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Abstract

The Internet of Things (IoT) is now experiencing its first phase of industrialization. Industrial companies are completing
proofs of concept and many of them plan to invest in automation, flexibility and quality of production in their plants. Their
use of a wireless network is conditioned upon its ability to meet three Key Performance Indicators (KPIs), namely a maximum
acceptable end-to-end latency L, a targeted end-to-end reliability R and a minimum network lifetime T . The IoT network has
to guarantee that at least R% of messages generated by sensor nodes are delivered to the sink with a latency ≤ L, whereas the
network lifetime is at least equal to T . In this paper, we show how to provide the targeted end-to-end reliability R by means
of retransmissions to cope with the unreliability of wireless links. We present two methods to compute the maximum number of
transmissions per message required to achieve R. MFair is very easy to compute, whereas MOpt minimizes the total number
of transmissions necessary for a message to reach the sink. MFair and MOpt are then integrated into a TSCH network with
a load-based scheduler to evaluate the three KPIs on a generic data-gathering application. We first consider a toy example with
eight nodes where the maximum number of transmissions MaxTrans is tuned per link and per flow. Finally, a network of 50
nodes, representative of real network deployments, is evaluated assuming MaxTrans is fixed. For both TSCH networks, we
show that MOpt provides a better reliability and a longer lifetime than MFair, which provides a shorter average end-to-end
latency. MOpt provides more predictable end-to-end performances than Kausa, a KPI-aware, state-of-the-art scheduler.

Index Terms

IoT; industrial IoT; reliability; TSCH; latency; scheduling; network lifetime; IEEE802.15.4e; PDR; ETX; retransmission;
probabilistic guarantee

I. INTRODUCTION

The Internet of Things (IoT) is transforming our daily life at home [1], at work, in our cities [2], in transportation [3], in
sport training and healthcare, in process control and automation, in smart farming and beyond.

A. Context

At home or in the office, the IoT allows us to save time and energy by controlling lights and appliances and knowing
our resource consumption habits. In business and industry, it increases productivity and efficiency by streamlining processes.
In transportation, it helps people to enjoy services of better quality. IoT devices are electronic devices able to communicate
with a network and perform a task. We can draw a distinction between consumer devices, smart home devices, enterprise and
industrial IoT devices. In this paper, we do not focus on IoT devices themselves, but rather on applications using these devices.
More precisely, we will consider IoT applications that are responsible for data gathering and are the most demanding in terms
of quality of service provided by the networks supporting them [4], [5]. We will consider three types of requirements:
• end-to-end reliability, denoted R: the data generated by any sensor node must be delivered to the sink with a probability

greater than or equal to R. A value of 0.99 is frequent. In industry, a value of 0.99999 is targeted.
• end-to-end latency, denoted L: since, on the one hand, the role of the network is to collect data generated by wireless

sensor nodes that are deployed in the area covered by this network and, on the other hand, only up-to-date information
can be used to take accurate decisions, the time elapsed between data generation and data delivery to the sink is defined
as the end-to-end latency. A value less than one second is usual.

• network lifetime, denoted T : since most IoT devices are battery operated, the goal of the network is to maximize its
lifetime defined as the time when the first device has exhausted its battery. The importance of this requirement increases
with the difficulty or the cost of replacing a battery in the environment concerned. A lifetime of several years (e.g., 3
years) is usual.

Since most wireless sensor networks deployed up to now are based on the IEEE 802.15.4 technology [6] and, given that the
TSCH (Time Slotted Channel Hopping) technology [7] has been designed to enhance the IEEE 802.15.4 technology to better
meet the three types of requirements previously defined, we focus our study on TSCH networks. Is a TSCH network able to
meet the usual requirements of IoT applications? The goal of this paper is to answer this question, which can be refined into:
is a TSCH network capable of ensuring that at least R percent of messages will be delivered to the sink with a delay less than
or equal to L, and a network lifetime greater than or equal to T , while taking into account the unreliability of wireless links.
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B. Contributions

Before going further, we define the concept of flow. A flow is defined as a set of messages having the same attributes
such as the source address, the destination address and the QoS (Quality of Service) parameters (e.g., end-to-end reliability,
end-to-end latency).

In contrast to many network performance evaluations, we take into account the unreliability of wireless links. The first
contribution of this paper is to show how to reach the targeted end-to-end reliability R with two methods MFair and MOpt
able to estimate the maximum number of transmissions per message and per flow over each link visited, taking into account
both the heterogeneity of link quality and the dynamicity of link quality observed on real traces. Whereas MFair is very
simple, MOpt minimizes the total number of transmissions per message, for each flow considered. The second contribution
consists of providing a fully-integrated approach for a TSCH network by integrating these methods and a Load-based scheduler
in the 6TiSCH stack. As a third contribution, we evaluate the performances (i.e., the end-to-end reliability and the end-to-end
latency) obtained by this approach on two TSCH networks, one of eight nodes and the other of 50 nodes. Finally, we show that,
on a generic data-gathering application, this approach provides more predictable end-to-end performances than Kausa [8], a
KPI-aware state-of-the-art scheduler.

This paper is organized as follows. In Section II, we present the advantages and drawbacks of well-known link quality
estimators and show how they are used to enhance network performances. Since the approach proposed in this paper shares
the same goals as Kausa [8], Kausa is briefly described. A more detailed description is given in Section VII. Section III
describes the two methods we propose to estimate the maximum number of transmissions per message and per flow over each
link visited. Section IV shows how to integrate these methods in a TSCH network with a centralized scheduling function.
Section V gives performance results with regard to end-to-end reliability and end-to-end latency for a targeted end-to-end
reliability ranging from 0.9 to 0.99999 for a toy example. In Section VI, a TSCH network of 50 nodes is considered with
a generic data-gathering application. End-to-end latency and reliability are evaluated. The solution proposed is compared to
Kausa in Section VII. Finally, we conclude in Section VIII.

II. RELATED WORK

Different ways to estimate the quality of a wireless link exist. They all rely on link measurements obtained by an active,
passive or hybrid link monitoring. A usual classification distinguishes between hardware and software-based link quality
estimators [9], [10]. Hardware estimators have the advantage of being directly provided by hardware without the need for any
additional processing overhead. However, their accuracy is not very good for two reasons. First, they are measured only on
successfully received packets, and they do not take into account the number of packet losses. Second, they are not evaluated
on the whole packet received but only on eight symbols of this packet. The main hardware-based quality estimators are RSSI
(Received Signal Strength Indicator), LQI (Link Quality Indicator), and SNR (Signal-to-Noise Ratio). In addition, LQI depends
on the manufacturer of the radio transceiver used. For the software-based quality estimators, we distinguish those based on
PRR (Packet Reception Rate), from those based on RNP (Required Number of Packet retransmissions) and finally those using a
score. For instance, ETX (Expected Transmission Count) [11] is classified as an RNP-based estimator, whereas F-LQE (Fuzzy
Link Quality Estimator) [12] is a score-based one assessing link quality in terms of four properties: Smoothed Packet reception
Ratio, Stability factor, ASymmetry Level and channel Average Signal-to-Noise Ratio. In [13], the authors introduce Bmax,
the maximum count of consecutive transmissions needed for a frame to be transmitted on a link. This metric evaluates the
link burstiness, where a burst is defined as a period of continuous packet loss. It is obtained empirically for each link based
on previous transmissions and can be seen as an observed worst case. Then, they build a schedule that allocates Bmax cells
for every frame that a link is supposed to carry. The problem with such a method is that it may require a long delay (more
than 140 hours according to the authors) before a representative Bmax is known for all the links.

