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Periodic controls for discriminating
density dependent growth in the chemostat

Fatima-Zahra Tani, Alain Rapaport and Térence Bayen

Abstract— We show the benefit of considering periodic dilu-
tion rates in the chemostat model for discriminating between
a growth function which does not depend on the density of
the micro-organisms population (such as the Monod law) and
another one which does depend (such as the Contois law).
This goal is achieved thanks to the measurement of the abiotic
resource only. We then present a simple procedure for a robust
discrimination between the two types of kinetics using a single
experiment in three phases. Finally, the shape of the best
periodic excitation is discussed and the method is illustrated
on numerical simulations.

I. INTRODUCTION

Continuous culture has been invented simultaneously by
Monod [23] and Novick & Szilard [25] in the fifties as
a means to measure accurately growth rates of micro-
organisms. Typically, the so-called chemostat device consists
in feeding a culture vessel of volume V with a nutritive
solution of concentration sin at a constant flow rate Q,
and then in extracting micro-organisms and substrate at the
same rate Q from the culture vessel (so that the volume
remains constant). The concentrations of micro-organisms
and substrate, denoted respectively by b and s are then
solutions of the following differential equations, that reflect
the writing of the mass balance

ṡ = − 1
Y

µ(s)b+D(sin− s),

ḃ = µ(s)b−Db,
(1)

where D := Q/V denotes the dilution rate, Y the conversion
rate and µ(·) the specific growth rate. Each bacterial species
is characterized by the positive constant Y and the non-
negative function s 7→ µ(s) satisfies µ(0) = 0. The usual way
to identify Y and µ(·) are as follows.

1. The parameter Y is obtained from the batch mode which
consists in taking D = 0 (see for instance [12]). One can
check that solutions of (1) with positive initial conditions
(s0,b0) converge asymptotically to the steady state (s?,b?) :=
(0,b0 +Y b0). The parameter Y is thus determined by

Y =
b?−b0

s0
,s

which is usually considered as a robust method.
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2. There are two general approaches for estimating the
growth rate function µ(·): either by adjusting the dynamical
model to growth curves (in batch or in continuous culture)
[6], [14], either by a series of steady-states. The first method
is often considered less accurate because it deals with
transient dynamics and biomass sampling can perturb the
culture. The second method measures steady-states only, for
which cell density no longer change with time (historically
this method owes its name to “chemostat”), and is considered
more reliable [19]. The growth function µ(·) is then identi-
fied step by step, considering a series of experiments with
different constant values of D (see for instance [29]). One
can easily check that positive equilibria (s?,b?) of (1) are
given by µ(s?) = D and b? = Y (sin− s?), when s? is below
sin. Therefore each value of D provides a point (s?,D) of
the graph of µ(·). This method implicitly assumes that there
exists a unique solution s to the equation µ(s) = D and that
the corresponding steady state is asymptotically stable. One
can easily show (see for instance [18]) that this is fulfilled
when µ(·) is monotone and D is chosen less than µ(sin). For
non-monotonic growth functions, other methods can be used
(see for instance [27]).

Most often, the growth functions that suit data are concave
increasing, such as the Monod law [23]:

µM(s) := µmax
s

Ks + s
. (2)

However, the function µ , differently to the parameter Y ,
might depend on environmental growth conditions (tem-
perature, pH,...). Parameters µmax, Ks could then depend
on experiments and measurements. It also happens that
the growth is inhibited by large concentrations b of the
biomass, reflecting a crowding effect of micro-organisms.
This is particularly met in bioreactors of industrial waste-
water plants. Then, one has to look for density dependent
functions, i.e., of the form (s,b) 7→ µ(s,b), increasing with
respect to s and non-increasing with respect to b. The most
popular one is the Contois law [11], given by the following
expression

µC(s,b) := µmax
s

s+ kb
. (3)

Notice that Contois law can be interpreted as a Monod
expression but applied to the ratio s/b instead of s. However
it does not generalize the Monod function for small density
effect, but one can consider the generalized Contois law

µCG(s,b) := µmax
s

Ks + s+ kb
, (4)



to recover Monod law (taking k = 0) and Contois law (taking
Ks = 0) expressions. Here the parameter k > 0 measures
the density effect. Recently, another expression of density
dependent function has been proposed and experimentally
validated [20]:

µK(s,b) := µ0
s

bα
, (5)

where α is a non-negative parameter.
Before setting up a model identification and control strate-

gies, it is worth to mention that the choice between Monod
law or density dependent extensions has important impacts
on the predictions of the behavior of bacterial species (the
greater the parameter k or α is, the greater the impacts
are). First of all, steady state concentrations of substrate
do not depend on the input concentration sin in the case
of Monod law, while it does in the case of Contois law
[18]. This is clearly an issue for the piloting of waste-water
plants for which the input concentration sin fluctuates with
time. Secondly, the Competitive Exclusion Principle [28],
[18] applies when the growth functions depend on s only:
it asserts that only one species coexists in the long run
in the chemostat model. On the contrary, a dependency on
biomass concentration in the kinetics can allow coexistence
of several species [21], [10], [22], which can impact the
performances of bioreactors. Therefore, the discrimination
between substrate and ratio dependency is a question of
prime importance, in particular for the choice of sensors and
control laws.

The classical identification method we recalled previously
imposes many experiments to reconstruct accurately the
graph of µ (as one experiment provides only one point of its
graph) and can be then lengthy and costly, whereas control
laws do not necessarily require a perfect knowledge of the
function µ (when it depends on s only, see for instance
[6], [26], [3]). Notice that the identification of density
dependent functions requires the additional measurement of
the biomass, which is often more difficult and expensive
to obtain than the abiotic component. Ratio-dependency has
received a great attention in the ecological literature (see for
instance [4]), and a conceptual experiment of several tanks in
series has been designed to qualitatively discriminate ratio-
dependency in the context of prey-predators [5]. Inspired by
this approach, a similar experiment has been investigated in
the context of bioreactors [17]. However, it imposes to be
able to retain perfectly the biomass from one reactor to the
following one, which can be a practical issue.

The purpose of the present work is to investigate a robust
methodology for discriminating between the two kinds of
growth functions, on the basis of a simple experiment with
a single tank and the single measurement of the substrate.
Instead of steady state operations, as in the methods de-
scribed above, we propose to control the experiment with
periodic dilution rate D(·) instead of constant ones. Periodic
operations of chemostat have already been investigated in the
literature, but for optimizing performances when the growth
function is known (see for instance [1], [2]).

The paper is organized as follows. In Sec. II, we give
results about periodic solutions of the chemostat model with
periodic controls. In particular, we show in Proposition 2 the
role played by the convexity of µ(·) in the average value of
s(·) over a period, compared to a steady state s?. This result is
the core of the procedure that is presented in Sec. III. In this
section, we first define “weak” and “strong” density depen-
dent effects, and we then give an experiment procedure based
on bang-bang controls for discriminating between these two
aforementioned cases with the single measurement of the
variable s only. In Sec. IV, we justify the choice of bang-
bang controls as the optimal ones. Finally, Sec. V illustrates
this methodology on numerical simulations showing also the
robustness of the method when environmental conditions
could suddenly change.

II. THE CHEMOSTAT MODEL UNDER PERIODIC CONTROL

In the sequel, we shall consider non-negative measurable
control functions D : R+→ R+ such that:
- the control D(·) is periodic of period T (to be chosen),
- the control D(·) is persistently exciting ([6]) and satisfies

1
T

∫ T

0
D(t)dt = D̄ > 0, (6)

where D̄ > 0 is given. Considering the total mass concentra-
tion m = Y s+b, (1) implies that

ṁ = D(t)(Y sin−m).

Then, any periodic solution of (1) has to fulfill m(t) = Y sin
for any time t. Therefore, we shall consider the reduced
dynamics on the invariant line Y s + b = Y sin, that is, the
scalar dynamics

ṡ = F(s,D) := (sin− s)(D−ν(s)), (7)

on the invariant interval I := (0,sin), where the function ν is
defined as follows

ν(s) :=
{

µ(s) if µ = µM,
µ(s,Y (sin− s)) if µ = µCG.

Notice that in any case, the function ν is increasing. There-
fore, for D̄ < ν(sin), there exists a unique solution s? of

ν(s?) = D̄,

with x? := Y (sin− s?) > 0, and (s?,x?) is thus the unique
asymptotically stable equilibrium of (1) for the constant
control D = D̄. Let us define for convenience the function

λ (D) :=
{

ν−1(D) if D < ν(sin),
sin otherwise.

