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des Arts et Métiers, Paris, France

Summary1

This paper presents how the bifurcation diagram of2

a saxophone model is affected by the contact force3

limiting the displacement of the reed when it strikes4

the mouthpiece lay. The reed impact is modeled by a5

nonlinear stiffness and damping activated by contact6

with the lay. The impact model is compared with7

the “ghost reed” simplification, where the reed moves8

through the lay unimpeded. Bifurcation diagrams in9

both cases are compared, in terms of amplitude of the10

oscillations and location of the bifurcations, on the so-11

lution branches corresponding to the first and second12

register. The ghost reed simplification has limited in-13

fluence at low values of the blowing pressure param-14

eter: the diagrams are similar. This is true even for15

“beating reed” regimes, in which the reed coincides16

with the lay. The most noticeable discrepancies occur17

near the extinction of the oscillations, at high blowing18

pressure.19

1 Introduction20

Reed instrument models are strongly nonlinear, which21

explains how different oscillating regimes can be pro-22

duced for the same fingering. The produced regimes23

depend on the control parameters imposed by the mu-24

sician, such as the blowing pressure or the opening at25

rest between the reed and the mouthpiece lay. This26

work assesses a choice done in many analytical stud-27

ies of reed instrument models: the impact between28

the reed and the mouthpiece lay is ignored. In this29

simplification, called “ghost reed” hereafter, the reed30

penetrates the mouthpiece wall freely. This free in-31

terpenetration is nonphysical but it allows analytical32

developments [1, 2] and numerical studies of minimal33

models [3, 4]. To lesser extent, it may also lessen the34

computational cost. It is interesting to note that the35

“ghost reed” simplification is carried out de facto in36

models ignoring reed dynamics, such as in [5, 4, 19].37

Lumped models of the contact between reed and lay38

have been developed using variable stiffness for the39

reed [6], or a separate contact force with stiffness and40

damping [7, 8]. The last cited contact model was 41

used in comparison with experimental data to esti- 42

mate reed parameters [9]. In this paper, we investi- 43

gate how the reed impact affects the overall behavior 44

of the instrument model and which phenomena are 45

reproduced similarly with and without the ghost reed 46

simplification. This paper compares a recent lumped 47

impact model [7] with the ghost reed model, in the 48

case of a saxophone, using continuation associated 49

with the harmonic balance method to describe the 50

oscillatory regimes corresponding to the first two reg- 51

isters for the whole playing range with respect to the 52

blowing pressure. 53

2 Mathematical model of reed 54

instrument 55

The model studied here is similar to the one presented
in [10] in the case of the clarinet. It is assumed that
the acoustics of the resonator is linear. The relation-
ship between the air flow U and the acoustic pressure
P at the input of the resonator is classically written in
the frequency domain thanks to the input impedance
Z(ω), defined by:

Z(ω) = Zc
P (ω)

U(ω)
= Zc

+Nm∑
n=0

Cn
iω − sn

+
C̄n

iω − s̄n
(1)

where Zc is a characteristic impedance, sn are the
(complex) poles of the impedance and Cn the asso-
ciated dimensionless residues. Nm is taken equal to
8 in our case, in order to limit the complexity of the
problem while representing all the main modes of the
resonator. In the time domain, this relation gives the
complex linear equations of the resonator model:

ṗn(t)− snpn(t) = ZcCnu(t), (2)

where pn are the modal pressures such that the total 56

acoustic pressure is: p(t) = 2
∑Nm

n=1<(pn(t)). 57

Following the work of [11], the input flow u writes

u = ζsign(γ − p)
√
|γ − p|max(x+ 1, 0), (3)
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where ζ is a dimensionless parameter characterizing58

the embouchure [10], γ = pm/pM is the dimension-59

less version of the blowing pressure pm, normalized60

by the static pressure pM necessary to displace the61

reed until the mouthpiece lay, and p is the dimen-62

sionless acoustic pressure in the mouthpiece. x is63

the dimensionless reed displacement, and the factor64

max(x+ 1, 0) = 1
2 ((x+ 1) + |x+ 1|) is equal to x+ 165

if the reed channel is open (x + 1 > 0) and 0 if it is66

closed (x+ 1 < 0). Note that equation (3) is used for67

both cases studied: with and without the ghost reed68

simplification.69

In order to facilitate numerical application of the70

harmonic balance and continuation methods, the ab-71

solute values in Eq. (3) are regularized with |z| '72 √
z2 + η. One has sign(γ − p) = γ−p

|γ−p| . The raw73

and regularized nonlinear characteristic are displayed74

in figure 1. The regularization parameter η is taken75

equal to 10−3 so that the regularized nonlinear char-76

acteristic stays close to its raw version.77

Figure 1: Nonlinear characteristics in static regimes:
raw (Eq. (3)) and regularized versions, using

|z| '
√
z2 + η with η = 10−3.

