential system (Sec-
tion 4.3).

(3) By means of an analysis of the associated character-
istic equation, we prove that the conditions given
in Theorem 11 on the tuning parameters guarantee
the exponential stability of β(t, 1) (Section 4.4).

(4) Using the invertbility of the backstepping transfor-
mations, it implies the exponential stability of the
original system (u, v).

4.1 Backstepping transformation of the original sys-
tem (1)-(4)

Consider system (1)-(4) and the invertible Volterra
change of coordinates(

u(t, x)

v(t, x)

)
=

(
α(t, x)

β(t, x)

)

−
∫ x

0

(
L̄αα(x, ξ) L̄βα(x, ξ)

L̄αβ(x, ξ) L̄ββ(x, ξ)

)(
α(t, ξ)

β(t, ξ)

)
dξ, (47)
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where the kernels L̄αα, L̄αβ , L̄βα and L̄ββ belong
to L∞(Tb) and are defined a set of PDEs analogous
to the ones that satisfied the kernels Lαα, Lαβ , Lβα

and Lββ which can be found in [33] (changing the nomi-
nal parameters by the uncertain ones). The dynamics of
the system (1)-(4) in the new coordinates are given by

∂tα(t, x) + λ̄∂xα(t, x) = 0, (48)

∂tβ(t, x)− µ̄∂xβ(t, x) = 0, (49)

with the following linear boundary conditions

α(t, 0) = q̄β(t, 0), (50)

β(t, 1) = ρ̄α(t, 1) + (1 + δV )V (t− δ0)

−
∫ 1

0

N̄α(ξ)α(t, ξ) + N̄β(ξ)β(t, ξ)dξ, (51)

with N̄α(ξ) = L̄βα(1, ξ) − ρ̄L̄αα(1, ξ) and N̄β(ξ) =
L̄ββ(1, ξ)− ρ̄L̄αβ(1, ξ). Moreover, we have

η̇ = α(t− δ1, 1) +

∫ 1

0

L̄αα(1, ξ)α(t− δ1, ξ)dξ

+

∫ 1

0

L̄αβ(1, ξ)β(t− δ1, ξ)dξ. (52)

Due to the cascade structure of system (48)-(51) and due
to the invertibility of the Volterra transformation (47),
if β(t, 1) exponentially converges to zero then it implies
that the system (1)-(4) is exponentially stable.

The transformation (47) is invertible and the inverse
transformation can be expressed as(

α(t, ξ)

β(t, ξ)

)
=

(
u(t, x)

v(t, x)

)

−
∫ x

0

(
K̄uu(x, ξ) K̄uv(x, ξ)

K̄vu(x, ξ) K̄vv(x, ξ)

)(
u(t, x)

v(t, x)

)
dξ, (53)

where the kernels K̄uu, K̄vu, K̄uv, K̄vv belongs toL∞(Tb)
and satisfy a set of PDEs analogous to the ones sat-
isfied by the kernels Kuu,Kvu,Kuv,Kvv and which
are given in [33]. Due to the continuity of the ker-
nels with respect to the kernel PDEs parameters,
the kernels K̄uu, K̄vu, K̄uv, and K̄vv respectively
converge to Kuu,Kvu,Kuv, and Kvv and the ker-
nels L̄αα, L̄βα, L̄αβ , and L̄ββ respectively converge
to Lαα, Lβα, Lαβ , and Lββ when κ goes to zero. Finally,
we define the function l̄1 and l̄2 on the interval [0, 1] as
the solution of the system

λ̄l̄′1(x) = L̄αα(1, x), µ̄l̄′2(x) = −L̄αβ(1, x) , (54)

with the boundary conditions

l̄2(1) = 0 , l̄1(0) =
µ̄

q̄λ̄
l̄2(0). (55)

4.2 Backstepping transformation of the error system

Combining the observer (10)-(13) and the real sys-
tem (1)-(4) yields the following error system (de-
noting ũ(t, x) = u(t, x) − û(t, x) and ṽ(t, x) =
v(t, x)− v̂(t, x)):

∂tũ(t, x) + λ∂xũ(t, x) = σ+−(x)ṽ(t, x)− P+(x)ũ(t, 1)

− δλ∂xu(t, x) + δσ+−(x)v(t, x)

+ P+(x)(u(t, 1)− u(t− δ1, 1)), (56)

∂tṽ(t, x)− µ∂xṽ(t, x) = σ−+(x)ũ(t, x)− P−(x)ũ(t, 1)

+ δµ∂xv(t, x) + δσ−+(x)u(t, x)

+ P−(x)(u(t, 1)− u(t− δ1, 1)), (57)

with the boundary conditions

ũ(t, 0) = qṽ(t, 0) + δqv(t, 0), (58)

ṽ(t, 1) = ρ(1− ε)ũ(t, 1) + ρε(u(t, 1)− u(t− δ1, 1))

+ δρu(t, 1) + (1 + δV )V (t− δ0)− V (t) . (59)

Once again, the objective is to find a suitable transfor-
mation to remove the in-domain couplings σ+−(x)ṽ(t, x)
and σ−+(x)ũ(t, x). Let us consider the transformation
defined by

α̃(t, x) = ũ(t, x) +

∫ 1

x

Rααũ(t, ξ) +Rβαṽ(t, ξ)dξ, (60)

β̃(t, x) = ṽ(t, x) +

∫ 1

x

Rβαũ(t, ξ) +Rββ ṽ(t, ξ)dξ, (61)

where the kernels Rαα, Rαβ , Rβα and Rββ are L∞ func-
tions defined on Tt that are the inverse kernels of the
kernels P ·· defined in (14)-(15). We have the following
lemma whose proof is done in Appendix A.