We start by giving a result about the convergence of solu-
tions of (7) to a unique T -periodic solution, using the usual
argumentation for scalar dynamics based on the Poincaré
mapping (see for instance [28]).

Lemma 1: Suppose that D̄ < ν(sin). Then, for any T -
periodic control D(·) that satisfies (6) and any initial condi-
tion s0 ∈ I, the associated solution of (7) converges asymp-
totically to the unique T -periodic solution of (7) associated
with D(·).



Proof: For a given T -periodic control D(·), consider
the C1 function φ : I 7→ I defined by φ(s0) := s(T,s0) where
s(·,s0) denotes the solution of (7) for the initial condition s0
at time 0. By differentiating φ , one has

φ
′(s0) =

∂ s
∂ s0

(T,s0) = X(T ),

where X(·) is the fundamental solution of the variational
equation ż = ∂ f

∂ s (s(t,s0),D(t))z with z(0) = 1. One gets:

φ
′(s0) = e−

∫ T
0 [D(t)−ν(s(t,s0))+ν ′(s(t,s0))(sin−s(t,s0))]dt .

Clearly, φ ′ > 0 and thus φ is increasing. For s0 = 0, the
solution cannot be identically equal to 0 because of condition
(6) and F(0,D) ≥ 0. Therefore one has φ(0) = s(0,T ) > 0.
For s0 = sin, the solution of (7) is constant equal to sin. Then
φ(sin) = sin and

φ
′(sin) = e−

∫ T
0 [D(t)−ν(sin)]dt .

Since D̄ < ν(sin), we deduce that φ ′(sin)> 1. Consequently,
the C1 function s0 7→ ψ(s0) := φ(s0)− s0 satisfies ψ(0)> 0,
ψ(sin) = 0, and ψ ′(sin) > 0, thus it has necessarily a zero
in I which proves the existence of a fixed point s̄0 of φ as
well as the existence of a T -periodic solution s̄(·) := s(·, s̄0)
of (7). Moreover, at s0 = s̄0, one finds

ψ
′(s̄0) = e−

∫ T
0 [D(t)−ν(s̄(t))+ν ′(s̄(t))(sin−s̄(t)]dt −1.

Observe now that for a periodic solution s̄(·), one has

0 = ln
(

sin− s̄(T )
sin− s̄0

)
=−

∫ T

0
[D(t)−ν(s̄(t))]dt, (8)

from which one obtains

ψ
′(s̄0) = e−

∫ T
0 ν ′(s̄(t))(sin−s̄(t))dt −1 < 0.

Since at every point s̄0 ∈ I such that ψ(s0) = 0, one has
ψ ′(s̄0) < 0, we then conclude that ψ has exactly one zero
s̄0 ∈ I which shows the uniqueness of the T -periodic solution
s̄(·).

Notice that s̄(·) is asymptotically stable since φ ′(s̄0) <
1 (see [28]). Finally, for any s0 ∈ I \ {s̄0}, the sequence
(φ n(s0))n is monotone since φ is increasing, and thus it
converges to a fixed point of φ . The only fixed point at
boundary of I is sin with φ ′(sin) < 1 which implies that
φ(s0) < s0 for s0 close to sin. One can verify that φ n(s0)
necessarily converges to s̄0 when n goes to infinity which
implies that |s(t,s0)− s̄(t)| → 0 when t goes to infinity.

The next result will play an important role in the following.
The key point is to consider functions D(·) that fulfill (6)
for the same value D̄. Hereafter, for a given non constant
T -periodic control D(·) that fulfills (6), we denote by s̄(·)
the unique periodic solution associated with D(·).

Proposition 2: If the restriction of ν(·) to the interval J :=
{ν(s̄(t)), t ∈ [0,T ]} is convex, respectively concave, and does
not coincide with a linear function on this interval, then

ŝ :=
1
T

∫ T

0
s̄(t)dt < s?, respectively ŝ :=

1
T

∫ T

0
s̄(t)dt > s?.

