
HAL Id: hal-02433749
https://hal.science/hal-02433749v1

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verifying and Monitoring UML Models with Observer
Automata: A Transformation-Free Approach

Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun,
Philippe Dhaussy

To cite this version:
Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, Philippe Dhaussy. Verify-
ing and Monitoring UML Models with Observer Automata: A Transformation-Free Approach. 22nd
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2019, 2019, Munich, Germany. pp.161-171, �10.1109/MODELS.2019.000-5�. �hal-02433749�

https://hal.science/hal-02433749v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verifying and Monitoring UML Models

with Observer Automata

A Transformation-free Approach

Valentin Besnard

ERIS, ESEO-TECH

Angers, France

valentin.besnard@eseo.fr

Ciprian Teodorov

Lab-STICC UMR CNRS 6285

ENSTA Bretagne, Brest, France

ciprian.teodorov@ensta-bretagne.fr

Frédéric Jouault

ERIS, ESEO-TECH

Angers, France

frederic.jouault@eseo.fr

Matthias Brun

ERIS, ESEO-TECH

Angers, France

matthias.brun@eseo.fr

Philippe Dhaussy

Lab-STICC UMR CNRS 6285

ENSTA Bretagne, Brest, France

philippe.dhaussy@ensta-bretagne.fr

Abstract—The increasing complexity of embedded systems
renders verification of software programs more complex and may
require applying monitoring and formal techniques, like model-
checking. However, to use such techniques, system engineers
usually need formal experts to express software requirements
in a formal language. To facilitate the use of model-checking
tools by system engineers, our approach consists of using a
UML model interpreter with which the software requirements
can directly be expressed as observer automata in UML as well.
These observer automata are synchronously composed with the
system, and can be used unchanged both for model verification
and runtime monitoring. Our approach has been evaluated
on the user interface model of a cruise control system. The
observer verification results are in line with the verification
of equivalent LTL properties. The runtime overhead of the
monitoring infrastructure is 6.5%, with only 1.2% memory
overhead.

Index Terms—Observer Automata, Monitoring, Model Inter-
pretation, Embedded Systems

I. INTRODUCTION

In the context of embedded cyber-physical systems, the

design of software components becomes increasingly more

complex. Such complexity exposes software programs to

several potential software failures (e.g., design faults, bugs,

security flaws) that are more intricate to detect, understand,

and fix. With Model-Driven Engineering (MDE), software

systems can be designed using models and verified with formal

verification techniques during early design phases. However,

even if these techniques seem to give promising results, they

may not be sufficient to detect all bugs and design faults.

Offline verification is not always applicable due to state-

space explosion problem. Moreover, it requires abstractions

of the system environment, which might miss some real

execution cases and do not consider failures due to deficient

hardware components. For these reasons, an increasing number

of embedded systems rely on runtime monitoring, as the last

resort, for detecting runtime failures and triggering safe system

recovery procedures.

To perform these activities, system requirements must be

expressed in a formal language (e.g., LTL). Based on the

formal safety properties, one technique [HR02], [BLS11] aims

at synthesizing monitors to take advantage of the comple-

mentarity between model verification and runtime monitoring.

However, two model transformations are usually required. The

first one is used to transform LTL safety properties into moni-

tors at model-level, which can be used for model verification.

A second transformation is also required to specialize these

monitors on the embedded target for runtime monitoring. Not

only the executable code corresponding to the monitors has

to be generated but instrumentation code is also needed to

expose system objects and link monitors with them. Moreover,

an equivalence relation has to be built and proved to ensure

that the generated code conforms to the LTL properties (or the

equivalent monitors) used during model verification.

Through these observations, we notice that at least two

issues remain. First, monitors designed or synthesized for

model verification cannot be reused directly to monitor the

system execution but require a model tranformation as well as

code instrumentation to achieve it. Second, the use of formal

verification techniques remains a complex task for system

engineers that do not have a formal background. In particular,

expressing properties in a formal language may be difficult for

them without the help of formal methods experts.

To address these issues, our approach aims at using syn-

chronous observer automata for verifying and monitoring

embedded system software. This work extends our Embedded

Model Interpreter (EMI) presented in [BBD+17], [BBJ+18a],

[BBJ+18b]. This tool can be used to execute, simulate,

and verify embedded systems, specified as UML [OMG17]

models, with a unique implementation of the language se-

mantics. Prior work on this model interpreter shows how

1

to perform simulation, trace generation, and LTL model-

checking activities, but misses the importance of runtime

monitoring. This paper addresses this shortcoming by focusing

on verifying and monitoring safety properties encoded into

the design language (here UML) as synchronous observer

automata. The main contributions of this paper are (1) the use

of UML observer automata, rather than LTL, for expressing

and verifying system requirements on UML models and (2) the

deployment of the same observer automata on real embedded

targets for runtime monitoring. To reach this goal, observer

automata are synchronously composed with the system during

model execution. For model verification, the OBP2 model-

checker [TLRDD16], [TDLR17] (https://plug-obp.github.io/)

is connected to the interpreter to check that properties encoded

by observer automata are satisfied. For runtime monitoring,

these observer automata monitor the current execution trace

of the actual system.

To validate our approach, a UML model of a cruise control

user interface has been designed and analyzed. The safety

system requirements have been modeled as observer automata

with UML state machines and verified with the OBP2 model-

checker. Results obtained are identical to results of model-

checking equivalent LTL properties. The same observer au-

tomata have been deployed on a STM32 discovery board to

monitor execution of the system. In addition to the cost of

monitors, resource overhead induced by monitoring is only of

6.5% for execution time and 1.2% for memory footprint. This

seems acceptable for embedded systems execution depending

on the context of each system.

