
HAL Id: hal-02433521
https://hal.science/hal-02433521

Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Runtime Enforcement of Timed Properties
Yliès Falcone, Srinivas Pinisetty

To cite this version:
Yliès Falcone, Srinivas Pinisetty. On the Runtime Enforcement of Timed Properties. Proceedings of
the Runtime Verification 2019 conference, Springer, pp.48-69, 2019, �10.1007/978-3-030-32079-9_4�.
�hal-02433521�

https://hal.science/hal-02433521
https://hal.archives-ouvertes.fr

On the Runtime Enforcement of Timed Properties ?

Yliès Falcone1 and Srinivas Pinisetty2

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

2 School of Electrical Sciences, IIT Bhubaneswar, Bhubaneswar, India
spinisetty@iitbbs.ac.in

Abstract. Runtime enforcement refers to the theories, techniques, and tools for
enforcing correct behavior of systems at runtime. We are interested in such behav-
iors described by specifications that feature timing constraints formalized in what
is generally referred to as timed properties. This tutorial presents a gentle introduc-
tion to runtime enforcement (of timed properties). First, we present a taxonomy
of the main principles and concepts involved in runtime enforcement. Then, we
give a brief overview of a line of research on theoretical runtime enforcement
where timed properties are described by timed automata and feature uncontrollable
events. Then, we mention some tools capable of runtime enforcement, and we
present the TiPEX tool dedicated to timed properties. Finally, we present some
open challenges and avenues for future work.

Runtime Enforcement (RE) is a discipline of computer science concerned with enforcing
the expected behavior of a system at runtime. Runtime enforcement extends the tradi-
tional runtime verification [12–14, 42, 43] problem by dealing with the situations where
the system deviates from its expected behavior. While runtime verification monitors are
execution observers, runtime enforcers are execution modifiers.

Foundations for runtime enforcement were pioneered by Schneider in [98] and by
Rinard in [95] for the specific case of real-time systems. There are several tutorials and
overviews on runtime enforcement for untimed systems [39, 47, 59], but none on the
enforcement of timed properties (for real-time systems).

In this tutorial, we focus on runtime enforcing behavior described by a timed property.
Timed properties account for physical time. They allow expressing constraints on the time
that should elapse between (sequences of) events, which is useful for real-time systems
when specifying timing constraints between statements, their scheduling policies, the
completion of tasks, etc [5, 7, 88, 101, 102].

This tutorial comprises four stages:

1. the presentation of a taxonomy of concepts and principles in RE (Sec. 1);
2. the presentation of a framework for the RE of timed properties where specifications

are described by timed automata (preliminary concepts are recalled in Sec. 2, the
framework is overviewed in Sec. 3, and presented in more details in Sec. 4);

3. the demonstration of the TiPEX [82] tool implementing the framework (Sec. 5);
4. the description of some avenues for future work (Sec. 6).

? This work is supported by the French national program “Programme Investissements d’Avenir
IRT Nanoelec” (ANR-10-AIRT-05).

2 Yliès Falcone and Srinivas Pinisetty

Fig. 1: Taxonomy of concepts in runtime enforcement.

1 Principles and Concepts in Runtime Enforcement

In the first stage of the tutorial, we discuss a taxonomy of the main concepts and
principles in runtime enforcement (see Fig. 1). We refer to this taxonomy as the RE
taxonomy. The RE taxonomy builds upon, specializes, and extends the taxonomy of
runtime verification [45] (RV taxonomy). In particular, the RE taxonomy shares the
notions of specification, trace, and deployment with the RV taxonomy. We briefly
review and customize these for runtime enforcement in the following for the sake of com-
pleteness. The RE taxonomy considers the additional enforceability and enforcement
mechanism parts. We also present some application domains where the RE principles
were used.