Lemma 19 There exist two L∞ functions f and g such
that the states α̃ and β̃ defined by (60)-(61) satisfy the
following set of PDEs

∂tα̃(t, x) + λ∂xα̃(t, x) = δσ+−(x)v(t, x)− f(x)(u(t, 1)

− u(t− δ1, 1)) + µRαβ(x, 1)δρu(t, 1)− δλ∂xu(t, x)

+

∫ 1

x

Rαβ(x, ξ)(δσ−+(ξ)u(t, ξ) + δµ∂xv(t, ξ))dξ

+ µRαβ(x, 1)((1 + δV )V (t− δ0)− V (t))

+

∫ 1

x

Rαα(x, ξ)(δσ+−(ξ)v(t, ξ)− δλ∂xu(t, ξ))dξ, (62)

∂tβ̃(t, x)− µ∂xβ̃(t, x) = δσ−+(x)u(t, x)− g(x)(u(t, 1)

− u(t− δ1, 1)) + µRαβ(x, 1)δρu(t, 1) + δµ∂xv(t, x)

+

∫ 1

x

Rββ(x, ξ)(δσ−+(ξ)u(t, ξ) + δµ∂xv(t, ξ))dξ

+ µRββ(x, 1)((1 + δV )V (t− δ0)− V (t))

+

∫ 1

x

Rβα(x, ξ)(δσ+−(ξ)v(t, ξ)− δλ∂xu(t, ξ))dξ, (63)
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along with the boundary conditions

α̃(t, 0) = qβ̃(t, 0) + δqβ(t, 0), (64)

β̃(t, 1) = ρ(1− ε)α̃(t, 1) + ρε(u(t, 1)− u(t− δ1, 1))

+ δρu(t, 1) + (1 + δV )V (t− δ0)− V (t) . (65)

4.3 Neutral delay-differential system

We are now able to express the two states β(t, 1)

and β̃(t, 1) as the solutions of a neutral delay-differential
system. We define the extended state X(t) as

X(t) =
(
β(t, 1) β̃(t, 1) V (t)

)T
. (66)

We define the collections R, E and U as

R :(τ, τ̄ ,
1

λ
+

1

µ̄
, τ + δ0, τ̄ + δ0, τ̄ + δ1,

τ̄ + δ0 + δ1,
1

λ
+

1

µ̄
+ δ0), E : (0, δ0, δ1),

U :(δλ, δµ, δq, δρ, δV , max
x∈[0,1]

(δ+−
σ (x)), max

x∈[0,1]
(δ−+
σ (x))).

In what follows, we heavily rely on the definitions of Sec-
tion 3 to ease the notations, grouping terms that corre-
spond to operators in I,D or W and explicitly retaining
only the terms that are critical for the robustness anal-
ysis. The strategy is the following

(1) Using equations (48)-(51), we start express-
ing β(t, 1) as the solution of a neutral equation
whose terms only depend on the state Xt.

(2) Using the observer equations (62)-(65), we express

the state β̃(t, 1) as the solution of a neutral equation
that depends on the state Xt.

(3) Finally, we can simplify the expression of the con-
trol law (16) and express it as a function of Xt.

(4) We obtain a neutral system satisfied by Xt whose
stability analysis is easier. This is done in Sec-
tion 4.4 by means of an analysis of the associated
characteristic equation.

4.3.1 Expression of the state β(t, 1)

Considering equations (48)-(51), using the method of
characteristics, they simply rewrite for any t ≥ τ̄+δ0+δ1
as

β(t, 1) =q̄ρ̄β(t− τ̄ , 1)−
∫ τ̄

0

Ñ(ξ)β(t− ξ, 1)dξ

+ (1 + δV )V (t− δ0), (67)

where Ñ is defined by

Ñ(ξ) =

{
µ̄N̄β(1− µ̄ξ) for ξ ∈ [0, 1

µ̄ )

λ̄q̄N̄α(λ̄ξ − λ̄
µ̄ ) for ξ ∈ ( 1

µ̄ , τ̄ ].
,

4.3.2 Expression of the observer state β̃(t, 1)

Let us consider equations (62)-(65). We have the follow-
ing lemma, whose proof is given in Appendix B

Lemma 20 For any t ≥ τ + δ0 + δ1

β̃(t, 1) = ρq(1− ε)β̃(t− τ, 1) + ρqε(β(t− τ̄ , 1)−
β(t− τ̄ − δ1, 1)) + V (t− δ0)− V (t) +O(Xt). (68)

4.3.3 Expression of the control law V (t)

We now express the control law V (t) = VBS(t) +
kIVI(t) + kIη(t) defined in (16) as a function of Xt.
Regarding equation (52), there are some integral terms
in the expression of η̇. We choose to incorporate the

term −kI
∫ 1

0
l̄1(ξ)α(t, ξ) + l̄2(ξ)β(t, ξ)dξ into the in-

tegral action. To do so, let us consider the invertible
transformation

γ(t) = η̄(t)−
∫ 1

0

(l̄1(ξ)α(t, ξ) + l̄2(ξ)β(t, ξ))dξ. (69)

We then have the following lemma, whose proof is given
in Appendix C.