The remainder of this paper is structured as follows. Sec-

tion II describes the cruise control interface used as example.

An overview of the approach is given in Section III. Then,

Section IV explains how safety properties can be expressed

as observer automata while in Section V, we detail the

process used for model verification and runtime monitoring. In

Section VI, we presents the results of applying the approach

to our example. Section VII reviews the state of the art and

we finally conclude this paper in Section VIII.

II. MOTIVATING EXAMPLE

To illustrate our approach on an actual embedded system,

we consider the user interface of a Cruise Control System

(CCS) as example. The CCS automatically controls the speed

of a vehicle by adjusting the throttle position to maintain a

steady speed as set by the driver. For this example, we focus

our design and verification efforts on the user interface, that

we call Cruise Control Interface (CCI), because this subsystem

contains most of the control logic of the CCS. This motivating

example has been designed for the purpose of this paper and

is partially based on related works [DLRT14], [LDD14] as

well as past experiences of some of the authors on this kind

of systems.

Figure 1 presents a component diagram of a CCS showing

its interactions with the driver and the physical vehicle. This

component diagram has been designed with the assumption

Figure 1: Component diagram of a cruise control system.

that the CCS operates independently of any other systems (e.g.,

Electronic Stability Program (ESP)).

As illustrated on this diagram, the CCS interacts with

the physical process to control, named here PhysicalVehicle.

This component takes as inputs both the command from the

CruiseControlSystem and the command from the ThrottlePedal

to control automatically or manually the vehicle engine. The

last input comes from the PhysicalEnvironment that may apply

some forces on the vehicle (e.g., road profile, air friction)

and disrupt the vehicle driving. The PhysicalVehicle is also

equipped with a sensor that measures the current speed. The

data captured is given as input to the CruiseControlSystem.

The CruiseControlSystem is composed of two components:

the CruiseControlInterface and the ControlLoop. The former

is responsible for managing all inputs received by the CCS:

all-or-nothing data from the three pedals of the vehicle to know

if each pedal is pressed or released, and data from buttons on

which the user can press to control the CCS. The CruiseCon-

trolInterface aims at driving the ControlLoop of the CCS in

charge of adjusting the speed of the vehicle to the cruise speed

calculated by the CCI. The ControlLoop is considered here as

a black box that executes a control algorithm for computing

the command to apply on the PhysicalVehicle engine.

In this paper, we focus on the verification of the CCI

subsystem. Hence, all components external to the CCI are

considered as the environment of this subsystem. Figure 1 has

helped us to have a better understanding of this environment

and make a relevant abstraction of it for the verification step.

To apply our approach to this motivating example, we have

designed a UML model of a CCI. The composite structure

diagram of this model is shown in Figure 2. The Main

class is the root composite class of the model. An instance

specification named instMain is associated to this class and

used by the model interpreter to instantiate it and all its

containing parts. It contains the cci part, which is the system

under study, and the env part that models its environment. Both

parts communicate by exchanging signals through ports.

2

Figure 2: Composite structure diagram of the CCI model.

Environment abstraction. The env part contains a buttons

object that models the different buttons (i.e., start, stop, inc,

dec, set, pause, resume) that can be manipulated, as well as

the three pedals (i.e., clutchPedal, brakePedal, throttlePedal)

that can be pressed or released by the driver. According to

Figure 1, both the PhysicalVehicle and the ControlLoop are

also parts of the environment. In our UML model, they have

been abstracted into the engine object. In a real vehicle, the

CCS will try to adjust the speed of the vehicle to the cruise

speed given by the CCI but due to physical constraints (e.g.,

road profile, air friction), it is not always possible for the CCS

to maintain the vehicle at the user-set speed. To take that into

account, the engine does not make any correlation between the

cruise speed given as input and the current speed it returns.

As a result, the speed can go non-deterministically from 0 to

100 km/h in one step. This abstraction enables to consider a

superset of all possible cases for the verification activity.

System under test. The cci part describes the system

that we want to verify. This system aims at sending new

setpoints (i.e., the current value of the cruise speed) to the

engine according to user actions and the current speed of the

vehicle. For this purpose, the controller receives events from

buttons and from the pedals manager (pm), which ensures a

first processing of pedals events. Based on these events, the

controller determines the status of the CCS and delegates

generation of output events to both actuation and cruise

speed manager (csm) objects. The actuation sends On and

Off signals to respectively activate the control loop when

the CCS is engaged (i.e., the CCS is turned on and acts on

the engine), and deactivate the control loop when the CCS

is turned off or disengaged (i.e., the CCS is turned on but

does not act on the engine). The cruise speed manager (csm)

computes the value of the cruise speed according to buttons

events filtered by the controller, and sends new setpoints each

time the actuation requests it. The behavior of all these objects

is defined by state machines that are presented in Figure 3 for

further details. On these state machines, some additional self-

transitions (i.e., transitions that start and end in the same state)

may be needed to explicitly ignore some events according to

the event dispatching strategy chosen by the model interpreter.

Using this CCI model, the goal of this paper is to demon-

strate that we can verify formal properties using observer

automata. For this purpose, we have selected three system

requirements to check the validity of our UML model:

(a) State machine of the PedalsManager class.

(b) State machine of the Controller class.

3

(c) State machine of the Actuation class.

(d) State machine of the CruiseSpeedManager class.

Figure 3: State machines of the CCI model.

1) After the detection of an event that turns the control loop

off and until a contrary event is sent, the CCI should not

try to send new setpoints.

2) The cruise speed should not be below 40 km/h or above

180 km/h.

3) When the system is engaged, the cruise speed should be

defined.