1.1 Specification

A specification (Fig. 2) describes (some of) the intended system behavior to be
enforced. It usually relies on some abstraction of the actual and detailed system behavior.
A specification can be categorized as being explicit or implicit. An explicit specifica-
tion makes the functional or non-functional requirements of the target system explicit.
An explicit specification is expressed by the user using a specification language (e.g.,
some variant of temporal logic or extension of automata). Such specification language
relies on an operational or denotational paradigm to express the intended behavior. The
specification language offers modalities which allow referring to the past, present, or
future of the execution. Other dimensions of a specification are related to the features
allowing expressing the expected behavior with more or less details. The time dimension
refers to the underlying model of time, being either a logical time or the actual physical

On the Runtime Enforcement of Timed Properties 3

time. The data dimension refers to whether the specification allows reasoning about
any form of data involved in the program (values of variables or function parameters).

Fig. 2: Taxonomy - specification.

An implicit specification
is related to the seman-
tics of the programming
language of the target ap-
plication system, or its
programming or memory
models. Implicit specifica-
tions generally capture a
collection of errors that
should not appear at run-
time because they could
lead to unpredictable be-
havior. Implicit specifica-
tions include security con-
cerns (see also Sec. 1.6)
such as memory safety [10,
105] where some form
of memory access errors
should be avoided (e.g., use after free, null pointer dereference, overflow) and the
integrity of the execution (of the data, data flow, or control flow). They also include ab-
sence of concurrency errors [69] such as deadlocks, data races, and atomicity violations.

1.2 Trace

Fig. 3: Taxonomy - trace.

Depending on the target system and specifi-
cation being enforced, the considered notion of
trace can contain several sorts of information
(Fig. 3): input/output from the system, events or
sample states from the system, or signals. The no-
tion of trace can play up to three different roles: it
can be the mathematical model of a specification
(when a set of traces defines the specification),
the sequence of pieces of information from the
system which is input to the enforcement mecha-
nism, or the sequence of pieces of information enforced on the system which is output
from the enforcement mechanism. In the two latter cases, the observation and imposition
of the trace is influenced by the sampling on the system state, which can be triggered
according to events or time. Moreover, the trace can contain more or less precise infor-
mation depending on the points of control and observation provided by instrumentation.
Such information can be gathered by evaluating/abstracting the system state at points
of intervals of physical time. We refer to [74,90] for more details on the concept of trace.

1.3 Enforcement Mechanism

An enforcement mechanism (EM, Fig. 4) is a mechanism in charge of enforcing
the desired specification, be it either a mathematical model of the expected-behavior

4 Yliès Falcone and Srinivas Pinisetty

transformation or its realization by algorithms or routines. It is referred to by sev-
eral names in the literature, e.g., enforcement monitor, reference monitor, enforcer,
and enforcement mechanism. Several models of enforcement mechanisms were pro-
posed: security automata [98], edit-automata [68] (and its variants [19]), general-
ized enforcement monitors [48], iteration suppression automata [21], delayers [83],
delayers with suppression [44], sanitizers [104], shields [63], safety shields [107],
shields for burst errors [107], and safety guards [108]. An EM reads a trace produced
by the target system and produces a new trace where the specification is enforced.

Fig. 4: Taxonomy - enforcement mechanism.

It acts like a “filter” on traces.
This conceptualization of an EM
as a(n) (input/output) filter ab-
stracts away from its actual role,
which can be an input sanitizer
(filtering out the inputs to the
target system), an output sani-
tizer (filtering out the outputs
of the target system), or a refer-
ence monitor (granting or deny-
ing permission to the action
that the system executes). An
EM can be generated automat-
ically from the specification (it
is said to be synthesized) or pro-
grammed manually. Automati-
cally generating an EM provides
more confidence and binds it to
the specification used to gener-
ate it, whereas manual genera-
tion permits programming an EM and makes room for customization. There exist several
paradigms for describing the behavior of an EM: denotational, when an EM is seen as
a mathematical function with the set of traces as domain and codomain; or operational,
when the computation steps for an EM are detailed (e.g., rewriting rules, automaton,
labelled transition system - LTS, or algorithm). To transform the trace, an EM can use
some internal memory to store information from the execution. Such memory can be
assumed infinite, finite, or shallow when it cannot record multiple occurrences of the
same piece of information. Moreover, using data from the input trace and this memory,
enforcement operations in an EM may transform the trace. Examples of enforcement
operations include terminating the underlying target system, preventing an action from
executing or altering it, executing new actions, etc.