Lemma 21 There exists a Lipschitz function F̃ such
that the control law V (t) rewrites

V (t) = ρ̃εq(β(t− τ̄ , 1)− β(t− τ̄ − δ1, 1)) + ρ̃(1− ε)q

β̃(t− τ, 1)− ρ̃qβ(t− τ̄ , 1) +

∫ τ

0

F̃ (ν)β̃(t− ν, 1)dν

+

∫ τ̄

0

Ñ(ξ)β(t− ξ, 1) + kIγ(t) +O(Xt). (70)

where γ satisfies

γ̇(t) = q(β(t− τ̄ − δ1, 1) + λl1(1)β(t− τ̄ , 1))

+O(β(·, 1)t). (71)

4.3.4 Neutral system

Using the previous computations and simplifications we
are now able to give the neutral system satisfied by Xt.
Injecting (70) inside (67), (68), we obtain the following
system

β(t, 1) = ρqβ(t− τ̄ , 1)− ρ̃q(1− ε)β(t− τ̄ − δ0, 1)− ρ̃q
εβ(t− τ̄ − δ0 − δ1, 1) + kIγ(t− δ0) + ρ̃q(1− ε)β̃(t− τ−

δ0, 1) +

∫ τ

0

F̃ (ν)β̃(t− ν − δ0, 1)dν +O(Xt), (72)

β̃(t, 1) = (ρ− ρ̃)q(1− ε)β̃(t− τ, 1) + ρ̃q(1− ε)β̃(t− τ
− δ0, 1) + q((ρ− ρ̃)ε+ ρ̃)β(t− τ̄ , 1) + (ρ̃− ρ)qεβ(t− τ̄
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− δ1, 1)− (1− ε)ρ̃qβ(t− τ̄ − δ0, 1) + kIγ(t− δ0)

− kIγ(t)− ρ̃εqβ(t− τ̄ − δ0 − δ1, 1) +O(Xt), (73)

where γ satisfies (71). The equation satisfied by V (t) is
given in (C.3) and not rewritten here. As equations (72)-
(73) require the expression of γ(t) and since only its
derivative is available, we choose to differentiate (72)-
(73) with respect to time.

β̇(t, 1) = ρqβ̇(t− τ̄ , 1)− ρ̃q(1− ε)β̇(t− τ̄ − δ0, 1)

− ρ̃qεβ̇(t− τ̄ − δ0 − δ1, 1) + kIqβ(t− τ̄ − δ1 − δ0, 1)

+ ρ̃q(1− ε) ˙̃
β(t− τ − δ0) + kIqλl1(1)β(t− τ̄ − δ1)+∫ τ

0

F̃ (ν)
˙̃
β(t− ν − δ0, 1)dν +O(Ẋt) +O(Xt), (74)

˙̃
β(t, 1) = (ρ− ρ̃)q(1− ε) ˙̃

β(t− τ, 1) + ρ̃q(1− ε) ˙̃
β(t−

τ − δ0, 1) + q((ρ− ρ̃)ε+ ρ̃)β̇(t− τ̄ , 1) + (ρ̃− ρ)qεβ̇(t

− τ̄ − δ1, 1)− (1− ε)ρ̃qβ̇(t− τ̄ − δ0 − δ1, 1)− ρ̃εq
β̇(t− τ̄ − δ0 − δ1, 1) + kIqλl1(1)(β(t− τ̄ − δ0, 1)

− β(t− τ̄ , 1)) + kIq(β(t− τ̄ − δ0 − δ1, 1)

− β(t− τ̄ − δ1)) +O(Ẋt) +O(β(·, 1)t). (75)

Finally, using equation (70) we have

V̇ (t) = ρ̃εq(β̇(t− τ̄ , 1)− β̇(t− τ̄ − δ1, 1)) + ρ̃(1− ε)q ˙̃
β(t

− τ, 1)− ρ̃qβ̇(t− τ̄ , 1) +

∫ τ

0

F̃ (ν)
˙̃
β(t− ν, 1)dν

+

∫ τ̄

0

Ñ(ξ)dξβ̇(t− ξ, 1) + kIq(β(t− τ̄ − δ1, 1)

+ λl1(1)β(t− τ̄ , 1)) +O(β(·, 1)t) +O(Ẋt). (76)

Consider system (74)-(76), the objective is now to prove
that the first component of the solution Xt, i.e. β(t, 1),
exponentially converges to zero. Note that only the con-
vergence of β(t, 1) to zero is required and that β̃(t, 1)
does not necessarily converge to zero (due to the pres-
ence of the integral term). Thus, we choose to consider
the new state Y (t) defined by

Y (t) =
(
β(t, 1) β̇(t, 1)

˙̃
β(t, 1), V̇ (t)

)
. (77)

The stability proof is achieved considering the charac-
teristic function associated to the system (74)-(76).

4.4 Complex stability analysis

We start writing the Laplace transform of the equations
satisfied by the state Y . We can then easily obtain the
characteristic equation associated to this system. The
stability is granted provided this characteristic equa-
tion does not have any roots in the open complex right
plane C+. The first objective is to express in a simple

way the Laplace transform of the system (74)-(76). Let
us introduce the following holomorphic matrices

F0(s) = (ρqe−τ̄s − ρ̃q(1− ε)e−(τ̄+δ0)s − ρ̃qεe−(τ̄+δ0+δ1)s)E4
2,2

+ (ρ̃q(1− ε)e−(τ+δ0)s)E4
2,3 + (q((ρ− ρ̃)ε+ ρ̃)e−τ̄s + (ρ̃− ρ)

qεe−(τ̄+δ1)s − (1− ε)ρ̃qe−(τ̄+δ0)s − ρ̃qεe−(τ̄+δ0+δ1)s)E4
3,2

+ ((ρ− ρ̃)q(1− ε)e−τs + ρ̃q(1− ε)e−(τ+δ0)s)E4
3,3 + E4

1,2

+ (ρ̃εqe−τ̄s − ρ̃εqe−(τ̄+δ1)s − ρ̃qe−τ̄s)E4
4,2 + (ρ̃(1− ε)qe−τs)E4

4,3,

C0(s) = (kIqe
−(τ̄+δ1+δ0)s + kIqλl1(1)e−(τ̄+δ1)s)E4,4

2,1 + (kIq

λl1(1)e−τ̄s(e−δ0s − 1) + kIqe
−(τ̄+δ1)s(e−δ0s − 1))E4,4

3,1+

(kIqe
−τ̄s(1 + λl1(1)e−τ̄s))E4,4

4,1 ,

E0(s) = (

∫ τ

0

F̃ (ν)e−(ν+δ0)sdν)E4
2,3 + (

∫ τ

0

F̃ (ν)e−νsdν)E4
4,3

+ (

∫ τ̄

0

sÑ(ν)F̃ (ν)e−νsdν)E4
4,2,

I0(s) = sE4
1,1 + E4

2,2 + E4
3,3 + E4

4,4.