III. CONTRIBUTION OVERVIEW

To better understand the scope of this work, this section

overviews our approach describing the integration of the

observer-based verification and monitoring infrastructure with

an existing UML model interpreter [BBJ+18b]. One main

contribution of this work is to show that observer automata

Figure 4: Approach Overview.

can be used for model verification and runtime monitoring

without the cost of model transformations.

According to [OGO06], observer automata can be defined

as special processes that monitor the changes in the state

of a model (e.g., attributes values, contents of event pools,

current state of state machines) and the events occurring in it

(e.g., signal events). These automata can be used to express

safety properties by specifying "fail" states to denote states that

must be reached when the encoded property is violated. The

expressivity of such automata is limited to safety properties but

this limitation simplifies the use of model-checking techniques

by reducing the verification problem to a reachability problem.

An overview of the observer automata verification architec-

ture, applied for UML in our context, is illustrated in Figure 4.

First, a model of the system (UML System Model) is designed

in UML from its Specifications. To verify and monitor the

model behavior, the System Requirements are encoded as UML

Observer Automata, which are observer automata designed in

UML with state machines. They can access the state of the

system model using the action language of the UML model

interpreter. In our case, this action language is used to specify

guards and effects of state machine transitions, and provides

C macros to access UML instances of the system model and

their attributes. Then, a Synchronous Composition algorithm

is applied to compose synchronously observer automata with

the UML model of the system. This means that each time

a transition is fired in the system model, a transition will

also be fired on each observer automata. As a result, the

observer automata are closely following model execution. This

setup can be controlled by a model-checker connected to the

communication interface of the interpreter to perfom model

verification. For the verification procedure, the model-checker

uses a reachability algorithm that checks if any of the observer

automata has reached a "fail" state. For runtime monitoring,

though, a Sequencer which runs the main execution loop is

connected to the Synchronous Composition component.

This approach offers multiple benefits to perform model

analysis. (1) No model transformation is required to transform

4

observer automata, used during model-checking, into runtime

monitors. What is checked during model verification is exactly

what is monitored at runtime. (2) This technique stays compat-

ible with classical approaches that synthesize monitors from

formal properties, but requires the generation of UML observer

automata. (3) Our approach facilitates the use of verification

tools by system engineers. Even if they are not formal experts,

system engineers can easily specify UML observer automata,

since they only rely on concepts of the design language. (4)

Verification results returned by the model-checker are directly

expressed in terms of UML concepts, which facilitate their

understanding by engineers.

IV. EXPRESSING PROPERTIES WITH UML OBSERVER

AUTOMATA

This section presents how the properties can be expressed

in UML as observer automata and briefly discusses their

expressivity.

A. UML Observer Automata

In this work, observer automata are expressed directly in

UML using the same UML subset as the one used for the

system model as well as an extension of the C action language

to facilitate model navigation and verification. These observer

automata defined in UML will be called UML observer

automata (or simply observers) in the rest of this paper. In the

design model, each UML observer automaton is an instance

of an active UML class whose behavior is described with a

UML state machine. All these UML observer automata are

instantiated as parts of a composite class called Obs and its

instance specification instObs. This class is similar to the Main

class of the system and is used as a root composite structure

for observer automata instantiation.

The state machines of these active classes are classical UML

state machines but additional constraints must be satisfied

to express properties in a formal way. First, UML observer

automata are not supposed to interact with objects of the

system model (e.g., send or receive events) but only observe

changes in the state of this model. Second, UML observer

automata must be deterministic and complete (i.e., exactly one

transition must be fireable at each instant). The determinism

constraint ensures that observer automata do not introduce

non-determinism in the system but simply follow model exe-

cution. To ensure determinism, we require that the guards of

outgoing transitions of an observer state are exclusive. The

completeness constraint ensures that observer automata do

not block system execution when composed synchronously

with the system. This constraint is automatically ensured by

the synchronous composition operator by completing observer

automata with implicit loop transitions (stuttering steps).

The goal of these observer automata is to detect failures in

the system behavior. For this purpose, UML state machines

used for observer automata need to specify "fail" states that

must be reached if a failure is detected. In our approach,

the "fail" states are specified by the user as state invariants.

Different other techniques can be adopted, like the use of

a UML profile with a stereotype for "fail" states, but these

improvements are beyond the scope of this study.

Another key point in the definition of UML observer

automata is the definition of transition guards with the C

action language. These guards are used to specify how the

corresponding state machine goes from one state to another

and potentially reaches "fail" states when the system behavior

is in failure. For this purpose, UML observer automata require

an extension of the action language to access UML objects

of the system and their properties (e.g., current state of state

machine, values of attributes). This action language extension

has similar requirements to the one used in our previous work

[BBJ+18b] for LTL verification. In this study we introduce

some additional operators (C macros), which provides more re-

laxed rules for model navigation as well as facilities for model

verification. The most important action language operators are:

(i) ROOT_instMain and ROOT_instObs macros gives

access to instances of root composite structures. All system

objects and observer automata can be accessed from these two

objects. (ii) Several C macros are available to introspect the

content of event pools (i.e., the set of events received by an

active object). For instance, the EP_GET_FIRST macro gets

the first event of the event pool. (iii) The IS_IN_STATE

macro checks if the current state of an active object is a

given state of its state machine. (iv) Unlike the GET macro

that returns a property of an object, GET_ACTIVE_PEER

gives access to actual active objects (e.g., objects of the

environment) connected to the other end of communication

links. (v) The OBSERVER_FAIL macro is used to check if

an observer automaton reaches one of its "fail" states in a

given configuration (i.e., the execution state at a given time

instant).