Whatever the link quality estimator used, authors usually agree on the following conclusions:
• The quality of any wireless link can be classified as good, intermediate or bad. The challenge lies in an accurate estimation

of the intermediate link quality.
• An ideal link quality estimator should be [10] energy efficient (i.e., requiring low processing, communication and memory

overhead), accurate (i.e., reflecting the real link behavior), reactive (i.e., able to promptly react to persistent link state
changes) and stable (i.e., able to tolerate transient link state changes).

• To better reflect the real behavior of a link, several link properties should be taken into account. That is why link quality
estimators tend to combine several simple estimators [14] and use sophisticated techniques (e.g., simple average, filtering,
machine learning [15], [16], regression, and fuzzy logic [17], [18]) to produce a metric from link measurements.

Link quality estimators have been used to improve the quality of service provided to end-users [19]. By using links of
better quality, the network throughput is maximized, the delivery times are minimized, routes are more stable [18], etc. These
improvements can be increased by link quality prediction using online machine learning techniques as in [20]. In such a case,
packets are then able to avoid links before their quality degrades below an acceptable threshold, and routing reactivity is
improved. Furthermore, if both the link quality estimator and the routing protocol take energy into account, network lifetime
is maximized, as in [21].
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Closer to our work, Gaillard et al. propose a greedy algorithm that optimizes the distribution of links used by flows network-
wide [22]. These authors extend TASA [23], a well-known centralized scheduling algorithm for FTDMA networks, to take
into account retransmissions and fragmented packets. They build a schedule that complies with reliability expectation by
adding extra cells that are used in the case of consecutive retransmissions. They take into account link quality and packet
fragmentation. The same authors further extend their research in [8] by proposing Kausa, a centralized scheduling algorithm
that builds resource paths that guarantee QoS per flow, when multiple applications are using the same network, and each
application has its own requirements and traffic flows.

In this paper, we propose to use a simple link quality estimator: PDR (Packet Delivery Rate) that is easily computed by the
sender as the ratio of the number of acknowledged frames to the number of sent frames. Even if this estimator is not ideal,
as previously defined, it provides an accurate estimation of link behavior because, unlike hardware-based link estimators, it
takes into account packet losses. We use the PDR link quality estimator to compute the maximum number of transmissions
per message and per flow over any link visited by the flow considered.

We share the same goal as Kausa [8]: namely, to build a centralized schedule ensuring that flows meet their required end-
to-end latency and delivery rate, by means of message retransmissions. Like [8], we adopt a per flow approach, allowing us
to differentiate QoS per flow. However, unlike [8], we consider the optimal solution for any flow to be the one that minimizes
the total number of transmissions per message of this flow, while achieving the desired end-to-end reliability. Furthermore,
traces obtained from real IoT networks like [24], [25] allow us to better understand the challenges of wireless networking and
make realistic assumptions. That is why, in this paper, the performance evaluation is based on PDR values computed from a
realistic model, as explained in Section VI-A.

III. OPTIMAL RETRANSMISSION ESTIMATION

To cope with the unreliability of network links, unacknowledged messages are retransmitted up to a maximum number of
retransmissions. We have to determine this maximum number that of course depends on the unreliability of the link considered
as well as the targeted end-to-end reliability R.

Since each flow may request its own QoS, we adopt a per-flow approach. Without loss of generality, we assume that each
message is labeled with its flow tag, which includes the origin node of the flow.

A. Assumptions and Basic Properties

Let us consider the flow f originating from any sensor node Nh with h ∈ [1, n]. Let h denote the path length (i.e., the
number of hops) from Nh to the sink N0. To simplify the notation, we assume that the path is defined by Nh → Nh−1 →
Nh−2 · · · → N0.

For any link j ∈ [1, h] of f ’s path, we denote by Mj the maximum number of transmissions of any message of f
transmitted by node Nj to its parent in the routing tree, and Pj the probability of successful acknowledgment receipt after a
single transmission, whereas Rj is the probability of successful acknowledgment receipt on link j after a maximum number
Mj ≥ 1 of transmissions. Table I gives the notations used in this paper.

TABLE I: Main notations.

Name Meaning
R the targeted end-to-end reliability
L the targeted end-to-end latency
T the targeted network lifetime
j the link from node Nj to its parent in the routing tree
Mj the maximum number of transmissions of any message transmitted on link j
Pj the probability of successful acknowledgment receipt after a single message

transmission on link j
Rj the probability of successful acknowledgment receipt on link j after a maximum

number Mj of transmissions

For the sake of simplicity, we adopt the following assumptions:

Assumption 1. Network links fail independently.

Assumption 2. The transmissions of any message fail independently.

Assumption 3. Each node has enough Transmission opportunities to prevent message drops due to Transmission queue
overflow.

In a TSCH network, this assumption means that the scheduling algorithm has assigned enough transmission cells to each
node. As a consequence, the unreliability of a transmission is only due to the unreliability of the wireless link considered. If
this assumption were not true, then the computation of the transmission reliability should include not only the message loss
due to the unreliability of the wireless link considered but also the message loss due to Transmission queue overflow.
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We first recall some basic properties:

Property 1. The end-to-end reliability on a path is equal to the product of the reliability of each link composing that path.

Property 2. The probability of successful acknowledgment receipt over any link j increases with the maximum number of
message transmissions Mj according to the following equation:

Rj = 1− (1− Pj)
Mj . (1)

Proof. After Mj transmissions, the acknowledgment of a message is not received successfully with a probability equal to
(1−Pj)

Mj . Hence, the probability of successful acknowledgment receipt after Mj transmissions is equal to 1−(1−Pj)
Mj .

B. A Fair Method

The question is: knowing the end-to-end reliability that must be met on a given path, how to distribute this targeted end-to-
end reliability into the targeted reliability of each link on that path? The maximum number of transmissions on each link is
then deduced from the targeted reliability on the link and the probability of successful transmission on that link. In this paper,
we propose two methods that can be applied to any network meeting Assumptions 1–3.

Since we adopt a per-flow approach, we consider any flow f , originating from a node h hops away from the sink. In other
words, the path of f consists of h links, h ≥ 1. Since the end-to-end reliability on the path is equal to the product of the
reliability of each of its links, which should be ≥ R, a simple solution consists of fairly and uniformly sharing the end-to-end
reliability over each link of the path. Hence, each link j has to meet a reliability equal to Rj = R1/h. The maximum number
of transmissions on any link j is then equal to Mj = dLog(1−R1/h)

Log(1−Pj)
e. This principle is applied by the MFair Algorithm given

hereafter (see Algorithm 1).

Algorithm 1 MFair: compute the number of transmissions on each link j to reach a reliability R1/h over this link per
message of flow f visiting h links.

Require: R the targeted end-to-end reliability, Pj=the success probability of receiving the acknowledgment after a single
message transmission over link j with 1 ≤ j ≤ h

Ensure: Mj is the minimum number of transmissions on link j to achieve R1/h

for each link j do
if Pj = 1 then
Mj ← 1

else
Mj ← dLog(1−R1/h)

Log(1−Pj)
e

end if
end for

Property 3. The processing complexity of the MFair Algorithm is in O(1).