1.4 Deployment

Like deployment in runtime verification, deployment in runtime enforcement (Fig. 5)
refers to how an EM is integrated within the system: its implementation, organization,
and how and when it collects and operates on the trace. One of the first things to con-
sider is the architecture of the system, which can be monolithic, multi-threaded or
distributed. One can use a centralized EM (that operates on the whole system) or a

On the Runtime Enforcement of Timed Properties 5

decentralized one which adapts to the system architecture and possibly use existing
communication mediums for decentralized EMs to communicate. An EM itself can be
deployed at several levels: software, operating system or virtual machine, or hardware.
The higher the level (in terms of abstraction), the more the mechanism has access to
semantic information about the target system, while lower-level deployment provides
the enforcement device with finer-grain observation and control capabilities on the
target system. The stage refers to when an EM operates, either offline (after the ex-
ecution) or online (during the execution, synchronously or asynchronously). Offline
runtime enforcement (and verification) is conceptually simpler since an EM has ac-
cess to the complete trace (in e.g., a log) and can thus perform arbitrary enforcement
operation. On the contrary, in online enforcement, an EM only knows the execution
history and decisions have to be made while considering all possible future behaviors.

Fig. 5: Taxonomy - deployment.

The placement refers to where
an EM operates, either inline
or outline, within or outside the
existing address space of the
initial system. The deployment
parameters are constrained by
the instrumentation (technique)
used to augment the initial sys-
tem to include an EM. Instru-
mentation can be software-based
or hardware-based depending on
the implementation of the target
system. In the case of software-
based instrumentation, it can op-
erate at the level of the source
(language) of the application sys-
tem, its intermediate representa-
tion (IR), the binary, or using li-
brary interposition. Hardware-based instrumentation [8, 9, 75, 99] can be for instance
realized by observing and controlling the system through a JTAG port and using dedi-
cated hardware (e.g., an FPGA).

Deployment challenges. Deploying an EM with the appropriate parameters raises several
challenges and issues. From a bird-eye view, the challenges revolve around ensuring
that an EM does not “conflict with the initial system”. We discuss this around two
questions. First, how to implement the “reference logic” where the enforcement mech-
anism takes important decisions regarding the system execution? In the case where
an EM is a sanitizer, deployment should ensure that all the relevant inputs or outputs
go through the enforcement device. In the case where an EM is a reference monitor,
the reference logic should ensure that the application actions get executed only if the
monitor authorizes it. In security-sensitive or safety-critical applications, users of an
enforcement framework may demand formal guarantees. There are some approaches to
certify runtime verification mechanisms [3,23,33] and some to verify edit-automata [94],
but more research endeavors are needed in these directions. Second, how to preserve

6 Yliès Falcone and Srinivas Pinisetty

the integrity of the application? As an EM modifies the behavior of the application, it
should not alter its functioning by avoiding crashes, preserving its semantics, and not
deteriorating its performance. For instance, consider the case where an EM intervenes by
forbidding the access to some resource or an action to execute (denying it or postponing
it). In case of online monitoring, an EM should be aware of the application semantics
and more particularly of its control and data flows. In case of outline monitoring, there
should be some signaling mechanism already planned in the application or added through
instrumentation.

1.5 Enforceability

Fig. 6: Taxonomy - enforceability.

Enforceability (Fig. 6) refers
to the concept of determining
the specification behavior that
can effectively be enforced on
systems. EMs should follow
some requirements on how
they correct the behavior of sys-
tems. For instance, soundness
refers to the fact that what is
output by an EM should com-
ply with the specification while
transparency refers to the fact that the modification to the initial system behavior should
be minimal. Additional constraints such as optimality can be introduced to several
possible modifications that a monitor can make, according to some desired quality of
service. Additionally, distances or pre-orders can be defined over valid traces for the
same purpose [20, 58]. When it is possible to obtain an EM that enforces a property
while complying with the requirements, the property is said to be enforceable, and
non-enforceable otherwise. Enforceability of a specification is also influenced by the
realizability of EMs. For this, assumptions are made on the feasibility of some oper-
ations of an EM. An example is when an EM memorizes input events from the target
system, it should not prevent the system from functioning. Another example is when
enforcing a timed specification, as the time that elapses between events matters for the
satisfaction of the specification, there are assumptions to be made or guarantees to be
ensured on the computation time performed by EMs (e.g., the computation time of an EM
should be negligible) or on the system communication (e.g., communication overhead or
reliability). Moreover, the amount of memory that an EM disposes influences how much
from the execution history it can record or events it can store, and thus the enforceable
properties [50, 106]. Furthermore, importantly in a timed context, physical constraints
should be taken into consideration: in the online enforcement of a specification, events
cannot be released by an EM before being received. The realizability of EMs can benefit
from knowledge on the possible system behavior. Such knowledge can come from a
(possibly partial) model of the system or static analysis. Knowledge permits upgrading
an EM with predictive abilities [86] and it can thus enforce more specifications (see
also [11, 85, 110] for predictive runtime verification frameworks). Another concern with
enforceability is to delineate the sets of enforceable and non-enforceable specifications.
Characterizing the set of enforceable specifications allows identifying the (possibly