As an example, the three safety properties of the CCI

motivating example have been expressed as UML observer

automata. State machines of these observer automata are

described in Figure 5. Each of them defines a "fail" state

named Fail that will be reached in case of failure. For sake

of simplicity, transition guards of these state machines have

been defined using predicates with labels. All these predicates

are expressed with the C action language of the UML model

interpreter, and its extension for formal verification. Some of

these predicates are:

• evOn: check if the first event in event pool of the object
linked to actuation through cciOnOffPort is the On signal

evOn = "EP_GET_FIRST(GET_ACTIVE_PEER(

GET(GET(ROOT_instMain, cci), actuation),

cciOnOffPort)) == SIGNAL_On"

• ccsEngaged: check if the current state of the actuation
state machine is Engaged

ccsEngaged = "IS_IN_STATE(

GET(GET(ROOT_instMain, cci), actuation),

STATE_Actuation_Engaged)"

• unknownCS: check if the cruiseSpeed attribute of csm is
equal to -1

unknownCS = "GET(GET(GET(ROOT_instMain,

cci), csm), cruiseSpeed) == -1"

5

(a) Observer1

(b) Observer2 (c) Observer3

Figure 5: State machines of observer automata for the CCI.

B. Expressivity of Observer Automata

Runtime monitoring enables the detection of failures during

the execution of the deployed system. As such, the verification

capabilities are restricted to the analysis of the current run of

the system, as opposed to model-checking that analyses all

runs. This partial observation of the running system limits

the expressivity of the verified properties to monitorable

properties [BLS11].

In general, the class of monitorable properties can be

captured by (deterministic) Finite State Machines (FSM). The

complete and deterministic UML observer automata, used

in this study, are a syntactic extension of simple FSM en-

abling, mainly, the use of variables to reduce the number of

explicitly named states. However, their expressivity remains

limited to the class of monitorable properties. Nevertheless,

this constraint can also be seen as a benefit during verification,

because the use of observer automata reduces the model-

checking problem to a reachability-checking problem. Indeed,

the model-checker has only to check if "fail" states of observer

automata are reached in at least one configuration during the

analysis. If none of the "fail" states is reached, the property

expressed by the observer automaton is verified.

For offline verification, FSMs, and thus observer automata,

are not sufficiently expressive to encode all linear time prop-

erties and in particular liveness properties, which express

that something good will eventually happens [BLS11]. For

instance, the CCI requirement "When a stop event has been

received, the CCI will eventually be stopped" is a liveness

property that cannot be captured with an observer automaton.

In contrast to safety properties that are violated in a limited

time (the violation witness is a prefix of the execution trace),

liveness properties are violated in infinite time (the violation

witness is an infinite trace that does not allow the required

eventuality to happen). Dedicated automata formalisms (e.g.,

Büchi automata) as well as more complex model-checking

algorithms (cycle detection) are required to detect violations

of these properties [DLP04].

V. VERIFICATION AND MONITORING WITH

UML OBSERVER AUTOMATA

Based on UML observer automata, this section describes

the verification process used to verify safety properties with a

model-checker and the UML model interpreter. This approach

can be applied during the verification step but also for runtime

monitoring by deploying the same UML observer automata on

the actual target.

A. Synchronous Composition

The essential concept of the verification and monitoring

process is the synchronous composition of UML observer

automata with the system model. The software architecture

used to achieve this synchronous composition is illustrated

in Figure 6. On this component diagram, the design model

is divided in two parts: one related to the system (UML

System Model) interpreted by the System Interpreter and the

other related to observer automata (UML Observers Model)

interpreted by the Observers Interpreter. Thus, the UML

interpreter is instantiated twice such that the same UML

semantics is used for both parts. From the system model, a

Kripke structure is built using the Kripke Adaptor component.

The Kripke structure gives an abstraction of the global system

automaton for a given set of atomic propositions (or atoms)

provided by the Property Proxy component. In our approach,

each transition guard of an observer automaton is considered

as an atomic proposition for formal verification. This Kripke

structure can then be used to build a finite automaton using

Figure 6: Component used for synchronous composition of

observer automata with the system model.

6

the Finite Automaton Adaptor. It is important to note that both

adaptors (Kripke Adaptor and Finite Automaton Adaptor) do

not generate the whole state-space statically, but instead they

rely on the semantics provided by the System Interpreter to

create the required views dynamically.

Based on atom valuations, the Synchronous Composition

component is able to compose synchronously observer au-

tomata with the finite automaton of the system. This operation

is performed by dynamically building synchronous transitions.

A synchronous transition is composed of one and only one

transition of the system as well as one transition per observer

automaton. This means that for each step of the system (i.e.,

for each transition fired), each observer automaton will also

make a step. An observer automaton fires an explicit transition

if one outgoing transitions of its current state is fireable.

Otherwise, the observer automaton will fire an implicit self-

transition to ensure the completeness requirement. The com-

putation of a synchronous transition is made by firing in

advance the system transition, evaluating atomic propositions

in the target configuration, and determining for each observer

automaton the transition that can be used for synchronization.

In Figure 6, a Scheduler is operating on the Finite Automa-

ton Adaptor because the finite automaton that results from

the composition of active objects of the system is usually not

deterministic. The scheduler is responsible for selecting which

transition of the system will be fired on the next step. This

component can be configured with a Scheduling Policy that

specifies how the choice is made. Finally, a Sequencer is used

to control all this Model Execution component. It will request

to compute synchronous fireable transitions or to fire one of

them at given time points. The sequencer may be the user

through a user simulation interface or a software algorithm.