Proof. The complexity of the Fair Algorithm is equal to the complexity of computing dLog(1−R1/h)
Log(1−Pj)

e for each link, times h
the number of links, hence the property.

Figure 1 depicts the maximum number of transmissions over a link whose probability of successful acknowledgment receipt
ranges from 0.5 to 0.9 for a 4-hop flow when the targeted end-to-end reliability ranges from 0.9 to 0.9999.
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Fig. 1: Maximum number of transmissions over a link visited by a 4-hop flow, computed by MFair.

C. An Optimal Method

For any sensor node Ni, let us denote f the flow originating from Ni. The problem consists of minimizing the total number
of transmissions needed to deliver any message of f to the sink, under the constraint that the end-to-end latency is greater
than or equal to R.

The optimization problem can be defined as follows:
Goal: Find the values of Mj for each link j visited by f , j = 1 · · ·h that minimize

∑h
j=1 Mj under the constraints:

h∏
j=1

(1− (1− Pj)
Mj ) ≥ R, (2)

Mj integer ≥ 1. (3)

If several solutions exist for the same total number of transmissions, choose the solution maximizing
∏h

j=1(1− (1−Pj)
Mj ).

Lemma 1. Each link j = 1 · · ·h should provide a reliability Rj at least equal to the requested end-to-end reliability R,
Rj ≥ R. Hence, Mj ≥ d Log(1−R)

Log(1−Pj)
e.

Proof. If there is a link j that provides a reliability Rj < R, then the product of the reliability of all other links should be
greater than 1 to obtain an end-to-end reliability of R, which is impossible. Therefore, each link has to provide a reliability
at least equal to R by means of retransmissions. Since the reliability of a link j increases with the maximum number of
transmissions according to Equation (1), to obtain an end-to-end reliability of R, the number of transmissions Mj should be
greater than or equal to that needed to obtain a link reliability of R, leading to Mj ≥ d Log(1−R)

Log(1−Pj)
e.

Lemma 2. There is no solution ensuring an end-to-end reliability≥ R, with a total number of transmissions <
∑h

j=1d
Log(1−R)
Log(1−Pj)

e.

Proof. It is deduced from Lemma 1.

Lemma 3. If there is no solution ensuring an end-to-end reliability greater than or equal to R, with a total number of
transmissions ≤M =

∑h
j=1d

Log(1−R)
Log(1−Pj)

e and, if increasing Mj to Mj +1 for the link j maximizing the value of Pj(1/Rj−1)
does not achieve R, then there is no solution ensuring an end-to-end reliability R in M + 1 transmissions.

Proof. Assuming that there is no solution ensuring an end-to-end reliability ≥ R, with a total number of transmissions
≤M =

∑h
j=1d

Log(1−R)
Log(1−Pj)

e, we compute, for any link k, the benefit on the end-to-end reliability brought by increasing Mk to

Mk+1. The new end-to-end reliability can be written newR = (
∏h

j=1,j 6=k Rj)(1−(1−Pk)
Mk+1). Since 1−(1−Pk)

Mk+1 =

1− (1−Pk)(1−Pk)
Mk = Rk+Pk(1−Rk), we get newR = (

∏h
j=1,j 6=k Rj)(Rk+Pk(1−Rk)). Denoting

∏h
j=1 Rj as oldR,
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we get newR = oldR(1−Pk +Pk/Rk). Hence, maximizing newR means selecting the link k that maximizes Pk(1/Rk− 1).
Hence, if with that link k, the end-to-end reliability newR is not greater than or equal to R, then no other link can meet the
end-to-end reliability R with a total number of transmissions equal to M + 1.

Property 4. The MOpt algorithm given in Algorithm 2 finds the optimal solution.

Proof. The algorithm starts with the smallest possible number of transmissions M , according to Lemma 2. If the requested
end-to-end reliability is met, then the solution is found. Otherwise, the algorithm increases the total number of transmissions
by one and checks again whether the requested end-to-end reliability is met by increasing the number of transmissions of
one on the link providing the highest reliability gain. If yes, the solution is found, otherwise there is no solution for M + 1
transmissions.

Algorithm 2 MOpt: Compute the number of transmissions Mj on link j to achieve an end-to end reliability ≥ R and minimize
the total number of transmissions per message of flow f visiting h links

Require: R the targeted end-to-end reliability 0 < R < 1, Pj=the probability of successful acknowledgment receipt after a
single transmission over link j with 1 ≤ j ≤ h

Ensure: Mj is the minimum number of transmissions to achieve R

for each link j do
if Pj = 1 then
Mj ← 1

else
Mj ← d Log(1−R)

Log(1−Pj)
e

Rj ← 1− (1− Pj)
Mj

Gainj ← Pj(1/Rj − 1)

end if
end for
while

∏h
j=1 Rj < R do

Select the link j maximizing Gainj

If several links provide the same Gain, take the farthest link j from the sink
Mj ←Mj + 1

Rj ← 1− (1− Pj)
Mj

Gainj ← Pj(1/Rj − 1)

end while

We now evaluate the complexity of this algorithm and more particularly we upper bound the number of iterations needed
to find the maximum number of transmissions over each link such that the total number of transmissions per message of the
flow considered is minimized.

Property 5. The MOpt Algorithm, given in Algorithm 2, finds the optimal solution in a number of iterations less than or
equal to

∑h
j=1b

Log(h)
Log(1−Pj)

c.

Proof. Let us consider any link j visited by the flow considered. Since R → 1, we have R1/h < 1 − 1−R
h . Hence,

Log(1 − R1/h) > Log(1 − R) − Log(h), leading to: Log(1−R1/h)
Log(1−Pj)

< Log(1−R)−Log(h)
Log(1−Pj)

. We then obtain dLog(1−R1/h)
Log(1−Pj)

e ≤
dLog(1−R)−Log(h)

Log(1−Pj)
e. Since da − be ≤ dae − bbc, we get: Mj,fair − Mj,init ≤ b Log(h)

Log(1−Pj)
c, where Mj,fair denotes the

maximum number of transmissions over link j, whereas Mj,init denotes the first value tried by the optimal algorithm. Since∑h
j=1 Mj,fair is the maximum number of transmissions of a message to reach the sink provided by the Fair algorithm and

this number is never exceeded by the Optimal algorithm, the maximum number of iterations of the Optimal algorithm is upper
bounded by

∑h
j=1 Mj,fair −

∑h
j=1 Mj,init ≤ b Log(h)

Log(1−Pj)
c, hence the property.

D. Expected vs. Maximum Number of Transmissions

For any flow considered and whatever the method adopted to compute the maximum number of transmissions over each
link visited by the flow considered, the real number of transmissions used is much smaller than the maximum one, which
occurs with a very low probability. In this section, we want to evaluate the energy saving obtained with a variable number of
transmissions instead of always considering the worst case that has a very low occurrence probability. With the Assumptions 1,
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2 and 3, we can evaluate E(Mj) the expected number of transmissions on any link j, knowing that Mj , the maximum number
of transmissions, is computed either by MFair or by MOpt. We then have:
E(Mj) =

∑Mj−1
k=1 kPj(1− Pj)

k−1 +Mj(1− Pj)
Mj−1.