where the matrices Eki,j have been defined while giving
Condition 10. With these notations, the Laplace trans-
form of (74)-(76) for the state Y defined by (77) is given
by

I0(s)Ŷ (s) = (F0(s) + C0(s) + E0(s))Ŷ (s) + Ô(s), (78)

where we have (abusively) denoted Ô(s) the transfer

function associated to the operator Ô(Ŷt)(s). The char-
acteristic equation associated to (74)-(76) can be ex-
pressed as

det(I0(s)− F0(s)− C0(s)− E0(s)− Ô(s)) = 0, (79)

In what follows, we denote

P (s) = |det
(
I0(s)− F0(s)− C0(s)− E0(s)− Ô(s)

)
|.

We have the following theorem

Theorem 22 There exist δm > 0 and κm > 0 such that
if δ0 < δm, δ1 < δm and κ < κm then, P (s) does not
have any zero in C+.

The proof of this Theorem is done in Appendix D. The-
orem 22 implies the function β(t, 1) converges to zero.
Using the transport equations (48)-(51) and the trans-
formation (47), we can conclude to the convergence of
the state (u, v) to its zero-equilibrium. This proves The-
orem 11

5 Input-to-State Stability: proof of Theorem 12

We have proved that in the absence of disturbances
and noise, there exist δm > 0 and κm > 0 such that

10



if δ0 < δm, δ1 < δm and κ < κm the state (u, v) exponen-
tially converges to zero (and thus the output regulation
is ensured). We consider in this section the influence of
the disturbances and of the noise on the regulation. The
objective is to prove Theorem 12. The methodology we
use is the same as the one developed in [24]. It requires
doing computations which are extremely similar to the
one done in Section 4. Using the backstepping transfor-
mations (47) and (60)-(61) we prove (using similar com-
putations as the ones done in Section 4), that the ex-

tended states β(t, 1), β̃(t, 1) and V (t) still satisfy (74)-
(76) in which are added some additional terms that van-
ish if the disturbances are constant (with respect to t).
For sake of brevity, we choose not to give these equations
but to directly jump to the following lemma

Lemma 23 Let us denote ζ(t, x) = (d1(t, x) d2(t, x) d3(t)

d4(t) ḋ1(t, x) ḋ2(t, x) ḋ3(t) ḋ4(t) n(t))T . Let us denote
P the operator associated to (74)-(76) (i.e (74)-(76) can
be rewritten Xt = P(Xt)). Then, there exists a linear
operator K such that

Ẋt = P(Ẋt) +K(ζ̇(t, x), n(t)).

The variation-of-constant formula for this system reads
(see [21] page 173)

X ((α0, β0) ,K) (t) = X ((α0, β0) , 0) (t)

+

∫ t

0

X0(t− s)K(ζ̇(s), n(s))ds , (80)

where X ((α0, β0) , 0) (t) denotes the solution of the ho-
mogeneous NDE system Xt = P(Xt) in term of the fun-
damental solutionX0 (see [21] for a definition of the fun-
damental solution). As δ0 < δm, δ1 < δm and κ < κm,
the first component of X converges to zero. As we can
rewrite for all x ∈ [0, 1] α(t, x) and β(t, x) as functions
of β(t, 1) (equations (48)-(49) and using the backstep-
ping transformation (47)), we immediately get the ISS
of the system. To conclude the proof, we now have to
show that equation (38) holds when ḋ1(t, x) = ḋ2(t, x) =

ḋ3(t) = ḋ4(t) = n(t) = 0. In this case the operator K
satisfies K ≡ 0. Thus, β(t, 1) exponentially converges
to zero. This implies the convergence to zero of α(t, x)
and β(t, x) for every x ∈ [0, 1]. Finally, using the trans-
formation (47) we obtain

lim
t→∞

|u(t, 1)| = lim
t→∞

∣∣∣∣α(t, 1) +

∫ 1

0

L̄αα(1, ξ)α(t, ξ)dξ+∫ 1

0

L̄αβ(1, ξ)β(t, ξ)dξ

∣∣∣∣ = 0. (81)

This concludes the proof of Theorem 12. Using the same
computations, we can write the following Corollary.

Corollary 24 Assume that

sup
θk∈[0,2π]4

Sp(

4∑
k=1

Ak exp(iθk)) > 1, (82)

For any δ0 > 0, δ1 > 0 and κ > 0 the output of the closed
loop system (1)-(4) along with the control law (16) and
the observer (10)-(13) diverges.

More precisely, if (82) holds, then, the function det(Id−
F0(s)) has an infinite number of zeros in the right half
plane (see [21] for instance). Thus, using [4, Lemma 3]
and Theorem 18 yields the expected result.

6 Simulation results on a toy problem and ro-
bustness trade-offs

In this section, we numerically illustrate the results of
this paper by explicitly computing the admissible ρ̃, ε
and kI that guarantee robustness in the case of a simple
example. Let us consider the following set of parameters

λ = µ = q = 1, σ−+ = −1, σ+− = 0, ρ = 0.6.