B. Verification of Safety Properties

With the Model Execution component, it becomes possible

to connect a model-checker to the UML model interpreter

for verifying safety properties encoded by UML observer

automata. An important prerequisite for applying model-

checking techniques on a model is to close the model with

a proper abstraction of the system environment. This is the

reason why for our example, we pay attention to understand

as much as possible the context in which the CCI operates for

modeling a relevant abstraction of it.

The software architecture used for model verification is

exposed in Figure 7. The Model Execution component is con-

nected to an abstraction of the scheduling policy (Scheduling

Policy Abstraction) to consider a superset of all possible cases.

A suitable abstraction, very general abstraction, is to return

all fireable transitions of the system to explore all the model

state-space. In this case, the scheduler does not make any

choice and the synchronous composition is applied to a set

of system transitions rather than only one. The verification is

thus independent of the scheduling algorithm used. However,

if the scheduling policy is known, it remains possible to use

it for model verification.

The model-checker is connected to the Model Execution

component through the Language Server that provides facil-

ities for the verification task including atomic propositions

compilation. Since the verification problem is reduced to

a reachability problem (cf. Section IV), the Reachability

Algorithm will be the main sequencer of the verification

process. It explores all the model state-space using the States

Stream component that manages states already explored and

stored in the State-space Storage. To perform this operation,

the model-checker also needs to interact with the Execution

Environment. For this purpose, the Proxy Runtime exposes

an interface that can be used for communicating with the

Execution Environment, through the view exposed by the

Synchronous Composition component. This interface enables

the model-checker to get and set the current configuration of

the execution environment (as described in [BBJ+18b]). Each

time a new configuration is found, the Observers Asserting

component checks if observer automata have reached one of

their "fail" states before returning this configuration to the

States Stream. As soon as an observer automaton reaches one

of its "fail" states, the model-checker stops the verification and

returns the counterexample found as a trace. Otherwise, it will

explore the entire model state-space to ensure that all safety

properties encoded by UML observer automata are verified.

From a user point of view, the software architecture of the

model-checker is configured as in Figure 7 for verifying simple

LTL properties of the form:

"[] !|OBSERVER_FAIL(obs)|"

Figure 7: Model-checking of safety properties.

7

where obs is a UML observer automaton. This kind of prop-

erty is called a state-invariant. They can be easily expressed

in LTL and automatic generation of these invariants can be

performed.

Despite the fact that synchronous composition is not stan-

dard UML, this approach offers multiple benefits for system

engineers. Indeed, multiple observer automata can be com-

posed synchronously with the system, which gives the possi-

bility to check any number of safety properties simultaneously.

Our approach also offers the advantage to express verification

results directly in terms of design concepts. This also avoids

the use of model transformations (from code back to model)

to obtain the same result, approach sometimes used in other

works [OGO06], [OGO04], [Cic14].

C. Runtime Monitoring

Once the model verification has been performed, the UML

model can be deployed on the actual embedded target. To

continue verification of safety properties at runtime, it is pos-

sible to embed UML observer automata. Contrary to model-

checking that verifies the software program offline in an

abstract environment, monitoring enables the verification of a

running system online in its real (or simulated) environment.

The software architecture used for monitoring is shown in

Figure 8. The same Model Execution component used during

model verification is reused for monitoring. However this time,

the Actual Scheduling Policy of the system is used rather than

an abstraction of it. At each step, the scheduler will select

one and only one transition to fire among the set of fireable

transitions of the system. For monitoring, the choice of the

next transition to fire is made before applying the synchronous

composition to eliminate the risk of scheduler-interference

on the system monitoring. In this case, the synchronous

composition has only to compute one synchronous transition,

which is more efficient than doing it for all fireable transitions.

Since in monitoring only one execution path is covered, an

optimization has been performed on the synchronous composi-

tion to keep efficient monitoring performance. Indeed, contrary

to model verification, there is no need to change the current

configuration of the model interpreter (i.e., its current memory

state). Fireable transitions are always computed in the current

configuration of the model interpreter and the next transition

to fire is always fired from this configuration. The target

configuration of the fired transition is considered as the current

configuration for the next execution step. To drive the Model

Execution component, the actual Sequencer of the system is

linked to it. The Sequencer represents the main execution loop.

For each step, three main operations are performed. First, it

computes the next synchronous transition to fire. Then, it fires

this transition. Finally, it delegates the verification of safety

properties to the Observers Asserting component. This last

component checks if UML observer automata reach one of

their "fail" states and updates the Monitoring Status.

One main advantage of our approach is that the same

observer automata used during the verification phase can be

deployed on the target and reused for runtime monitoring

Figure 8: Runtime monitoring of safety properties.

without effort (i.e., without transformation, code generation, or

model binding). Despite the possibility of offline verification,

it still remains useful to monitor system execution for several

reasons. First, if the abstraction of the environment used during

model-checking is not complete or badly defined, it is possible

that not all real cases have been covered and that a bug has

been missed. Second, due to the state-space explosion prob-

lem, it is not always possible to model-check safety properties.

With our approach, such properties can always be monitored

at runtime without the need of costly model transformations.

Another benefit is that monitoring can detect violation of

safety properties caused by deficient hardware components,

which is not possible with model-checking. When a failure is

detected, observer automata can simply notify the problem to

the user (e.g., by printing an error message) or it can activate

the appropriate fail-safe controllers (e.g., for error recovery,

runtime-safety enforcement). Finally, the traces of observer

automata can be used in post mortem analysis to understand

why the system has failed.