The motion of the reed is modeled by a one degree
of freedom oscillator subject to a force coming from
a pressure difference across the reed and an impact
force. The dimensionless equation describing the mo-
tion is:

ẍ

ω2
r

+ qr
ẋ

ωr
+ x = −(γ − p) + Fc(x)− βẋFc(x) (4)

where ωr is the natural angular frequency of the reed
and qr is a damping constant (inverse of a quality
factor). Fc follows the law suggested by [7] which is

Fc(x) = −Kc min(x+ 1, 0)α (5)

where Kc is the impact stiffness and α is an expo-78

nent which characterizes the impact. The term βẋFc79

can be thought of as a nonlinear damping term, i.e.80

the impact induces some loss of energy. It is regular-81

ized by writing min(x+ 1, 0) = − 1
2 (|x+ 1| − (x+ 1))82

with the absolute value approximated as: |x + 1| '83

√
(x+ 1)2 + η. Considerations on the reed material 84

and the mouthpiece material suggest an impact stiff- 85

ness value of Kc = 100, although there is no ob- 86

vious experimental evidence. This means that the 87

mouthpiece is one hundred times stiffer than the reed. 88

The studies [12, 13] treat this question in more de- 89

tails. The ghost reed simplification is implemented 90

by Kc = 0: the reed moves freely through the mouth- 91

piece lay. All the values of the parameters are sum- 92

marized in table 1. 93

Parameter Notation Value

Impact stiffness Kc 100 or 0
Impact exponent α 2
Impact damping β 0.01

Reed angular frequency ωr 4224 rad.s−1

Reed damping qr 1

Blowing pressure γ [variable]
Embouchure ζ 0.6

Regularization η 0.001

Table 1: Parameters of the model. Parameters with
no units are dimensionless.

3 Comparison between the 94

ghost reed simplification and 95

the impact model 96

Now the comparison is made between the ghost reed 97

simplification, without impact force to limit the reed 98

displacement (Kc = 0), and the model with impact 99

(Kc > 0, here Kc = 100). The modal parameters of 100

the resonator are deduced from the impedance mea- 101

sured on an alto saxophone. The fingering of a low 102

D] is used. This fingering is the sixth lowest of the 103

saxophone, and it exhibits both first and second reg- 104

ister regimes. Higher fingerings produce less or none 105

of the second register, and lower fingerings produce a 106

great variety of regimes that make the analysis of the 107

bifurcation diagram tedious. 108

Periodic solutions of the models are found using the 109

harmonic balance method, where all the variables are 110

decomposed into a Fourier series up to harmonics H 111

(see for example [14]). Asymptotic numerical method 112

(ANM) is used to produce the bifurcation diagram 113

corresponding to each model [15, 16]. In this work, 114

H = 50 for first register regimes and H = 80 for 115

second register regimes. Only periodic regimes can 116

be computed by the harmonic balance method, so the 117

waveform comparison excludes transients. Stability of 118

the regimes is determined using the method presented 119

in [17] and [18]. 120
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3.1 Waveforms121

As a first comparison step, temporal waveforms of the122

reed displacement x as well as the acoustic pressure123

p and flow u, are displayed in figures 2 and 3. These124

regimes correspond to the first register of the instru-125

ment: their frequency is close to the first resonance126

frequency of the resonator. Figure 2 shows the es-127

tablished periodic regime obtained for γ = 0.5: it128

corresponds to the standard Helmholtz motion, typi-129

cal of conical instruments [19]. As expected, the reed130

displacement waveforms are quite different: the im-131

pact force penalizes the displacement of the reed be-132

low x = −1, whereas the ghost reed simplification lets133

it move freely below x = −1. Note that this formula-134

tion of impact force lets the reed squash against the135

lay and go slightly below −1, though far less than136

the ghost reed model. This is the main difference137

between the reed displacements generated by the two138

models. Over the period, the displacement signals are139

most similar right before the contact occurs. As for140

the acoustic pressure p, the two waveforms are nearly141

superimposed, except for some higher frequency com-142

ponents. This is confirmed by a good match in the143

amplitude of the harmonics, especially the first nine.144

Similar comments can be made on the flow u. For this145

particular value of the blowing pressure γ, the reed146

impact model has no major influence on the pressure147

and flow waveform.148

Figure 2: Steady periodic regime for the reed dis-
placement x, and the acoustic pressure p and flow u.
Waveforms (left) and amplitude of harmonics (right).
Model with impact force (light red circles) and ghost
reed simplification (dark blue pluses), difference in
harmonic amplitude between models (purple dots).
Blowing pressure γ = 0.5.