Solving the PDEs given in [33], we obtain Lαα(x, ξ) =
Lαβ(x, ξ) = 0 and consequently, for any x ∈ [0, 1], l1(x) =
l2(x) = 0. With this set of parameters, Assumption 3
is obviously satisfied. It has been proved in [4] that
the maximal amount of reflection that can be canceled
is given by |ρ̃max| = 1−|ρq|

|q| = 0.4. In what follows we

consider ρ̃ ∈ [0, ρ̃max[. Condition 4 implies the following
condition for 0 > kI :

kI > −
√

1− (0.6− ρ̃)2

2
arctan

(√
1− (0.6− ρ̃)2

(0.6− ρ̃)

)
(83)

Figure 1 pictures the domain associated to (36), condi-
tion that the parameters ρ̃ and ε have to satisfy (we have
only pictured the positive values) while Figure 2 pictures
the domain associated to condition (83), condition that
the coefficient kI has to satisfy. These conditions are re-
quired to guarantee the existence of robustness margins.
The (ρ̃, ε) domain is obtained using an iterative algo-
rithm that computes condition (36). This algorithm uses
some convexity properties of the stability domain. It is
also based on the fact that it is easier to check that (36) is
false rather than the converse. This domain is compared
with the stability domain we would have obtained con-
sidering only a delay in the actuation δ0 and neglecting
the influence of the terms δ1, δλ, and δµ (blue line). This
illustrates the property stated in [8] that uncertainties
on the velocities have a non-negligible impact on delay-
robustness and emphasizes the necessity to study these
two problems simultaneously while tuning the parame-
ters ρ and ε. The (kI , ρ̃) domain is obtained by comput-
ing the inequalities given in (83).
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Fig. 1. Representation of the robustness domain in the
plane (ε, ρ̃) for q = 1 and ρ = 0.6

ROBUSTNESS DOMAIN

Fig. 2. Representation of the robustness domain in the
plane (ρ̃, kI) for q = 1 and ρ = 0.6.

To analyze the effect of the tuning parameters kI and ε,
we picture in Figure 3-9 the temporal response of the
output for different situations:

• In Figures 3-4, we picture the evolution of the output
in the absence of disturbance or noise and without any
integral compensation for different values of ε and ρ̃ .
• In Figures 5-6, we picture the evolution of the output

in the absence of noise and with a disturbance d3(t) =
1 for different values of ε and ρ̃. The integral gain kI
is set to zero.
• In Figures 7-8, we picture the evolution of the out-

put in the absence of disturbance with a high fre-
quency noise for different values of ε and ρ̃. The inte-
gral gain kI is set to zero.
• In Figure 9, we fix the tuning parameters ρ̃ = 0.3

and ε = 1. We consider the constant disturbances d1 =
d2 = n = 0, d3 = d4 = 1. We picture the evolution of
the output for different admissible values of kI .

From these figures, we can make the following remarks

(1) The coefficient kI has a direct impact on distur-
bance rejection but also on the raise-time and on
the settle time. Classically, increasing kI improves
the disturbance rejection but generates oscillations.

(2) Choosing a high absolute value for kI implies to

Time [s]
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u
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;1
)
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0.8

1

0=1
0=0

Fig. 3. Evolution of the output u(t, 1) in the absence of
noise and disturbance for different values of ε with kI = 0
and ρ̃ = 0.2.
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Fig. 4. Evolution of the output u(t, 1) in the absence of
noise and disturbance for different values of ρ̃ with kI = 0
and ε = 1.
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Fig. 5. Evolution of the output u(t, 1) in the absence of
noise with a disturbance d3 = 0.1 for different values of ε
with kI = 0 and ρ̃ = 0.2.

have ρ̃ large enough (right part of Figure 1). Thus,
as ρ̃ enables a trade-off between performance and
robustness, choosing an arbitrary value for kI may
have some negative impact on robustness. Conse-
quently, there is a trade-off between disturbance re-
jection and (delay-)robustness.

(3) Choosing a small value for ε seems to improve the
noise rejection (even if the convergence is slower).
However, a reduction of ε may cause a loss of phase
margin which must be amended by also reducing
the integral gain kI to avoid a potential unaccept-
ably high controller induced resonance. There is
consequently a complex trade-off between perfor-
mance and robustness, noise sensitivity and distur-
bance rejection.
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Fig. 6. Evolution of the output u(t, 1) in the absence of
noise with a disturbance d3 = 0.1 for different values of ρ̃
with kI = 0 and ε = 1.
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Fig. 7. Evolution of the output u(t, 1) in the absence of
disturbance along with a high frequency noise for different
values of ε with kI = 0 and ρ̃ = 0.2 .
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Fig. 8. Evolution of the output u(t, 1) in the absence of
disturbance along with a high frequency noise for different
values of ρ̃ with kI = 0 and ε = 1.

The different effects on the tuning parameters are sum-
marized in Table 1. These remarks illustrate the fact
that the degrees of freedom introduced in this paper en-
able various trade-offs and have to be specifically tuned
depending on the problem considered. A deeper analy-
sis can only be done for a case by case basis. More pre-
cisely, deriving the transfer function of the controller and
of the observer, using classical controller analysis tech-
niques (including the analysis of the rise time, of the re-
sponse time, computing Nyquist charts, or the Gang of
Six [3] for instance), it is possible to derive some tun-
ing heuristics giving a trade-off between noise sensitiv-
ity versus disturbance rejection performance or between
delay-robustness (especially for high frequencies) and
nominal performance.

Time [s]
0 5 10 15 20 25 30
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;1
)
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0

0.5

1

1.5

2

kI=-0.05
kI=-0.2
kI=-0.4

Fig. 9. Evolution of the output u(t, 1) for different values of kI
with ρ̃ = 0.3 and ε = 1 in presence of a disturbance d3 = 0.1.

Coef. Cond. Pros Cons

↗ Dist. reject. ↗ Oscillations

kI 4 ↗ Conv. rate ↘ delay-robustness

↗ Raise/Settle-time

ρ̃ 4,10 ↗ Conv. rate ↘ delay-robustness

ε 10 ↗ Conv. rate ↘ noise rejection

Table 1
Consequences of choosing large values for the different tun-
ing parameters (ρ̃, kI , ε) under their respective admissibility
domains (non exhaustive list).