In terms of limitations, the use of observer automata in

monitoring, like most of monitoring activities, has a resource

overhead both in memory footprint and execution perfor-

mance. A trade-off between verification quality and execu-

tion performance must be found for each context. Another

drawback is that monitoring can only detect the presence of

errors. Monitoring, unlike exhaustive verification techniques,

observes execution steps taken by the system under the actual

environment. Therefore, its efficiency depends on the failure

coverage provided by monitors embedded with the system.

VI. EXPERIMENTS AND RESULTS

Our approach has been applied to a UML model of a CCI,

the user interface of a cruise control system, introduced in

Section II. These experiments aim at evaluating our approach

for checking the validity of the three system requirements

expressed for the CCI. The verification of safety properties as

UML observer automata will be made using model verification

with the OBP2 model-checker and results will be compared

with verification results of identical properties expressed in

LTL. These observer automata will also be deployed on an

actual embedded target to perform runtime monitoring and

measure the induced overhead.

8

Model-checking. As shown in Figure 5, system require-

ments have been expressed as UML observer automata. Fol-

lowing the setup in Figure 7, these observer automata have

been loaded in the Execution Environment with OBP2 as

model-checking component. To check that they do not reach

their "fail" states, the following LTL invariants where used:

1) "[] !|OBSERVER_FAIL(obs1)|"

2) "[] !|OBSERVER_FAIL(obs2)|"

3) "[] !|OBSERVER_FAIL(obs3)|"

The verification performed with a reachability algorithm shows

that both properties 1 and 2 are verified while property

3 is violated. To check the validity of our approach, we

have compared these results with model-checking results of

identical safety properties expressed in LTL. For this purpose,

all system requirements have been specified in LTL such as:

1) "[] (|evOff| and !|evOn| ->

(!|evUpdateSetPoint| W |evOn|))"

2) "[] (|intervalCS| or |unknownCS|)"

3) "[] (|ccsEngaged| -> !|unknownCS|)"

These properties link the atomic propositions, which are

directly evaluated on the UML model interpreter, with different

LTL operators: not (!), or (or), and (and), globally ([]),

weak until (W), and implies (->). Atomic propositions involved

in these LTL properties are defined such as |atom| where

atom is one of the labelled predicates defined for transition

guards of UML observer automata.

As a result, expressions of these properties in LTL are more

complex to achieve because it requires the knowledge of LTL

operators and especially path operators (e.g., globally, weak

until). In particular, the first safety property which is not a

state-invariant is not trivial to express in the LTL formalism

while the corresponding observer automaton (Figure 5a) is

simple to design. Model-checking of these three LTL proper-

ties with OBP2 reports that properties 1 and 2 are verified

while property 3 is violated. These LTL-based results are

identical to those obtained with observer automata.

To understand why property 3 is violated, the counterexam-

ple returned by OBP2 has been analyzed. This counterexample

shows that when the controller of the CCI goes from the

Engaged state to the Off state, one disengage event is sent

to the actuation and one resetCS event is sent to the cruise

speed manager (csm). However, the scheduler can choose to

process the resetCS event first and this will set the cruise speed

at an undefined value (i.e., -1) while the actuation is still in the

Engaged state. To fix this design error, we have added a state

in the Controller state machine to send first the disengage

event, expect the acknowledge of the actuation in this new

state, and finally send the resetCS event. A new iteration

of verification experiments show that all properties are now

verified with observer automata and classical LTL model-

checking. This fixed CCI model has a state-space containing

46,444,386 configurations linked by 82,734,350 transitions.

Monitoring. Once verified, the UML model of the CCI

has been deployed with the embedded model interpreter on a

STM32 discovery board. For experiment purpose and because

we have not got a real CCI, the UML model has been deployed

on the embedded target with a simulated environment (cf.

Figure 2) and not with the physical sensors and actuators.

For simplicity, the simulated environment matches with the

environment abstraction used for verification. In this case,

objects of the environment are also managed by the scheduling

policy and the sequencer of the Execution Environment. These

objects send events to the CCI according to their abstract

behavior (not detailed in this paper for lack of space). The

UML observer automata have been deployed with the UML

model of the CCI to perform runtime monitoring following the

setup in Figure 8. No failure has been detected on the corrected

version of the UML model. These results are consistent

with results obtained through model-checking. However, the

deployment of the initial version of the model has shown that

the third observer automaton would have succeeded to detect

the failure if it had occurred.

In terms of performance, runtime monitoring induces re-

source overheads comparing to the execution of the same UML

model without observer automata. In addition to the costs of

monitors, monitoring increases the execution time of 6.5%

due to the use of the synchronous composition. The cost of

monitors depends on the size of the system model and on the

number of observer guard evaluations required at each step.

An estimation of the overhead induced by N monitors in terms

of execution time is given by the following equation:

overhead ≈ 6.5 +
1

nb_ao

N∑

i=1

nb_statesi

nb_outgoingsi

where nb_ao is the number of active objects in the system,

nb_statesi is the number of states (excluding pseudostates

and "fail" states) of monitor i, and nb_outgoingsi is the

sum of outgoing transitions of considered states. For instance,

the use of one observer automaton with a system model

containing 10 active objects will add an overhead of 10%

while this overhead would only be 1% if 100 active objects

were used. For each observer, this cost is then weighted by
nb_states

nb_outgoings
i.e., the average number of guards evaluated at

each step for this observer automaton. For the CCI model,

this equation gives an estimated overhead of 50.2% while in

practice we obtained 50.8%. In terms of memory footprint, the

measured overhead is 8.2% including approximately 1.2% for

the synchronous composition and 7% for the three monitors.