Proof: Let s̄(·) be a non-constant T -periodic solution
with values in I. From (8), we deduce the equality

1
T

∫ T

0
ν(s̄(t))dt = D̄. (9)

When ν is convex on the interval J, applying Jensen’s
inequality to ν yields

ν

(
1
T

∫ T

0
s̄(t)dt

)
≤ 1

T

∫ T

0
ν(s̄(t))dt. (10)

Similarly, when ν is concave on J, one obtains the reversed
inequality. Since equality in Jensen’s inequality holds true if
and only if ν is affine over J, the inequality in (10) is strict.
Combining (9)-(10) then gives

ν

(
1
T

∫ T

0
s̄(t)dt

)
< ν(s̄),

and, as ν is increasing, we get

1
T

∫ T

0
s̄(t)dt < s?.

The reversed inequality is obtained in the same way when v
is concave over J.

Lemma 3: The solution s̄ verifies the inequalities:

min
t∈[0,T ]

s̄(t)≤ s? ≤ max
t∈[0,T ]

s̄(t).

Proof: Equality (9) can be equivalently written

1
T

∫ T

0
[ν(s̄(t))−ν(s?)]dt = 0.

Then, the function t 7→ ν(s̄(t))−ν(s?) has to change its sign
over [0,T ]. Since ν is monotone over I, we deduce that there
exists t− and t+ in [0,T ] such that s̄(t−)< s? < s̄(t+).

Without any loss of generality, we can then consider
periodic solutions of (7) with periodic controls satisfying (6)
and such that s̄(0) = s?. The constant solution s = s? for
constant D = D̄ is one of them. We show how to use Prop. 2
to discriminate density-dependency.

III. A DISCRIMINATING PROCEDURE

Consider the growth functions ν associated to Monod and
(generalized) Contois laws (following the notation of Sec. II):

νM(s) := µmax
s

Ks + s
; νCG(s) := µmax

s
Ks + s+ kY (sin− s)

.

One can easily check that these functions are increasing. A
straightforward computation also gives

ν
′′
M(s) =

−2Ksµmax

(Ks + s)3 ; ν
′′
CG(s) = µmax

2(kY −1)(Ks + kY sin)

(Ks + s+ kY (sin− s))3 .

One can observe that νM is always concave, while νCG is
convex when kY > 1. We shall say that the growth rate ν

has a weak (or null) density effect if it follows the laws of
Monod or (generalized) Contois with k ≤ 1/Y . Conversely,
we shall say that it has a strong density effect if it follows
the law of (generalized) Contois with k > 1/Y .

We investigate now how to use the results of Proposition 2
to discriminate between convex and concave functions using



periodic controls. Let us underline that for a given value of
s?, determining periodic non constant functions D(·) such
that the solution s(·) with s(0) = s? is periodic requires
the perfect knowledge of the function µ and the constants
Y and sin. On another hand, waiting for the convergence
to a periodic solution could be long and difficult to test
in practice. We propose below an experiment procedure to
discriminate between weak and strong density effects.

Procedure : It consists in conducting a single chemostat
experiment with three phases: constant, bang-bang and con-
stant. It requires the single measurement of the substrate s.
• Phase 1. Conduct an experiment for a constant dilution

rate D with 0<D< ν(sin) (to avoid the washout equilibrium)
and wait the chemostat to be at (quasi) steady state. Let seq

be the measurement of s, and t0 the current time.
• Phase 2. Choose two values Dmin, Dmax such that 0 ≤

Dmin < D < Dmax, and two time durations δ1 > 0, δ2 > 0.
Apply first D = Dmax on the time interval [t0, t0 +δ1). Next,
apply D = Dmin until the time t̄ such that s(t̄) = seq, and
carry on applying D = Dmin during the duration δ2. Finally,
change the flow rate value to D = Dmax for t > t̄ +δ2. Store
the measurements history {s(t)}t∈[t0,t0+T ] until the first time
t0 + T > t̄ + δ2 such that s(t0 + T ) = seq (which exists as
0≤ Dmin < D < Dmax). To summarize, one applies

D(t) :=

 Dmax, t ∈ [t0, t0 +δ1),
Dmin, t ∈ [t0 +δ1, t̄ +δ2),
Dmax, t ∈ [t̄ +δ2, t0 +T ].