Property 6. The expected number of transmissions on any link j is equal to

E(Mj) =
1− (1− Pj)

Mj

Pj
,

where Mj denotes the maximum number of transmissions used for link j.

Proof. Let us consider Sn(x) =
∑n

k=1(1 + x)k and let S′n(x) be its derivative. We have S′n(x) =
∑n

k=1 k(1 + x)k−1. Since
Sn(x) is the sum of a geometric progression, we have:
Sn(x) = − 1+x−(1+x)n+1

x = (1+x)((1+x)n−1)
x . Hence, the derivative is:

S′n(x) =
(1+x)n(nx−1)+1

x2 . By replacing x by −Pj and n by Mj − 1, we get

E(Mj) =
∑Mj−1

k=1 kPj(1−Pj)
k−1+Mj(1−Pj)

Mj−1 =
1−(1−Pj)

Mj−1(−1−(Mj−1)Pj)+1
Pj

=
1−(1−Pj)

Mj

Pj
, hence the property.

Figure 2 depicts the maximum and the expected numbers of transmissions per message of a 4-hop flow, for a targeted end-
to-end reliability of 0.9999, over a link whose success probability per transmission ranges from 0.5 to 0.9. We observed that,
in all the cases studied, although the value of E(Mj) decreases when Pj , the success probability per transmission increases,
dE(Mj)e remains constant and equal to 2. By stopping its retransmissions as soon it receives an acknowledgment, the sender
saves its energy. For instance, let us consider that for any link j for which Pj = 0.5 is visited by a 4-hop flow, the sender
saves Mj −dE(Mj)e transmissions for this link that is 16− 2 = 14 transmissions for MFair. Since the flow visits four hops
and assuming that its four links have the same success probability, each of the four transmitting nodes saves 14 transmissions.
Assuming that the schedule is periodic with a period of 101 time slots (the default value in the TSCH network), and this flow
generates a message per schedule period, these four nodes save 140 ms each schedule period of 101× 7.25 = 732.25 ms, for
a slot duration of 7.25 ms. This corresponds to an increase of 19% in sleeping time per schedule period for each node.

Fig. 2: Expected number of transmissions versus MFair Maximum number of transmissions over a link.

It is useful to compare this value with the value of ETX on link j, denoted by ETXj . Let Dj be the delivery rate from
node j to its parent, whereas Dr(j) is the delivery rate in the reverse direction. Since Pj is defined as the probability for j to
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receive the acknowledgment of its message, we have to take into account the delivery rates of both directions, which gives:

Pj = Dj ∗Dr(j) (4)

ETXj is defined as:

ETXj =
1

Dj ∗Dr(j)
. (5)

As a consequence, ETXj does not depend on the targeted end-to-end reliability R but only on the reliability of both
directions of the link considered. This explains the main difference between ETXj and Mj .

In addition, ETXj is not equal to E(j). Indeed, E(j) assumes a maximum number of transmissions equal to Mj , whereas
ETXj assumes a number of transmissions that may be infinite.

IV. FRAMEWORK FOR A TSCH NETWORK

The MOpt and MFair methods are now applied to compute the maximum number of transmissions per link and per flow.
Flows are generated by a low-power network based on the TSCH technology [7].

We focus on data gathering applications with end-to-end requirements in terms of reliability and latency, as well as
requirements with regard to network lifetime. The network supporting these applications is a TSCH network [7].

A. TSCH Network

In a TSCH network, the medium access is time-slotted and several transmissions are done on different channels in the
same time slot. More precisely, transmissions are scheduled in cells, where a cell is defined by its channel offset and its time
slot offset. There are two types of cells: shared cells where any node having a message to transmit is allowed to do so, and
dedicated cells, where only the transmitter defined in the schedule is allowed to. The choice of a wireless TSCH network helps
to meet Assumptions 1–3 because the mapping between logical channels and physical ones changes at each time slot. Thus,
even if a message is retransmitted in the next slot and on the same logical channel as previously, it will be transmitted on a
different physical channel.

The schedule of transmissions is periodic and conflicts in dedicated cells are avoided. In addition, nodes know from the
schedule in which slots they are allowed to transmit or to receive. They sleep in any other slot in order to save energy.

B. Scheduling Function

The scheduling algorithm, which is assumed to be centralized in this paper, works per flow: it allocates the cells needed to
transmit a message from the flow origin to the sink. More precisely, it proceeds hop by hop, starting from the flow origin and
allocating to each visited node the number of cells needed to receive the message from its child and then the number of cells
needed to transmit this message to its parent. Since the scheduler does not know a priori which message transmission will be
successful, it has to take into account the worst case where a message is received by the next hop after the maximum number
of transmissions for this link and this flow. Hence, for each message, the scheduler allocates to each visited link a number of
cells corresponding to the maximum number of transmissions on that link for the flow in question.

However, this does not mean that each message is transmitted a maximum number of times. In fact, as soon as the sender
has received the acknowledgment of any message msg, it stops retransmitting msg and may use the slot foreseen for a
retransmission of msg for the transmission of another message, if it has one in its Transmit queue.

Any sensor node first transmits the message in its Transmit queue that has the highest flow priority, as the primary criterion
and the smallest timestamp within a same flow, as the secondary criterion. This assumes that messages are timestamped when
they are generated by their origin node.

The Load-based scheduler is selected because of its simplicity combined with its very good performances [26]. This scheduler
schedules first the flow originating from the most loaded node. The load of a node is computed as the number of cells needed
to transmit its own flows, plus the number of cells needed to receive and transmit the flows originating from its descendants.

C. Computation of Key Performance Indicators

In this paper, we consider three Key Performance Indicators (KPIs) that matter for Industry 4.0 and the IoT. We now show
how to compute them for a TSCH network and a scheduling function defined in Sections IV-A and IV-B, respectively. These
three KPIs are:
• The maximum end-to-end latency L is the maximum time elapsed between data generation by a sensor node and its delivery

to the sink. To compute this value within the framework defined in Section IV-B, we make an additional assumption:
Assumption 4. The maximum number of message transmissions on a link, denoted as MaxTrans, a parameter of the
MAC TSCH protocol, is dynamically tuned according to the value computed by MFair or MOpt.
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With Assumption 4, the maximum end-to-end latency [27] is obtained when the last slot assigned to the node considered
has just elapsed and then only the last transmission of the message is successful. This gives:

(SlotframeSize− 1 + UsedSlots)× SlotDuration, (6)

where UsedSlots is the number of slots used by the schedule for data gathering. Hence, the smallest maximum end-to-end
latency that can be achieved is obtained by an optimal schedule, which uses MinSize the minimum number of slots for
data gathering and for a slotframe duration equal to this number of slots. This smallest maximum latency is equal to

(2 ∗MinSize− 1)× SlotDuration. (7)

• The end-to-end reliability R provided by the network. It is evaluated by the ratio of the total number of user-data messages
sent by the sensor nodes over the total number of user-data messages delivered to the sink.

• Network lifetime T is defined as the time the first node runs out of battery. Network lifetime can be expressed as:

Min
N∈Nodes

Initial Energy(N)× SFDuration

Average Energy Consumption(N)
, (8)

where Initial Energy(N) denotes the initial energy of node N , Average Energy Consumption(N) is the average
energy consumption of N per slotframe, and SFDuration is the slotframe duration.

To evaluate the network lifetime, defined as the time up to first battery depletion of the busiest node, we use the parameters
whose values are given in Table II.