These measures have been made by comparing the time taken

by the Execution Environment to fire 1,000,000 transitions

and the size of binary executables with and without observer

automata. From our perspective, these resource overheads are

acceptable for execution on embedded systems. However, in

general, the overhead metrics should be corroborated with the

specific constraints and criticality level of each system. From

the overhead equation, it follows that this approach is scalable

for runtime monitoring, because the relative cost of integrating

one UML observer automaton decreases as the size of the

system model increases.

9

VII. RELATED WORK

Multiple other works use observer automata to specify

and verify system requirements. One typical approach applies

model transformation techniques for converting UML observer

automata to the automaton formalism used by the verification

tool [MGT09]. A similar work [OGO06], [OGO04] uses

a UML profile to express timing constraints of embedded

real-time systems as UML observer automata. A mapping

of these observer automata to extended timed automata is

made with the IF language. Another technique [KMR02],

[KW07] used by Hugo/RT aims at transforming interaction

diagrams into observer automata for checking that UML state

machines interact accordingly to the scenarios described as

UML collaboration diagrams. In our approach, neither model

transformation nor mapping towards an intermediate language

is required because, with the UML model interpreter, verifi-

cation activities are directly applied to the design model.

Regarding monitoring, the work in [HR04] define two

techniques to analyze Java programs by checking if a trace of

events satifisfied LTL properties. The first one is based on a

rewriting-based framework that allows to define new logics for

monitoring execution traces. The second one [HR02] aims at

synthesizing monitors for safety properties by generating effi-

cient code from LTL formulas. This last technique is also used

in [BLS11] to focus on runtime verification of LTL properties

by analyzing finite prefixes of infinite traces. Furthermore,

monitoring can be achieved by tracing model execution. In

[IPW+17], a debugger uses an embedded monitor to produce

back annotated traces and build UML diagrams in real-time for

visualizing the model behavior. In the same way, the project in

[Cic14] aims at monitoring extra-functional properties using

annotations in the UML design model and back-propagation

of analysis results to this model. In comparison to our work,

all these approaches rely on model transformations, and some-

times on code instrumentation, to monitor system execution.

Our approach avoids such techniques to ensure that observer

automata used for monitoring are exactly the same as the ones

used during model verification.

The synchronous language Lustre [HLR94] can be used

to describe reactive systems and express safety properties

using synchronous observer automata. In [BVWW09], Airbus

uses such synchronous observer automata to specify safety

properties and perform their verification with the SCADE

model-checker. The main advantage of this technique is the

use of a synchronous language that renders the synchronous

composition straightforward. The technique presented in our

paper can be seen as a transposition of these research efforts,

from the synchronous-language community, to the world of

model-based executable specification with UML. In brief, our

approach enables the use of observer-based verification and

monitoring in the context of UML with the same simplicity

as synchronous languages. Moreover, our approach does not

require code generation for deployment as it is usually the

case in the context of synchronous languages.

Finally, we noticed that none of the related works mention

the possibility to perform monitoring by directly deploy-

ing UML observer automata on actual embedded systems

while this opportunity is offered by our tool. We are also

not aware of other approaches enabling both observer-based

model-checking and runtime monitoring of executable UML

specifications without the use of costly model transformations.

VIII. CONCLUSION

Runtime monitoring provides interesting facilities to check

system requirements on models of embedded systems. This

activity offers a good complementarity to model verification

for detecting additional failures, triggering safety techniques

(e.g., system recovery), and assisting engineers in post-mortem

analysis. The approach presented in this paper is based on

the use of observer automata to unify both model verification

and runtime monitoring of UML models. Execution of these

models relies on a UML model interpreter with a single

implementation of the operational semantics.

With this technique, safety properties can be expressed as

UML observer automata to monitor model execution. These

observer automata can directly be embedded in the UML

model interpreter and are synchronously composed with the

system model all along model execution. They can be used

for model verification by checking exhaustively, with a model-

checker, that properties encoded by these observer automata

are not violated. The same UML observer automata can also be

used for runtime monitoring without the need of costly model

transformations or code instrumentation to deploy these mon-

itors on embedded targets. As a result, what is monitored at

runtime is exactly what is checked during model verification.

This approach uses the same language for both design model

and property specification, thus facilitating the use of formal

verification techniques by the system engineers. Furthermore,

this approach facilitates the analysis of verification results

because they are directly captured within the UML formalism.

The approach was evaluated on a UML model of a cruise

control interface. The results show that safety properties can be

easily expressed using our UML observer automata while the

verification results are equivalent with LTL model-checking.

The deployment of the UML observer automata on a STM32

embedded board induces an overhead, both in memory foot-

print and execution performance. However, this overhead does

not impede scalability because the relative cost of one observer

automaton decreases as the size of the system increases.

Currently, the guards in the UML observer automata can

only be synchronized with state-based expressions, however

their expressivity can be extended to state-event expressions

as proposed in [HR04], [GM05]. Future work also includes

the integration of other model-based specification formalism

such as Property Sequence Chart (PSC) [AIP07] based on an

extension of UML 2.0 interaction diagrams.

ACKNOWLEDGMENT

This work is partially funded by Davidson Consulting. The

authors especially thank David Olivier for his advice and

industrial feedback.

10

REFERENCES

[AIP07] M. Autili, P. Inverardi, and P. Pelliccione. Graphical Scenarios
for Specifying Temporal Properties: an Automated Approach.
Automated Software Engineering, 14(3):293–340, September
2007. doi:10.1007/s10515-007-0012-6.

[BBD+17] Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric
Jouault, David Olivier, and Ciprian Teodorov. Towards one
Model Interpreter for Both Design and Deployment. In 3rd

International Workshop on Executable Modeling (EXE), Austin,
United States, September 2017.