On the Runtime Enforcement of Timed Properties 7

syntactically characterized) fragments of a specification language that can be enforced.
For this, one can rely on existing classical classifications of properties, such as the safety-
liveness “dichotomy” [4,66,103] or the safety-progress hierarchy [27,71] classifications.
There exist several delineations of enforceable/non-enforceable properties based on
different assumptions and EMs; see e.g., [26, 48, 58, 68, 98].

1.6 Application Domains

Fig. 7: Taxonomy - application domains.

Application domains (Fig. 7)
refers to the domains where the
principles of runtime enforcement
are applied. We briefly refer to
some applications of runtime en-
forcement in categories: usage con-
trol and security/privacy, and mem-
ory safety. We do not further elab-
orate the taxonomy for application
domains since classifying security
domains is subject to interpretation
and most implementations of EMs
for security address several flavors of security. Regarding applications for usage control,
runtime enforcement was applied to enforce usage control policies in [73], enforcement
of the usage of the Android library in [41], disabling Android advertisements in [36].
Regarding applications in the domain of security, runtime enforcement was applied
to enforce the opacity of secrets in [46, 55, 109], access control policies in [76–78],
confidentiality in [28, 53], information-flow policies [28, 49, 64, 64], security and au-
thorization policies in [22, 38], privacy policies in [28, 56, 65], control-flow integrity
in [2, 34, 52, 57, 62], and memory safety in [24, 25, 35, 100].

2 Real-time Systems and Specifications with Time Constraints

The correctness of real-time systems depends not only on the logical result of the
computation but also on the time at which the results are produced. Such systems are
specified with requirements with precise constraints on the time that should elapse
between actions and events. Formalization of a requirement with time constraints is
referred to as a timed property. Timed automata is a formal model used to define timed
properties. A timed automaton [6] is a finite automaton extended with a finite set of real
valued clocks. It is one of the most studied models for modeling and verifying real-time
systems with many algorithms and tools. In this section, we present the preliminaries
required to formally define timed requirements and executions (traces) of a system.

2.1 Preliminaries and Notations

Untimed concepts. Let Σ denote a finite alphabet. A (finite) word over Σ is a finite
sequence of elements of Σ . The length of a word w is the number of elements in it and
is denoted by |w|. The empty word over Σ is denoted by εΣ , or ε when clear from the
context. The set of all (resp. non-empty) words over Σ is denoted by Σ ∗ (respectively
Σ+). The concatenation of two words w and w′ is denoted by w ·w′. A word w′ is a prefix

8 Yliès Falcone and Srinivas Pinisetty

of a word w, noted w′ 4 w, whenever there exists a word w′′ such that w = w′ ·w′′, and
w′ ≺ w if additionally w′ 6= w; conversely w is said to be an extension of w′.

A language over Σ is a subset of Σ ∗. The set of prefixes of a word w is denoted by
pref(w). For a language L , pref(L)

def
=

⋃
w∈L pref(w) is the set of prefixes of words in

L . A language L is prefix-closed if pref(L) =L and extension-closed if L ·Σ ∗ =L .

Timed words and timed languages. In a timed setting, we consider the occurrence time
of actions. Input and output streams of enforcement mechanisms are seen as sequences
of events composed of a date and an action, where the date is interpreted as the absolute
time when the action is received by the enforcement mechanism.