TABLE II: Parameters used for network lifetime computation.

Parameter Value
Initial energy of node powered by 2 Energizers L-91 AA batteries 2821.5 mAh

Transmit a data frame & receive its acknowledgment 54.5 µC
Receive a data frame & transmit its acknowledgment 32.6 µC

IdleListen 6.4 µC
Sleep 0 µC

To summarize, the IoT network has to guarantee that at least R percent of the messages generated by sensor nodes are
delivered to the sink with a latency ≤ L, whereas the network lifetime is at least equal to T .

D. Generalization of the Theoretical Bound on the Maximum Latency

We now compute a theoretical bound on the maximum latency when TXCellf (Ni) < MaxTrans, where TXCellf (Ni)
denotes the number of TX cells assigned to flow f on node Ni.

Let f be the flow whose message m has the maximum end-to-end latency. Let Nk be the source node of f which is k hops
away from the sink. Flow f visits successively Nk, Nk−1, · · ·N1 and then the sink. We adopt an additional assumption: on
any visited node, m is never delayed by another flow. The worst case occurs when on Nk message m is generated just after
the last slot assigned to Nk. Hence, Nk has to wait for the next slotframe to transmit m. In addition, on any node, only the
last transmission (i.e., the MaxTransth transmission) is received in the worst case; the previous ones are lost. According to
the framework defined in Section IV-B, when any node Ni receives a message of flow f in a slotframe, it has TXCellf (Ni)
cells to transmit it to its parent in the current slotframe. In each slotframe, any node Ni has

∑
g TXCellg(Ni) opportunities

to transmit a message to its parent, where g is a flow visiting Ni. Hence, we get the following formula:

MaxLatency(f) ≤
((
d MaxTrans

TXCellf (Nk)
e+

k−1∑
h=1

bMaxTrans− TXCellf (Nh)∑
g TXCellg(Nh)

c
)
∗SlotframeSize+SlotUsed

)
∗SlotDuration. (9)

If only Depth, the routing tree depth, and MinTXCell, the minimum number of TX cells per pair (sensor node, flow),
are known, the bound becomes, taking into account that each sensor node generates its own flow:

MaxLatency ≤
((
d MaxTrans

MinTXCell
e+

k−1∑
h=1

b MaxTrans−MinTXCell

MinTXCell ∗ (Depth− h+ 1)
c
)
∗SlotframeSize+SlotUsed

)
∗SlotDuration. (10)

Notice that Equations (9) and (10) generalize Equation (6), which is valid only when MinTXCell ≥ MaxTrans.
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V. PERFORMANCE RESULTS FOR A TOY EXAMPLE

We first consider a toy example of a wireless TSCH network comprising a sink and seven sensor nodes. Each sensor node
generates an application message of 27 bytes every 10 seconds. The slot duration is assumed to be 7.25 ms. The routing tree
is depicted in Figure 3, where node A denotes the sink. The value associated with each link j gives Pj the probability of
successful receipt of a single transmission over that link. We notice that links have heterogeneous qualities, ranging from 0.5
to 0.9. For each of the seven flows generated by a sensor node, we compute the maximum number of transmissions per link
for any message of this flow. All the flows, except that generated by B, are multi-hop, which is six flows. In this example, we
assume that Assumption 4 is met: MaxTrans is dynamically tuned according to the value computed by MFair or Mopt.

Fig. 3: A routing tree with the PDR of each link used by flows.

A. Number of Transmissions and End-to-End Reliability

Figure 4 depicts the total maximum number of transmissions for a message of a flow, depending on the hop number, when
the targeted end-to-end reliability ranges from 0.9 to 0.9999. In this figure, the one-hop flow corresponds to the flow originating
from B, whereas the two-hop flows correspond to the flows originating from C and E, the three-hop flows are those generated
by D and F and the four-hop flows are those originating from G and H .

Fig. 4: Total number of transmissions for a flow message.
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Maximum number of transmissions for targeted R=0.9 Total number of End-to-end
Flow Hop P=0.7 P=0.5 P=0.8 P=0.6 P=0.9 transmissions per msg reliability

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.
B 1 2 2 2 2 0.91 0.91
C 2 3 3 5 4 8 7 0.9425 0.91218
E 2 3 3 4 3 7 6 0.9480 0.9107
D 3 3 3 5 5 3 2 11 10 0.9350 0.90489
F 3 3 3 4 4 10 10 0.92249 0.92249
G 4 4 3 6 5 3 3 2 2 15 13 0.95890 0.92570
H 4 4 3 6 5 3 3 19 16 0.95345 0.90583

TABLE III: Comparison of MFair and MOpt for a targeted end-to-end reliability R=0.9 on 7 flows.

Maximum number of transmissions for targeted R=0.99 Total number of End-to-end
Flow Hop P=0.7 P=0.5 P=0.8 P=0.6 P=0.9 transmissions per msg reliability

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.
B 1 4 4 4 4 0.9919 0.9919
C 2 5 5 8 8 13 13 0.993673 0.993673
E 2 5 5 6 6 11 11 0.99348 0.99348
D 3 5 5 9 8 4 4 18 17 0.99402 0.99208
F 3 5 5 5 7 6 17 16 0.9935 0.99106
G 4 5 5 9 8 4 4 3 3 21 20 0.99303 0.99109
H 4 5 5 9 9 8 3 3 27 26 0.99208 0.99014

TABLE IV: Comparison of MFair and MOpt for a targeted end-to-end reliability R=0.99 on 7 flows.

Maximum number of transmissions for targeted R=0.999 Total number of End-to-end
Flow Hop P=0.7 P=0.5 P=0.8 P=0.6 P=0.9 transmissions per msg reliability

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.
B 1 6 6 6 6 0.99927 0.99927
C 2 7 7 11 11 18 18 0.99929 0.99929
E 2 7 7 9 8 16 15 0.99951 0.99912
D 3 7 7 12 11 5 6 24 24 0.99921 0.999229
F 3 7 7 9 9 23 23 0.99930 0.99930
G 4 7 8 12 11 6 6 4 4 29 28 0.99937 0.99922
H 4 7 7 12 12 6 6 37 37 0.999229 0.999229

TABLE V: Comparison of MFair and MOpt for a targeted end-to-end reliability R=0.999 on 7 flows.

Maximum number of transmissions for targeted R=0.9999 Total number of End-to-end
Flow Hop P=0.7 P=0.5 P=0.8 P=0.6 P=0.9 transmissions per msg reliability

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.
B 1 8 8 8 8 0.999934 0.999934
C 2 9 9 15 15 24 24 0.9999498 0.9999498
E 2 9 9 11 11 20 20 0.99993837 0.99993837
D 3 9 9 15 14 7 7 31 30 0.999937 0.999918
F 3 9 9 12 11 30 29 0.99994386 0.999906
G 4 9 9 16 15 7 7 5 5 37 36 0.999942 0.999927
H 4 9 9 16 15 7 7 48 46 0.999937 0.999906

TABLE VI: Comparison of MFair and MOpt for a targeted end-to-end reliability R=0.9999 on 7 flows.