[BBJ+18a] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian
Teodorov, and Philippe Dhaussy. Embedded UML Model
Execution to Bridge the Gap Between Design and Runtime. In
MDE@DeRun 2018 : First International Workshop on Model-

Driven Engineering for Design-Runtime Interaction in Complex

Systems, Toulouse, France, June 2018.
[BBJ+18b] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian

Teodorov, and Philippe Dhaussy. Unified LTL Verification
and Embedded Execution of UML Models. In ACM/IEEE

21th International Conference on Model Driven Engineering

Languages and Systems (MODELS ’18), Copenhagen, Denmark,
October 2018. doi:10.1145/3239372.3239395.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time Verification for LTL and TLTL. ACM Transactions

on Software Engineering and Methodology, 20(4):14:1–14:64,
September 2011. doi:10.1145/2000799.2000800.

[BVWW09] Thomas Bochot, Pierre Virelizier, Helene Waeselynck, and Vir-
ginie Wiels. Model Checking Flight Control Systems: The Air-
bus Experience. In 31st International Conference on Software

Engineering - Companion Volume, pages 18–27, May 2009.
doi:10.1109/ICSE-COMPANION.2009.5070960.

[Cic14] Federico Ciccozzi. From Models to Code and Back : A Round-

trip Approach for Model-driven Engineering of Embedded Sys-

tems. PhD thesis, Mälardalen University, Embedded Systems,
2014.

[DLP04] Alexandre Duret-Lutz and Denis Poitrenaud. SPOT: An Exten-
sible Model Checking Library Using Transition-Based Gener-
alized Büchi Automata. In Proceedings of the IEEE Computer

Society’s 12th Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunications

Systems, MASCOTS ’04, pages 76–83, Washington, DC, USA,
2004. IEEE Computer Society.

[DLRT14] Philippe Dhaussy, Luka Le Roux, and Ciprian Teodorov. Véri-
fication formelle de propriétés : Application de l’outil OBP au
cas d’étude CCS. Génie logiciel, 109, June 2014.

[GM05] Stefania Gnesi and Franco Mazzanti. A Model Checking
Verification Environment for UML Statecharts. In Proceedings

of XLIII Congresso, 2005.
[HLR94] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond.

Synchronous Observers and the Verification of Reactive Sys-
tems. In Maurice Nivat, Charles Rattray, Teodor Rus, and
Giuseppe Scollo, editors, Algebraic Methodology and Software

Technology (AMAST’93), pages 83–96, London, 1994. Springer
London. doi:10.1007/978-1-4471-3227-1_8.

[HR02] Klaus Havelund and Grigore Roşu. Synthesizing Monitors for
Safety Properties. In Joost-Pieter Katoen and Perdita Stevens,
editors, Tools and Algorithms for the Construction and Analysis

of Systems, pages 342–356, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. doi:10.1007/3-540-46002-0_24.

[HR04] Klaus Havelund and Grigore Roşu. Efficient Monitoring of
Safety Properties. International Journal on Software Tools

for Technology Transfer, 6(2):158–173, August 2004. doi:

10.1007/s10009-003-0117-6.
[IPW+17] Padma Iyenghar, Elke Pulvermueller, Clemens Westerkamp,

Juergen Wuebbelmann, and Michael Uelschen. Model-Based

Debugging of Embedded Software Systems, pages 107–132.
Springer New York, New York, NY, 2017. doi:10.1007/

978-1-4614-2266-2_5.
[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model

Checking Timed UML State Machines and Collaborations. In
Werner Damm and Ernst Rüdiger Olderog, editors, Formal

Techniques in Real-Time and Fault-Tolerant Systems, pages
395–414, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-45739-9_23.

[KW07] Alexander Knapp and Jochen Wuttke. Model Checking of
UML 2.0 Interactions. In Thomas Kühne, editor, Mod-

els in Software Engineering, pages 42–51, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg. doi:10.1007/

978-3-540-69489-2_6.
[LDD14] Luka Leroux, Jérôme Delatour, and Philippe Dhaussy. Mod-

élisation UML d’un régulateur de vitesse automobile. Génie

logiciel, 109, June 2014.
[MGT09] Ahmed Mekki, Mohamed Ghazel, and Armand Toguyeni. Val-

idating Time-constrained Systems Using UML Statecharts Pat-
terns and Timed Automata Observers. In Proceedings of the

3rd International Conference on Verification and Evaluation of

Computer and Communication Systems, VECoS’09, pages 112–
124, Swindon, UK, 2009. BCS Learning & Development Ltd.

[OGO04] Iulian Ober, Susanne Graf, and Ileana Ober. Validation of
UML Models via a Mapping to Communicating Extended
Timed Automata. In Susanne Graf and Laurent Mounier,
editors, Model Checking Software, pages 127–145, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg. doi:10.1007/

978-3-540-24732-6_9.
[OGO06] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed

UML models by simulation and verification. International

Journal on Software Tools for Technology Transfer, 8(2):128–
145, Apr 2006. doi:10.1007/s10009-005-0205-x.

[OMG17] OMG. Unified Modeling Language, December 2017. https:
//www.omg.org/spec/UML/2.5.1/PDF.

[TDLR17] Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux.
Environment-driven reachability for timed systems. In-

ternational Journal on Software Tools for Technology

Transfer, 19(2):229–245, Apr 2017. doi:10.1007/

s10009-015-0401-2.
[TLRDD16] Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe

Dhaussy. Past-Free[ze] reachability analysis: reaching fur-
ther with DAG-directed exhaustive state-space analysis. Soft-

ware Testing, Verification and Reliability, 26(7):516–542, 2016.
doi:10.1002/stvr.1611.

11