7 Concluding Remarks

The control law derived in [24] introduces three degrees
of freedom. In this paper we have given explicit condi-
tions on these degrees of freedom to guarantee the ro-
bust stabilization of a system of two coupled hyperbolic
PDEs. We have highlighted how these degrees of free-
dom can be tuned to enable various trade-offs (conver-
gence rate-robustness, noise sensibility-disturbance re-
jection). However, the proposed approach is qualitative
as only a robust stability criterion has been given. The
next step towards an industrial implementation of the
backstepping controllers consists in developing quan-
titative tools to tune these three degrees of freedom.
In particular, their impact on the size of the robustness
margins (and a comparison with the conditions given
in [14, Chapter 9]) should be the purpose of further in-
vestigations.Considering higher-dimensional problems,
we think that combining the approach proposed in this
paper with the results developed in [7] would lead to
promising results.
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A Proof of Lemma 19

We recall that since the kernelsR·· are the inverse kernels
of the kernels P ··, we have [23]

Rαα(x, 1) = Puu(x, 1) +

∫ 1

x

Rαα(x, ξ)Puu(ξ, 1)dξ

+

∫ 1

x

Rαβ(x, ξ)P vu(ξ, 1)dξ, (A.1)

Rαβ(x, 1) = Puv(x, 1) +

∫ 1

x

Rαα(x, ξ)Puv(ξ, 1)dξ

+

∫ 1

x

Rαβ(x, ξ)P vv(ξ, 1)dξ. (A.2)

Differentiating (60) with respect to space and time and
integrating by part and using the equations satisfied by
the kernels R·,·, we obtain equation (62) where the func-
tion f is defined by

f(x) = −Rαα(x, 1)− ρεµRαβ(x, 1).

A similar proof can be done to derive equation (63).
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B Proof of Lemma 20

We start giving the expression of u(t, x), ∂xu(t, x), v(t, x)
and ∂xv(t, x) in terms of β(t, 1). Using equations (48)-
(51) and the Volterra transformation (47), we have that
for all t ≤ τ̄ and all x ∈ [0, 1],

u(t, x) = q̄β(t− x

λ̄
− 1

µ̄
, 1) +

∫ 1

0

(q̄L̄αα(x, ξ)

β(t− ξ

λ̄
− 1

µ̄
, 1) + L̄αβ(x, ξ)β(t− 1− ξ

µ̄
, 1)dξ).

Using the notations of Section 3, for every x ∈ [0, 1],
there exist Iu(x) ∈ I and Iux(x) ∈ I such that

u(t, x) = q̄β(t− 1

µ̄
− x

λ̄
, 1) + Iu(x)(β(·, 1)t), (B.1)

∂xu(t, x) = − q̄
λ̄
∂xβ(t− 1

µ̄
− x

λ̄
, 1) + Iux(x)(β(·, 1)t) (B.2)

Similarly we obtain the existence of Iv(x) ∈ I
and Ivx(x) ∈ I such that

v(t, x) = β(t− 1− x
µ̄

, 1) + Iv(x)(β(·, 1)t), (B.3)

∂xv(t, x) =
1

µ̄
∂xβ(t− 1− x

µ̄
, 1) + Ivx(x)(β(·, 1)t). (B.4)

The objective is to use the method of characteristics and
the formalism introduced in Section 3 to express β̃(t, 1)
as the solution of a neutral equation. Regarding the
terms in (62)-(65) that are functions of u(t, x) or v(t, x),
one can use equations (B.1)-(B.3) to express them as
functions of Xt. We have for all t > τ̄ and all x ∈ [0, 1],
β(t, x) = β(t− 1−x

µ̄ , 1). This implies

∂xβ(t, x) =
1

µ̄
∂tβ(t− 1− x

µ̄
, 1). (B.5)

Combining this with (B.2), we obtain

−δλ∂xu(t, x) = −δλ(− 1

λ̄
q̄∂xβ(t− 1

µ̄
− x

λ̄
, 1) + Iux

(x)(β(·, 1)t)) = δλ
1

λ̄
q̄

1

µ̄
∂tβ(t− 1

µ̄
− x

λ̄
, 1) +O(Xt).

Thus,−δλ
∫ 1
λ̄

0 ∂xu(t−s, x− λ̄s)ds = O(Xt). Using (B.4)
and (B.5), we obtain

∫ 1
λ̄

0

∫ 1

x−λ̄s
Rαβ(x− λ̄s, ξ)δµ∂xv(t− s, ξ)dξds =

∫ 1
λ̄

0

∫ 1

x−λ̄s

Rαβ(x− λ̄s, ξ)δµ
1

µ̄2
∂tβ(t− s− 1− ξ

µ̄
, 1)dξds+O(Xt).

Integrating by part, we get

∫ 1
λ̄

0

∫ 1

x−λ̄s
Rαβ(x− λ̄s, ξ)δµ∂xv(t− s, ξ)dξds =

∫ 1
λ̄

0

∫ 1

x−λ̄s

∂ξR
αβ(x− λ̄s, ξ)δµ

1

µ̄
β(t− s− 1− ξ

µ̄
, 1)dξds+O(Xt)

+

∫ 1
λ̄

0

δµ
µ̄

(Rαβ(x− λ̄s, 1)β(t− s, 1)−Rαβ(x− λ̄s, x− λ̄s)

β(t− s− 1− x+ λ̄s

µ̄
))ds+O(Xt) = O(Xt).