(11)

Let D̄ be the mean value of the dilution rate over [t0, t0+T ]:

D̄ :=
Dmax(T + t0− t̄ +δ1−δ2)+Dmin(t̄− t0 +δ2−δ1)

T
.

• Phase 3. Apply for t > t0 +T the constant dilution rate
D := D̄ and wait for the (quasi) steady state, denoted by s?.
With the data stored on [t0, t0 + T ], determine the average
value of s on [t0, t0 +T ]:

ŝ :=
1
T

∫ t0+T

t0
s(t)dt.

Conclusion. If ŝ< s?, we validate the strong density effect.

Phase 1 allows the chemostat to be at steady state, so that
dynamics (7) is considered to be valid at time t0. The phase 2
generates a T -periodic solution with a periodic control, over
a single period, without having to wait the convergence to the
periodic solution. Phase 3 compares the average value ŝ of
the substrate concentration on the periodic solution with the
steady state one s? obtained for a constant control D̄ equal
to the average value of the periodic control. Proposition (2)
allows to conclude.

Remark 1: Note that s? has no a priori reason to be equal
to seq, as the initial value of D is arbitrary.

Remark 2: This procedure is a way to discriminate be-
tween Monod and (generalized) Contois laws. It allows also
to discriminate between convex or concave functions on
the invariant interval (λ (Dmin),λ (Dmax)) and can then be

applied to other situations whose growth is expected to
follow expressions such as (5). For this function, one has

ν
′′
K(s) = αµ0

2sin +(α−1)s
(sin− s)α+2 .

Therefore, νK is convex when α is larger than one (which
has been observed in [20]) or when sin is large enough.

The proposed procedure considers bang-bang periodic
controls for discriminating convex functions ν . One may
wonder if the periodic control that satisfies (6) allows to
obtain the largest difference between ŝ and s?. We justify
this choice in the next section.

IV. THE BEST SHAPE OF PERIODIC CONTROLS

The goal of this section is to justify the construction of D
in (11) as a bang-bang control, in terms of optimal control.
Given bounds Dmin, Dmax on the control D(·) with 0≤Dmin <
D̄ < Dmax, and given a convex function ν , we look for T -
periodic controls D(·) that satisfy (6) with

D(t) ∈ [Dmin,Dmax] a.e. t ≥ 0, (12)

such that the associated solution s̄ with s̄(0) = s? is T -
periodic and gives the smallest average value ŝ:

min
D(·)

ŝ :=
1
T

∫ T

0
s(t)dt. (13)

Similarly, when ν is concave, we would look for controls
D(·) such that ŝ is the largest. Problem (13) is an optimal
periodic control problem. Several contributions about the
theory of optimal control with periodic controls are available
in the literature (see for instance [9], [15], [16] and references
herein). However, in the present case, it has to fulfill the
additional integral constraint (6), which has not been yet
studied, up to our knowledge, expect in the recent works
[7], [8].

Let K := (λ (Dmin),λ (Dmax)) and introduce the function
η : K→ R∗+ as

η(s) :=
1

(sin− s)(Dmax−ν(s))(ν(s)−Dmin)
, s ∈ K.

One has the following optimality result.
Proposition 4: Assume ν to be convex increasing on K,

and take arbitrarily D̄ ∈ (Dmin,Dmax) and T > 0. Then:
(i) There are exactly two T -periodic optimal solutions of (13)
under the constraints (6) and (12), and such that s(0) = s?.
(ii) The controls D± generate the two optimal trajectories
(with same cost):

D+(t) :=
{

Dmax, t ∈ [0, t+1 )∪ [t+2 ,T ) mod T,
Dmin, t ∈ [t+1 , t+2 ) mod T, (14)

D−(t) :=
{

Dmin, t ∈ [0, t−1 )∪ [t−2 ,T ) mod T,
Dmax, t ∈ [t−1 , t2−) mod T,

where times t±i , i = 1,2 are given by:

t+1 := inf{t ≥ 0 ; s(t) = sM}, t+2 := inf{t ≥ t+1 ; s(t) = sm},
t−1 := inf{t ≥ 0 ; s(t) = sm}, t−2 := inf{t ≥ t−1 ; s(t) = sM},

(15)



and where (sm,sM) is the unique pair in K2 that satisfies∫ sM

sm

η(s)ds =
T

Dmax−Dmin
,
∫ sM

sm

η(s)ν(s)ds =
D̄T

Dmax−Dmin
.