Maximum number of transmissions for targeted R=0.99999 Total number of End-to-end
Flow Hop P=0.7 P=0.5 P=0.8 P=0.6 P=0.9 transmissions per msg reliability

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.
B 1 10 10 10 10 0.9999941 0.9999941
C 2 11 11 18 17 29 28 0.99999441 0.9999906
E 2 11 11 14 13 25 24 0.99999554 0.99999152
D 3 11 11 19 18 8 8 38 37 0.99999376 0.99999185
F 3 11 11 14 14 36 36 0.99999377 0.99999377
G 4 11 11 19 18 9 9 6 6 45 44 0.9999948 0.9999929
H 4 11 11 19 18 9 9 58 56 0.9999939 0.9999909

TABLE VII: Comparison of MFair and MOpt for a targeted end-to-end reliability R=0.99999 on 7 flows.

Tables III to VII compare the values obtained with MFair and MOpt, when the targeted end-to-end reliability ranges from
0.9 to 0.99999. These tables show that, whatever the targeted reliability, and as expected:
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• The maximum number of transmissions per message over a link increases, when the link quality decreases.
• Both methods provide the same maximum number of transmissions for all single-hop flows.
• The total number of transmissions per message of any given multi-hop flow obtained by MOpt is always less than or

equal to that obtained by MFair. For instance, for R = 0.9 (see Table III), we observe a gain on the total number of
transmissions per message and per flow, which is equal to 1 for the 2-hop flows (i.e., flows originating from C and E),
and for the 3-hop flow originating from D. This gain becomes 2 for the 4-hop flow originating from G and 3 for the
4-hop flow originating from H . To summarize the results obtained for the six multi-hop flows considered, we observe
five improvements for R = 0.9, four improvements for R = 0.99, two improvements for R = 0.999, four improvements
for R = 0.9999 and five improvements for R = 0.99999, leading to a total of 20 improvements over the 30 cases tested.

• Even if the total number of transmissions is the same for both methods, the distribution over the links may differ as
exemplified in Table VII by the flow originating from D, where MOpt gets an end-to-end reliability of 0.99922, whereas
MFair gets a slightly less value 0.99921. Hence, MOpt provides the smallest total number of transmissions per flow
and, if equal with MFair, MOpt provides the highest end-to-end reliability.

• With MFair, two links having the same link quality always have the same maximum number of transmissions for the
same flow, as exemplified in all tables by the flow originating from H , where the links HD and CB have the same
quality. However, this is not always the case with MOpt; see, for instance, this flow in Table IV, where the maximum
transmission number for link HD is 9, whereas it is 8 for link CB. Since the nodes close to the sink usually have a
larger load, decreasing their load improves the network performances. Notice, however, that the maximum number of
transmissions on a given link depends on the flow. For instance, the maximum number of transmissions on Link B → A
is equal to 11 for all flows, except the flow originating at B, where it is 10, for a targeted R = 0.99999.

• The number of iterations of MOpt never exceeds h+ 1 in all the cases evaluated.

B. Load-Based Scheduling

Let us see how these transmissions are scheduled, assuming a per-flow approach and more precisely the selection of the
Load-based scheduler, which schedules first the flow originating from the most loaded node. We recall that the load of a node
is computed as the number of cells needed to transmit its own flows, plus the number of cells needed to receive and transmit
the flows originating from its descendants. Figures 5 and 6 depict the Load-based schedule of the seven flows generated
by sensor nodes with MFair and MOpt, respectively, assuming a targeted end-to-end reliability of 0.9. In both cases, the
Load-based scheduler schedules the flows in the same order, starting with the most loaded node B, the scheduling order is
B,C,D,E,H, F,G, although Load(B) = 52 cells with MFair and only 46 with MOpt. The two resulting schedules are
optimal in terms of slots needed because node B, the most loaded node, is kept busy in all slots of both schedules. However,
MFair requires exactly 52 slots to schedule the 72 transmissions, (see Figure 5), whereas MOpt requires only 46 slots to
schedule the 64 transmissions, (see Figure 6). In this simple configuration with seven flows, MOpt allows for saving eight
transmissions, which represents an improvement of 11% in the number of transmissions to schedule. In addition, MOpt allows
for saving six slots, which reduces by 11.5% the number of slots used.

Fig. 5: Load-based schedule with MFair.
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Fig. 6: Load-based schedule with MOpt.

In the Load-based schedule obtained with MFair and depicted in Figure 5, we have MinSize = 52 slots. Hence, for a slot
duration of 7.25 ms, the smallest maximum latency that can be achieved with MFair is equal to (52+51) ∗ 7.25 = 0.7465 s.
The average energy consumption per slotframe of node B, the greatest loaded node, is equal to: (22 × TXCharge + 30 ×
RXCharge)/SFDuration, where SFDuration denotes the slotframe duration. With an initial energy of 2821.5 mAh, the
default slotframe size of 101 slots and a slot duration of 7.25 ms, this node will have a lifetime of 39 days and a maximum
latency of (101− 1 + 52) ∗ 7.25 ∗ 10−3 = 1.102 s. To meet a lifetime of one year, the slotframe size should be greater than
or equal to 933 slots, with a maximum latency of (933− 1 + 52) ∗ 7.25 ∗ 10−3 = 7.0905 s.

With the Load-based schedule obtained with MOpt and depicted in Figure 6, we have MinSize = 46 slots. Hence, for a
slot duration of 7.25 ms, the smallest maximum latency that can be achieved with MOpt is equal to (46+45)∗7.25 = 0.65975 s,
which represents an improvement of 13.67%. It becomes 1.0585 s for the default slotframe size of 101 slots. The average energy
consumption of B per slotframe becomes (20×TXCharge+26×RXCharge)/SFDuration, leading to a network lifetime
of 44 days for the default slotframe size of 101 slots and a maximum end-to-end latency of (101− 1+ 46) ∗ 7.25 = 1.0585 s.
To meet a lifetime of one year, the slotframe size should be greater than or equal to 830 slots, with a maximum latency of
(830−1+46)∗7.25∗10−3 = 6.34375 s, which represents an improvement of 12.38% with regard to MFair. For a slotframe
size of 933 slots, MOpt would provide a maximum latency of 7.0905 s, a decrease of 11.77% with regard to MFair and a
network lifetime of 410 days instead of 365 for MFair, an increase of 12.40%.

Table VIII points out the trade-off between the maximum end-to-end latency and network lifetime by listing the results
obtained by MFair and MOpt for different slotframe sizes: 52, 101 and 933 slots. To increase the network lifetime by
increasing the slotframe size, provided that the application still generates the same number of messages per slotframe, leads to
an increase in maximum latency. MOpt provides a shorter maximum end-to-end latency because of a smaller schedule size
(i.e., smaller number of slots used).

TABLE VIII: The trade-off of end-to-end latency versus network lifetime for MFair and MOpt.

MFair MOpt Relative Improvement
Slotframe(slots) Slotframe(slots) Slotframe(slots)
52 101 933 52 101 933 52 101 933

Max. latency (s) 0.74675 1.102 7.134 0.70325 1.0585 7.0905 5.82% 3.94% 0.61%
Lifetime (days) 20.35 39.54 365.28 22.87 44.42 410.41 10.98% 12.35% 12.35%

VI. PERFORMANCE RESULTS OF A TSCH NETWORK WITH 50 NODES

For the performance evaluation of a TSCH network with 50 nodes, we use the 6TiSCH simulator [28], which has been
designed for a fast prototyping. In [8], network performances are evaluated on two specific applications running on a same
network. In this particular configuration, randomly deployed sensors are only in charge of generating messages that they forward
to a close relay, whereas relays are deployed according to a triangular grid. Since a more generic configuration is representative
of much more applications, we focus on a generic data gathering application running on random network topologies.