Similar computations can be done to obtain
∫ 1
λ̄

0

∫ 1

x−λ̄sR
αα

(x− λ̄s, ξ)δλ∂xu(t− s, ξ)dξds = O(Xt). This yields

∫ 1
λ̄

0

−δλ∂xu(t− s, x− λ̄s) +

∫ 1

x−λ̄s
Rαβ(x− λ̄s, ξ)

δµ∂xv(t− s, ξ)−Rαα(x− λ̄s, ξ)δλ∂xu(t− s, ξ)dξds
= O(Xt) (B.6)

Similarly, we obtain
∫ 1
µ̄

0 δλ∂xv(t−s, x+µ̄s)+
∫ 1

x+µ̄s
Rββ(x+

µ̄s, ξ)δµ∂xv(t−s, ξ)−Rβα(x+µ̄s, ξ)δλ∂xu(t−s, ξ)dξds =
O(Xt). Using the method of characteristics on equa-
tions (B.1)-(B.4), we obtain for any t ≥ τ + δ0 + δ1

β̃(t, 1) = ρq(1− ε)β̃(t− τ, 1) + ρqε(β(t− τ̄ , 1)−
β(t− τ̄ − δ1, 1)) + V (t− δ0)− V (t) +O(Xt). (B.7)

C Proof of Lemma 21

We start by expressing the terms ũ(t, x) and ṽ(t, x) as
functions of the state Xt. Using the notations of Sec-
tion 3, the relations (B.1)-(B.4), for every x ∈ [0, 1],
there exist Iũ(x) ∈ I and Iṽ(x) ∈ I such that

ũ(t, x) = qβ̃(t− 1

µ
− x

λ
, 1) + Iũ(x)(Xt) +O(Xt) (C.1)

ṽ(t, x) = β̃(t− 1− x
µ

, 1) + Iṽ(x)(Xt) +O(Xt). (C.2)

Let us denote V0(t) = VBS(t) + kIVI(t). Using (B.1)-
(B.3) with (C.1)-(C.2), we obtain

V0(t) = ρ̃εq(β(t− τ̄ , 1)− β(t− τ̄ − δ1, 1)) + ρ̃(1− ε)

qβ̃(t− τ, 1)− ρ̃qβ(t− τ̄ , 1)− kI
∫ 1

0

(l̄1(ξ)α(t, ξ) + l̄2(ξ)

β(t, ξ))dξ +

∫ τ

0

F̃ (ν)β̃(t− ν, 1)dν +

∫ τ̄

0

Ñ(ξ)

β(t− ξ, 1)dξ +O(Xt). (C.3)
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Using (69), we obtain the expected expression for the
control law V (t). Differentiating (69) and integrating by
part yields

γ̇(t) = η̇ −
∫ 1

0

l̄1(t, ξ)∂tα(t, ξ) + l2(t, ξ)∂tβ(t, ξ)dξ

= α(t− δ1, 1) +

∫ 1

0

L̄αα(x, ξ)α(t− δ1, ξ)

+ L̄αβ(x, ξ)α(t− δ1, ξ)dξ −
∫ 1

0

λ̄l̄′1(ξ)α(t, ξ)

− µ̄l̄′2(ξ)β(t, ξ)dξ + λ̄l̄1(1)α(t, 1)

− λ̄l̄1(0)α(t, 0)− µ̄l̄2(1)β(t, 1) + µ̄l̄2(0)β(t, 0).

Using the definition of l̄1 and l̄2 given in equations (54)-
(55) and the boundary conditions (50)-(51), we ob-
tain γ̇(t) = α(t − δ1, 1) + λ̄l̄1(1)α(t, 1) + O(β(·, 1)t).
Finally, α(t− δ1, 1) + λ̄l̄1(1)α(t, 1) = q̄(β(t− τ̄ − δ1, 1)
+ λ̄l̄1(1))α(t − τ̄ , 1). Using the continuity of the func-
tion l̄1 when the uncertainties go to zero, we obtain the
expected expression for γ̇.

D Proof of Theorem 22

We need to prove that all the solutions of the character-
istic equation (79) are located in the complex left-half
plane if the delays and uncertainties are small enough.
The analysis is different depending on the magnitude
of |s|. For large values of |s|, the strategy is the following.
As the principal term F0(s) may be the main limitation
for stability (see Theorem 18 for details), we start by
proving that the function |det (I0(s)− sF0(s)) | is posi-
tively bounded on the complex right-half plane as long as
the modulus of s is large enough. Then, we focus on the
influence of the integral components of the matrix E0,
which do not belong to W. We prove that they do not
have any incidence in terms of stability if the uncertain-
ties and delays are small enough. Finally, we consider
the influence of the term C0, that corresponds to the in-
tegral action. We show that the influence of this term is
negligible. For small values of |s|, we prove that due to
the choice of kI in Condition 4, if the delays and uncer-
tainties are small enough then the characteristic func-
tion P (s) cannot vanish.

D.1 Analysis of the function det(I0(s)− F0(s))

We first consider the influence of the principal term F0
on stability when |s| is large enough. More precisely we
consider the subsystem

(I0(s)− F0(s))
(
y1(s) y2(s) y3(s) y4(s)

)T
= 0. (D.1)

Due to the structure of the matrix F0 (the last column is
equal to zero), there is a cascade from the first three lines
to the last one. Consequently the last line does not play
any role in terms of stability. The characteristic equa-
tion associated to (D.1) is given by s[(1−(F0)22(s))(1−

(F0)33(s)) − (F0)23(s)(F0)32(s)] = 0. As we consider
that |s| is large enough, we can simplify this equation
dividing it by s. The resulting equation corresponds to
the characteristic equation associated to the system(

z1(s)

z2(s)

)
=

(
(F0)22(s) (F0)23(s)

(F0)32(s) (F0)33(s)

)(
z1(s)

z2(s)

)
. (D.2)

The corresponding temporal system is a neutral system.
However, since the different delays involved in this neu-
tral system are not rationally independent (we have the
delays τ̄ , τ̄ − δ1, τ̄ − δ0, and τ̄ − δ0 − δ1), we cannot di-
rectly use [21, Theorem 6.1] to conclude to the exponen-
tial stability of the temporal system associated to (D.2).
Thus, we consider the extended state.

Zp(t) =
(
z1(t) z1(t− δ0) z2(t) z2(t− δ0)

)T
.