(16)

Proof: We apply a result of [7] that we recall in the
Appendix. One can easily check that (13) is a particu-
lar instance of (18) taking I′ = K, η̃ = η , f (s) = (sin −
s)
[

Dmax+Dmin
2 −ν(s)

]
, g(s) = (sin− s)Dmax−Dmin

2 and `(s) = s,
and verify that the required assumptions to apply the result
of the Appendix are satisfied. The optimal solutions u± of
(18) provided by (20) once translated into (13), lead to the
optimal solutions D± of (13) given by (14)-(15). As well,
(16) straightforwardly follows from (19).

This result gives the existence of δ1, δ2 that give the
largest value |ŝ− s?| in the procedure of Sec. III. Let us
underline that s? is not known in advance (as the function ν

is unknown) but is learned in phase 2 of the procedure.

V. NUMERICAL ILLUSTRATIONS

We have considered Monod and Contois laws (see the
graph of the associated functions ν on Fig. 1) that provide
(for the same values of D and sin) the same steady state
seq = 1. It is then not possible to distinguish between these
two functions without changing the value of D. Fig. 2
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Fig. 1: In blue: Monod’s kinetics for Ks = 2; Y = 1; sin = 2; µmax = 2
(plain) and µmax = 1.4 (dashed). In red: Contois’s kinetics for Ks = 0; Y = 1;
k = 2; sin = 2; µmax = 3 (plain); µmax = 2 (dashed) and sin = 3 (dotted).

illustrates the three phases generated by the procedure (phase
1: blue, phase 2: green, phase 3: red) with the average
value ŝ (in black). Then Tables I and II (left columns) gives
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t0 t0 + T t0 + Tper

Fig. 2: Solution s(·) generated by the procedure ( for the Monod law)
with s(0) = 0.2; Ks = 1; µmax = 2; Y = 1; sin = 2; Dmax = 1.3; Dmin = 0.2
(in dashed under the perturbation)

the difference ∆s := ŝ− s? provided by the procedure, for
different values of the durations δ1, δ2. One can see that a

larger period T does not necessarily gives a larger difference
∆s. One has to choose larger values for both δ1 and δ2 to
increase the sensitivity of the test.

Without Perturbation Perturbation
perturbation on sin on µmax

sin = 2, sin = 2 and 3, sin = 2,
µmax = 2 µmax = 2 µmax = 2 and 1.4

δ
1
=

10
δ

2
=

8 ∆s = 0.24 ∆s = 0.24 ∆s = 0.05
T = 20.4 T = 19.2 T = 23
D̄ = 0.81 D̄ = 0.81 D̄ = 0.71

δ
1
=

15
δ

2
=

8 ∆s = 0.26 ∆s = 0.28 ∆s = 0.15
T = 25.6 T = 24.2 T = 31
D̄ = 0.90 D̄ = 0.91 D̄ = 0.76

δ
1
=

10
δ

2
=

15 ∆s = 0.23 ∆s = 0.23 ∆s = 0.14
T = 27.4 T = 26.2 T = 30
D̄ = 0.65 D̄ = 0.65 D̄ = 0.59

δ
1
=

15
δ

2
=

15 ∆s = 0.27 ∆s = 0.29 ∆s = 0.24
T = 32.6 T = 31.3 T = 38
D̄ = 0.75 D̄ = 0.76 D̄ = 0.66

TABLE I: Results for Monod law: KS = 2; Y = 1; Dmax = 1.3; Dmin = 0.2.