Figure 3 presents the waveforms obtained for a149

higher value of the blowing pressure γ = 1.5. Even-150

though γ > 1 corresponds to sufficient pressure to151

close the reed channel completely in a static configu-152

ration, oscillations may still be sustained for γ > 1.153

The obtained oscillating regime correspond to the in-154

verted Helmholtz motion [19], where the reed stays in155

contact with the lay for more than half the period.156

In this case, the reed displacement waveform presents157

even more differences than on figure 2. However, the 158

acoustic pressure and flow waveforms stay very simi- 159

lar, as they are on figure 2, and their first seven har- 160

monics are very close. In order to qualify the effect 161

of the reed impact model on a variety of regimes, the 162

associated bifurcation diagrams are now studied. 163

Figure 3: Steady periodic regime for acoustic pressure
p and flow u, and reed displacement x. Waveforms
(left) and amplitude of harmonics (right). Model with
impact force (light red circles) and ghost reed simpli-
fication (dark blue pluses), difference in harmonic am-
plitude between models (purple dots). Blowing pres-
sure γ = 1.5.

3.2 Bifurcation diagrams 164

The bifurcation diagram in figure 4 shows the L2 norm
of the acoustic pressure p, with respect to the blowing
pressure γ. The L2 norm is defined by

||p||L2 =
1

T

∫ T

0

p(t)2dt, (6)

where T is the period of p. The first register is 165

computed with Fourier series truncated at H = 50 166

harmonics, the second one with H = 80 harmonics. 167

These truncation orders have been chosen to ensure 168

a good convergence of the solution and of the sta- 169

bility information of the periodic solution branches. 170

Several common features appear between the struc- 171

ture of the overlaid diagrams, corresponding to the 172

ghost reed and to the impact model. In terms of os- 173

cillation threshold, both cases exhibit two Hopf bifur- 174

cations on the equilibrium branch (not shown here, 175

corresponds to ||p||L2 = 0). They are marked H in 176

figure 4. The first one, a sub-critical Hopf bifurcation 177

around γ = 0.4 for both models, is associated with 178

the first register of the saxophone. The second one, 179

a super-critical Hopf bifurcation around γ = 0.43 for 180

both models as well, is associated with the second reg- 181

ister. Branches of the two models share common char- 182

acteristics, but are not superimposed. For instance, 183

the range of γ where stable periodic oscillations ex- 184

ist is reduced when taking into account the impact 185

force. The right Neimark-Sacker bifurcation on the 186
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second register solution branch appears very sensible187

to the impact model in this case. Without impact188

force, it is located around γ = 1.25, below the fold189

bifurcation point. However, with impact force, the190

right Neimarck-Sacker bifurcation is located around191

γ = 1.8, above the fold bifurcation. The highest val-192

ues of the blowing pressure present the most discrep-193

ancies between the two models. This can be explained194

by the fact the duration of the contact between the195

reed and the lay is longer for higher blowing pressure196

values, and thus it is the region where the impact197

model has the most influence.198

Figure 4: Bifurcation diagram: L2 norm of the acous-
tic pressure p with respect to blowing pressure γ. Sta-
ble solutions are in solid lines, unstable solutions are
in dotted lines. Dark blue: ghost reed simplification;
light red: impact force model. Bifurcation labels are
H: Hopf; PD: period doubling; F: fold; NS: Neimark-
Sacker.

Figure 5 is a close-up of figure 4 for values of γ199

smaller than 1. In this area, which is expected to200

be more commonly reached than the area γ > 1 by201

the instrument players (it corresponds to moderate202

playing levels), the differences between the two mod-203

els exist but are mostly negligible. The periodic solu-204

tions arising from the two Hopf bifurcations encounter205

generic bifurcations of periodic solutions, namely fold206

bifurcation, period doubling bifurcation and Neimark-207

Sacker bifurcation. The bifurcations are almost su-208

perimposed for both models. The branch of unstable209

periodic solutions arising from the period doubling bi-210

furcations are exactly superimposed. Despite a very211

good agreement over the range of the figure 5 there212

is a non-negligible difference on the first register for213

0.5 < γ < 0.7, with two fold bifurcations for the ghost214

reed simplification that are not found with the impact215

model.216

The same study has been performed for other val-217

ues of ζ, which confirms the results presented here.218

With the formulation of the impact chosen in this219

paper, it is possible to vary continuously between im-220

pact model and ghost reed simplifications: for values221

of Kc in between 0 and 100, the solution branches are 222

in between the two branches displayed in figure 4. 223

Figure 5: Zoom of figure 4.

4 Conclusion 224

Taking into account reed impact in a saxophone model 225

has definite influence on regimes obtained with high 226

values of the blowing pressure parameter, for which 227

the reed is in contact with the mouthpiece lay for a 228

large part of the oscillation period. However, if the 229

study is limited at low blowing pressures, around the 230

low oscillation threshold for instance, the ghost reed 231

simplification delivers results very close to elaborate 232

impact models at a much lower computational cost. 233

The effect of the nature of the reed impact on the 234

transients and other non-stationary phenomena re- 235

mains to be studied, as part of a much wider field 236

of investigation. 237
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