With these notations, equation (D.2) rewrites

Ẑp(s) = (A1e−τ̄s +A2e−τs +A3e−δ0s +A4e−(τ̄+δ1)s)Ẑp(s),

where the Ai are defined by (32)-(35). Since the delays
involved in this equation are now rationally independent,
combining Condition 10 and [21, Theorem 6.1], we can
conclude that there exist γ0 > 0 such that the roots of
the characteristic equation associated to (D.2) are on
the open complex half plane {s ∈ C | <(s) < −γ0}.
Moreover, adjusting the proof of [20, Lemma 2.1], there
existsM0 > 0 such that the function |det(I0(s)−F0(s))|
is lower-bounded by a constant ω0 > 0 on the complex
set Ω0 = {s ∈ C | <(s) ≥ 0 and |s| > M0}.

D.2 Stability analysis of the equation: I0(s)Ŷ (s) =

(F0(s) + E0(s))Ŷ (s) + Ô(s)

We now prove that the integral terms of the matrix E0

and the operator Ô((Ŷ )t)(s) do not affect the stability
properties of the previous system if the delays and un-
certainties are chosen small enough. As the three first
lines of E0 do not have any component on the last col-
umn, there is still a cascade from the three first lines
to the last one. Consequently, we only need to focus
on the term

∫ τ
0
F̃ (ν)β̃(t − ν − δ0, 1)dν. Using succes-

sive iterations on this term we prove that, provided the
delays and uncertainties are small, its norm is small
enough. More precisely, using equation (73), direct com-

putations yield
∫ τ

0
F̃ (ν)β̃(t − ν − δ0, 1)dν = ρq(1 − ε) ·∫ τ

0
F̃ (ν)β̃(t − ν − τ − δ0, 1)dν +O(Ŷt). Let us consider

an integer N0 that still has to be defined and consider a
time t > (N0+2)τ . IteratingN0 times the previous com-

putations we obtain
∫ τ

0
F̃ (ν)β̃(t− ν − δ0, 1)dν = ρq(1−

ε)N0 ·
∫ τ

0
F̃ (ν)β̃(t− ν −N0τ − δ0, 1)dν +O(Ŷt). Conse-

quently, the system I0(s)Ŷ (s) = (F0(s) +E0(s))Ŷ (s) +

Ô((Ŷ )t)(s) can be rewritten

I0(s)Ŷ (s) = (F0(s) + E1(s))Ŷ (s) + Ô2((Ŷ )t)(s), (D.3)
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whereE1(s) = ((ρq(1−ε))N0
∫ τ

0
F̃ (ν)e−(ν+τ+δ0)sdν)E4

4,2+

(
∫ τ

0
sÑ(ν)F̃ (ν)e−νsdν)E4

2,3 +
∫ τ

0
F̃ (ν)e−νsdνE4

3,3 and

where we have used the notation Ô2 to highlight
the fact that this W-term is not the same as before.
Since |(ρq(1 − ε))| < 1, for N0 large enough, the
term (ρq(1 − ε))N0 can be chosen as small as desired.
Combining the proof of [5, Theorem 2] and the proof
of Theorem 17, there exist δm1 > 0 and κm1 > 0 such
that if δ0 < δm1 , δ1 < δm1 and κ < κm1 then the

function det(I0 − F0(s) − E0(s) − Ô(s)) is positively
bounded by a constant ω1 > 0 on Ω0.

D.3 Stability analysis of equation (78)

We can now state the stability properties of equa-
tion (78). We first prove that for large values of |s|, the
function P (s) cannot be equal to 0. If s ∈ Ω0, the func-
tion |det(s(I0−F0(s)−E0(s)−O(s)))| is lower-bounded
by M0ω1. In the same time, the function 1

sC0(s) con-
verges to zero for |s| large enough. Thus, using the
continuity of the determinant, there exists M1 > 0, such
that ∀s ∈ Ω1 = {s ∈ C | <(s) ≥ 0, and |s| ≥M1},

|det
(

(I0 − F0(s)− E0(s)− Ô(s)− C0(s)
)
| > 0.

We now have to prove that P (s) is not equal to zero
on C\Ω1∪C+. Let us consider s ∈ C+ such that |s| ≤M1.
Let us define L(s) and H(s) as

L(s) =


0 kIq(1 + λl1(1)))e−τs 0 C3(s)

1 (ρ− ρ̃)qe−τs 0 (F0)42(s)

0 ρ̃q(1− ε)e−τs ρq(1− ε)e−τs (F0)43(s)

0 0 0 0


T

H(s) = F0(s)− L(s) + E0(s) + C0(s) + Ô(·)(s),

the function P (s) can be expressed as P (s) =
|det(I0(s) − L(s) − H(s))|. As we have seen above,
the function F0(s), as the principal part of the sys-
tem, imposes the root location for large values of |s|,
i.e. when s ∈ Ω1. However, if s does not belong
to Ω1, then the function L(s) is predominant for the
root location. Considering the function I0(s) − L(s),
as (1 − ρq(1 − ε)) 6= 0 the associated characteristic
equation is given by(

s− sq(ρ− ρ̃)e−τs − kIq(1 + λl1(1)))e−τs
)

= 0.

This corresponds to the characteristic function associ-
ated to the system ż(t) = (ρ − ρ̃)qż(t − τ) + kIq(1 +
λl1(1))z(t − τ). Thus, using Condition 4, the func-
tion det(I0(s) − L(s)) does not have any zero in the
open Right Half Plane. Adjusting the proof of [5, The-
orem 2], we can conclude to the existence of δm > 0
and κm > 0 such that if δ0 < δm, δ1 < δm and κ < κm
then, det(I0−L(s)− sH(s)) = det(I0−F0(s)−C0(s)−
E0(s)− Ô(s)) does not have any zero in C+.
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