Without Perturbation Perturbation
perturbation: on sin: on µmax:

sin = 2, sin = 2 and 3, sin = 2,
µmax = 3 µmax = 3 µmax = 3 and 2

δ
1
=

10
δ

2
=

8 ∆s =−0.20 ∆s =−0.55 ∆s =−0.32
T = 19.5 T = 19.73 T = 22.1
D̄ = 1.47 D̄ = 1.44 D̄ = 1.31

δ
1
=

15
δ

2
=

8 ∆s =−0.18 ∆s =−0.45 ∆s =−0.26
T = 24.5 T = 24.8 T = 29.2
D̄ = 1.72 D̄ = 1.69 D̄ = 1.46

δ
1
=

10
δ

2
=

15 ∆s =−0.22 ∆s =−0.51 ∆s =−0.35
T = 26.5 T = 26.73 T = 29.1
D̄ = 1.11 D̄ = 1.09 D̄ = 1.02

δ
1
=

15
δ

2
=

15 ∆s =−0.23 ∆s =−0.48 ∆s =−0.31
T = 31.5 T = 31.8 T = 36.2
D̄ = 1.36 D̄ = 1.34 D̄ = 1.20

TABLE II: Results for Contois law: k = 2; Y=1; Dmax = 2.7; Dmin = 0.1.

The interest of the procedure, compared to classical growth
identification, relies on its robustness with respect to dis-
turbances. It is well known that continuous cultures are
often subject to uncontrolled environmental changes, such
as variations of sin, temperature or pH which directly impact
the maximum growth rate µmax. We have simulated such a
sudden change during the phase 2 of the procedure. These
changes correspond to the functions ν in dashed line on Fig.
1 and modify the s-trajectory as depicted in dashed line on
Fig. 2. Tables I and II present the results under two kinds of
disturbances: change of sin and change of µmax. In any case,
one can observe that the sign of ∆s is preserved. Notice that
under these changes, the duration T is modified and the s-
solution between t0 and t0 +T is no longer periodic, neither
for the old or the new functions ν , but ∆s is a continuous
function of the parameters sin, µmax, justifying the robustness
of the test.

VI. CONCLUSION

We have proposed an experiment procedure to test a
density dependency in the chemostat, using non-constant
dilution rates. This procedure consists in a sequence of a
steady state, a periodic operation over only one period, and a



last steady-state, with the single measurement of the substrate
concentration. We have shown its robustness with respect
to disturbances on the growth curves during the procedure,
demonstrating its interest compared to classical identification
methods. For more complex growths for which the function
µ could be neither convex or concave on their whole domain
(such as the Hill function [24] or the one from the Microbial
Transition State theory [13]), one would need to choose
adequately the bounds Dmin, Dmax in the procedure. This is
an open problem that could be the matter of a future work.

VII. APPENDIX

We recall results from [7] about optimal periodic control.
Consider the following dynamical system:

ẋ = f (x)+u(t)g(x), u(t) ∈ [−1,1] and x(0) = x̄, (17)

where f : I′→R, g : I′→R∗+ and I′ is an open interval of R.
f and g are assumed to be C1 with f +g > 0 and f −g < 0
over I′. Consider now the following optimal control problem:

min
u(·)

1
T

∫ T

0
`(x(t))dt, (18)

where ` : I′ → R and x(·) is a T -periodic solution of (17)
associated with a measurable control u(·) satisfying

1
T

∫ T

0
u(t)dt = ū,

where ū :=− f (x̄)/g(x̄). Define ψ : I′→ R as ψ :=− f
g and

γ := ψ ◦ `−1 whenever `−1 is well-defined, as well as

η̃(x) :=
1

f (x)+g(x)
− 1

f (x)−g(x)
, x ∈ I′.

It is supposed in [7] that I′ is invariant by the dynamics (17)
with ψ(I′)⊂ [−1,1], and that there is a unique x̄ ∈ I′ s.t.

(ψ(x)−ψ(x̄))(x− x̄)> 0, x ∈ I′, x 6= x̄.

It is also shown in that when ` is increasing and γ strictly
convex increasing, there is a unique (xm,xM) ∈ I′2 s.t.∫ xM

xm

η̃(x)dx = T,
∫ xM

xm

η̃(x)ψ(x)dx = T ū. (19)

Theorem 3.6 in [7] shows that the bang-bang control whose
restriction over [0,T ] is defined as

u+(t) :=

∣∣∣∣∣∣
+1 if t ∈ [0, t̃1],
−1 if t ∈ [t̃1, t̃2],
+1 if t ∈ [t̃2,T ],

(20)

(where t̃1 is the first time x reaches xM and t̃2 the first time
t > t̃1 where x reaches xm) is optimal (up to a unique time
translation defining an optimal control u− with same cost).
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