A. Simulation Parameters

The network topology is a random topology such that any mote has at least three neighbors (i.e., three motes with which
PDR ≥ 0.5). For each wireless link, the PDR value is computed according to the Pister–Hack model [29]. The 6TiSCH
protocol stack is used with RPL as the routing protocol with the ETX metric and the Load-based scheduler as the scheduling
function. RPL, MFair and MOpt use the PDR values computed for the wireless links considered. For each wireless link i,
RPL deduces ETX(i) from PDR(i). The simulation parameters used to evaluate the KPIs are those given in Table IX. The
deepest routing tree observed in the simulations is 7-hop deep, the shallowest is 4-hop deep, with a median of 5-hop.
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TABLE IX: Simulation parameters.

Parameter Value

Config.

Number of nodes 50
Number of Channels 16

Topology random
Link reliability computed

TSCH

Slot duration 10 ms
Slotframe size 700 slots

Secure join disabled
Keep-alive (L2) disabled

Transmit queue size 10 packets
Max of retransmissions 5 (i.e., max of 6 transmissions)

Routing RPL with ETX metric where DAO is disabled
a stable routing topology after 60 min

Scheduling Scheduling function Load-based scheduler

Application is run & measures made during the next 60 min
packet generation interval on each sensor node in [57 s, 63 s]

Simulation 100 runs per pair (algorithm, targeted reliability) algorithm ∈ {MOpt,MFair}
targeted reliability ∈ {0.9, 0.99, 0.999, 0.9999}

Notice that, in the simulations done with the 6TiSCH stack, MaxTrans, the maximum number of transmissions of any
message on any link is fixed, as in the standardized MAC TSCH protocol. In the 6TiSCH simulations, its value is set to 6. If
after six transmissions the acknowledgment is not received, the message is discarded. This behavior has a strong impact on
the latency. Since Assumption 4 is not met, the theoretical bound for the maximum latency given in Equation (6) is no longer
valid, we use the new theoretical bound given in Section IV-D.

A legitimate question is why a schedule provides a number of Transmission cells (TX) for any given flow greater than
MaxTrans, since a message that has not been acknowledged after MaxTrans transmissions is discarded. The justification is
provided by the decrease in the average end-to-end latency and the maximum end-to-end latency as we will see in Section VI-C.
This decrease is due to a greater number of opportunities to transmit.

B. End-to-End Delivery Rate

Simulation results about the average end-to-end delivery rate are depicted in Figure 7.

Fig. 7: End-to-end delivery rate obtained with MFair and MOpt.

As expected, the end-to-end reliability is better with MOpt than with MFair because MOpt maximizes the end-to-end
reliability provided for a minimum total number of transmissions per message.

C. End-to-End Latency

Simulation results about the average end-to-end latency are depicted in Figure 8.
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Fig. 8: Average end-to-end latency obtained with MFair and MOpt.

As MFair tends to compute a greater number of transmissions than MOpt, the schedule for MFair includes a greater
number of cells in a slotframe whose size is kept identical for MOpt and MFair. The more cells, the more chance to send
or forward. Since an application packet is generated at a random time point in the slotframe, the more transmission (TX)
cells the node has, and the more chance to send the packet immediately. This is why the average end-to-end latency is shorter
with MFair.

Figure 9 shows the percentage of messages delivered in a single slotframe. It is smaller with MOpt than with MFair due
to the greater number of TX cells granted by MFair.

Fig. 9: Percentage of packets delivered in one slotframe with MFair and MOpt.

Figure 10 depicts the cumulative distribution function of the end-to-end latency for MFair and MOpt. With MFair, 98%
of messages reach the sink in one slotframe that is with an end-to-end latency ≤7 s. The gap between MFair and MOpt
is smaller than 1%.
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Fig. 10: Cumulative distribution function of the end-to-end latency with MFair and MOpt.

The maximum end-to-end latency obtained by simulation with MFair and MOpt is illustrated in Figure 11. Since MFair
allocates more TX cells and the slotframe size is kept identical for MFair and MOpt, MFair provides a shorter maximum
end-to-end latency. For targeted reliabilities ≥0.999, MFair and MOpt provide very close maximum latencies.

Fig. 11: Maximum end-to-end latency obtained by simulation with MFair and MOpt.

Figure 12 depicts the schedule size expressed as the number of slots used in the schedule of MFair and MOpt. Unsurpris-
ingly, the schedule size increases with the targeted end-to-end reliability, due to a great number of transmissions on each link
to reach the targeted end-to-end reliability. Whatever the targeted reliability, the schedule size is always shorter with MOpt
than with MFair, as expected.
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Fig. 12: Maximum slot used by MFair and MOpt.

Table X compares the theoretical bound for the maximum end-to-end latency obtained by Equation (10) with the simulation
results, for different values of the targeted end-to-end reliability and a given random topology. The maximum end-to-end latency
obtained by simulation decreases when the targeted end-to-end reliability increases: a greater number of TX cells assigned to
nodes give them more opportunities to transmit in a slotframe. With the theoretical bound, the decrease is obtained when the
number of TX Cells assigned to a node increases to reach the targeted end-to-end reliability. Whatever the targeted reliability,
the bound given by Equation (10) and the simulation results are not close. The theoretical bound could be refined to take more
information into account.

TABLE X: Comparison of the theoretical maximum end-to-end latency and the simulation results for MFair and MOpt,
taken from particular simulations having the same routing topology.

Targeted End-to-End Reliability
0.9 0.99 0.999 0.9999

Schedule size (slots)

MFair 96 154 199 249
MOpt 84 134 190 246

relative improvement 12.5% 12.98% 4.52% 1.20%

Min TX cells per (node,flow) MFair 2 2 2 3
MOpt 2 2 2 3

Maximum end-to-end latency (s)
MFair

theory 28.96 29.54 29.99 16.49
simulation 13.79 13.93 9.64 7.70

MOpt
theory 28.84 29.34 29.90 16.46

simulation 19.93 13.94 7.43 7.69

End-to-end reliability MFair 0.997959 0.998977 0.998978 0.999659
MOpt 1 0.998294 0.999318 1

Table X also provides the end-to-end reliability. As expected, MOpt provides an end-to-end reliability better than MFair.
However, for a targeted end-to-end reliability ≥0.999, MFair fails to achieve the requested reliability, when MaxTrans is
left fixed to 6 instead of being dynamically tuned according to the values computed by MFair or MOpt.

D. Duty Cycle
With regard to network lifetime and energy consumption, we consider the busiest node excluding the root (sink) node, since

it is supposed to be mains-powered. This busiest node determines the network lifetime. The duty cycle on this busiest node is
computed as:

Duty Cycle =
number of slots used on the busiest node

schedule size in slots
. (11)

Note that Equation (11) is meant for the following comparison, which does not represent actual radio duty cycle. In TSCH,
a device does not turn on its radio all the time even during an active slot.
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Figure 13 depicts the number of cells assigned to the busiest node in one simulation run for each targeted end-to-end
reliability.

Fig. 13: Number of cells assigned by MFair and MOpt on the busiest node.

Table XI gives the duty cycle on the busiest node with MFair and MOpt. This gives an insight on network lifetime which
is determined by the lifetime of the busiest node.

TABLE XI: Comparison of the duty cycle of the busiest node for MFair and MOpt.

Targeted End-to-End Reliability
0.9 0.99 0.999 0.9999

Schedule size (slots) MFair 96 154 199 249
MOpt 84 134 190 246

Cells assigned to busiest node MFair 77 103 127 159
MOpt 63 87 122 149

Duty cycle of the busiest node MFair 11% 14.71% 18.14% 22.71%
MOpt 9% 12.42% 17.42% 21.28%

Relative gain in duty cycle 18.18% 15.53% 3.93% 6.29%

As a consequence, for high targeted reliabilities (i.e., ≥0.999), MFair and Mopt give close end-to-end latencies at a greater
energy cost for MFair.

E. Impact of MaxTrans, a TSCH Parameter

We now study the impact of MaxTrans the maximum number of transmissions of a message in TSCH, whose default
value is 6. We set MaxTrans to the value of 20, which is greater than the maximum number of transmissions on each
link computed by MFair or MOpt. We run the same simulations as previously and evaluate the impact on the end-to-end
reliability and the end-to-end latency.

As expected, the end-to-end reliability depicted in Figure 14 is increased both with MOpt and MFair, when the maximum
number of transmissions per message in TSCH is set to 20. It is very close to 100%, for all the values of the targeted reliability
tested. Notice, however, that increasing MaxTrans may lead to a network overload resulting in violations of the maximum
acceptable latency L. To avoid that, messages whose lifetime is greater than or equal to L should not be transmitted and should
be discarded.
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Fig. 14: End-to-end delivery rate obtained with MFair and MOpt for MaxTrans = 20 transmissions.

Fig. 15: Average end-to-end latency obtained with MFair and MOpt for MaxTrans = 20 transmissions.

The consequence of increasing MaxTrans to 20 is an increase in the average latency for both MFair and MOpt, as
shown in Figure 15. The shortest average latency is still provided by MFair. However, the gap decreases for high targeted
end-to-end reliabilities (i.e., ≥0.999). Using a value of MaxTrans greater than the value required by MFair or MOpt
on a given link may result in an increase in end-to-end latency and energy consumption for a very strongly limited gain in
end-to-end reliability.
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VII. COMPARISON WITH Kausa

Since Kausa [8] is a well-known centralized scheduler that takes into account the unreliability of wireless links and adopts
a per-flow approach to meet KPIs, we now compare MOpt to Kausa when run in a 6TiSCH network.

A. Our Kausa Implementation in the 6TiSCH Simulator

In the 6TiSCH simulator, as in any 6TiSCH implementation compliant with the standard, routing is done by the RPL protocol
with the ETX metric. We simulated Kausa on the 6TiSCH simulator and ran it with the generic configuration defined in
Section VI-A. We recall that the value of MaxTrans is fixed to 6. In these conditions, the main differences between Kausa
and our approach are:
• Kausa selects first the flow requesting the highest end-to-end reliability, then the shortest end-to-end latency and finally

the flow originating from the farthest node of the sink. Our approach selects the flow originating from the most loaded
sensor node (i.e., the sensor node needing the largest number of Tx+Rx cells).

• For any flow f , Kausa starts by assigning cells to the most loaded node visited by f . Then, Kausa goes backward to
the source of f . Finally, Kausa goes upward from the most loaded node to the sink. In our approach, cells are assigned
to nodes visited by f in a cascading way from the source of f up to the sink. It follows that our approach is easier to
implement.

• For any flow f , Kausa minimizes the number of retransmissions on the most loaded node, whereas we minimize the
total number of retransmissions on the path of f .

Notice that we implement an optimization of Kausa for 6TiSCH, enabling any node to use its next Tx cell to transmit any
message to its parent, as done in our approach. This is not true in the published version of Kausa, where any node N is not
allowed to use cells assigned to a flow f for another flow f ′ visiting N .

B. End-to-End Latency

Figure 16 depicts the average end-to-end latency obtained by MOpt and Kausa. They both provide close values. However,
MOpt provides a much smaller variance of the average end-to-end latency than Kausa, making it more predictable, even for
high targeted reliabilities.

The same conclusion applies to the maximum end-to-end latency depicted in Figure 17. The predictability of performance
is a property sought by industrial applications.

Fig. 16: Average end-to-end latency obtained with MOpt and Kausa.



21

Fig. 17: Maximum end-to-end latency obtained with MOpt and Kausa.

C. End-to-End Reliability

With regard to the end-to-end PDR, we observe in Figure 18 that both MOpt and Kausa ensure a PDR greater than
the targeted one when it belongs to the interval [0.9, 0.999]. For greater values, the PDR is not met because the value of
MaxTrans = 6 is too small to reach the targeted end-to-end reliability. In addition, MOpt tends to provide a greater median
value than Kausa.

Fig. 18: End-to-end delivery rate obtained with MOpt and Kausa.

D. Duty Cycle

Since the energy consumption can be deduced from the duty cycle of the busiest node, we compare the number of cells
scheduled at the busiest node by Kausa and MOpt, as depicted in Figure 19. Both provide close values for a targeted
end-to-end reliability less than or equal to 0.999. For a higher reliability, Kausa provides a smaller number of cells due to
a number of transmissions scheduled per message less than or equal to MaxTrans, whereas MOpt may schedule a larger
number, explaining this result.
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Fig. 19: Number of cells used at the busiest node with MOpt and Kausa.

E. Schedule Size

The schedule size, illustrated in Figure 20, is a little greater with MOpt than with Kausa. As a consequence, a node has
fewer opportunities to transmit with Kausa than with MOpt, leading to a higher and less predictable end-to-end latency.

Fig. 20: Schedule size obtained with MOpt and Kausa.

VIII. CONCLUSION

TSCH is a very promising technology for the IoT. It is now necessary to evaluate the performances it can provide to IoT
applications. These performances are evaluated by means of three KPIs: maximum end-to-end latency L, end-to-end reliability
R and network lifetime T . This IoT network has to guarantee that at least R% of messages generated by sensors are delivered
to the sink with a latency less than or equal to L, while the network lifetime is at least T . In this paper, we have proposed
two methods MFair and MOpt to achieve a targeted end-to-end reliability taking into account the unreliability of wireless
links. The trade-offs between end-to-end latency, network lifetime and end-to-end reliability have been pointed out. In addition,
we have shown that minimizing the total number of transmissions of a message to reach the sink with MOpt saves 12% of
network lifetime in a small network of eight nodes, assuming a Load-based schedule of flows. As expected, MOpt provides
a better end-to-end reliability and a longer network lifetime than MFair. However, the average end-to-end latency provided
by MFair is smaller. These results scale up to a 50-node network representative of real deployments, as shown by simulation
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results obtained with the 6TiSCH simulator. However, using a fixed maximum number of transmissions MaxTrans equal to
the default value of the TSCH protocol, instead of using the value computed by MFair or MOpt for the link and the flow
considered, may lead to a violation of the targeted end-to-end reliability: messages that have not been acknowledged after
MaxTrans transmissions are discarded. Compared to Kausa, a KPI-aware, state-of-the-art scheduler, our approach is simpler
to implement and ensures more predictable end-to-end performances, which is an essential property for industrial applications.
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