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of

actions. An event is a pair (t,a), where date((t,a)) def
= t ∈ R≥0 is the absolute time at

which the action act((t,a)) def
= a ∈ Σ occurs.

A timed word over the finite alphabet Σ is a finite sequence of events σ = (t1,a1)·
(t2,a2) · · ·(tn,an), for some n ∈ N, where (ti)i∈[1,n] is a non-decreasing sequence in R≥0.

The set of timed words over Σ is denoted by tw(Σ). A timed language is any set
L ⊆ tw(Σ). Even though the alphabet (R≥0 × Σ) is infinite in this case, previous
untimed notions and notations (related to length, prefix etc) extend to timed words.

When concatenating two timed words, one should ensure that the result is a timed
word, i.e., dates should be non-decreasing. This is ensured if the ending date of the
first timed word does not exceed the starting date of the second one. Formally, let
σ = (t1,a1) · · · (tn,an) and σ ′ = (t ′1,a

′
1) · · ·(t ′m,a′m) be two timed words with end(σ)≤

start(σ ′), their concatenation is σ ·σ ′ def
= (t1,a1) · · ·(tn,an) · (t ′1,a′1) · · ·(t ′m,a′m). By con-

vention σ · ε def
= ε ·σ def

= σ . Concatenation is undefined otherwise.

2.2 Timed Automata

A timed automaton [6] (TA) is a finite automaton extended with a finite set of real-
valued clocks. Intuitively, a clock is a variable whose value evolves with the passing
of physical time. Let X = {x1, . . . ,xk} be a finite set of clocks. A clock valuation for
X is an element of RX

≥0, that is a function from X to R≥0. For χ ∈ RX
≥0 and δ ∈ R≥0,

χ + δ is the valuation assigning χ(x)+ δ to each clock x of X . Given a set of clocks
X ′ ⊆ X , χ[X ′← 0] is the clock valuation χ where all clocks in X ′ are assigned to 0. G (X)
denotes the set of guards, i.e., clock constraints defined as Boolean combinations of
simple constraints of the form x ./ c with x ∈ X , c ∈ N and ./ ∈ {<,≤,=,≥,>}. Given
g ∈ G (X) and χ ∈RX

≥0, we write χ |= g when g holds according to χ . A (semantic) state
is a pair composed of a location and a clock valuation.

Instead of presenting the formal definitions, we introduce TAs on an example.

l0 l1 l2

Σ \ {alloc}
alloc,
x := 0

Σ \ {alloc}

alloc, x ≥ 10,
x := 0

alloc,
x<10

Σ

Fig. 8: Example of TA.

The timed automaton in Fig. 8 formalizes the
requirement “In every 10 time units (tu), there
cannot be more than 1 alloc action”. The set
of locations is L = {l0, l1, l2}, l0 is the initial
location, l0 and l1 are accepting locations, and
l2 is a non-accepting location. The set of ac-
tions is Σ = {alloc,rel}. There are transitions
between locations upon actions. A finite set of

On the Runtime Enforcement of Timed Properties 9

real-valued clocks is used to model realtime behavior, set X = {x} in the example. On
the transitions, there are i) guards with constraints on clock values (such as x < 10 on
the transition between l1 and l2 in the example), and ii) assignment to clocks. Upon the
first occurrence of action alloc, the automaton moves from l0 to l1, and 0 is is assigned
to clock x. In location l1, if action alloc is received, and if the value of x is greater than
or equal to 10, then the automaton remains in l1, resetting the value of clock x to 0. It
moves to location l2 otherwise.

2.3 Partitioning the States of a Timed Automaton

Given a TA with semantic states Q and accepting semantic states QF , following [42],
we can define a partition of Q with four subsets good (G), currently good (Gc), currently
bad (Bc) and bad (B), based on whether a state is accepting or not, and whether accepting
or non-accepting states are reachable or not. This partitioning is useful for runtime
verification and enforcement. An enforcement device makes decisions by checking the
reachable subsets. For example, if all the reachable states belong to the subset B, then it
is impossible to correct the input sequence anymore (in the future). If the current state
belongs to the subset G, then any sequence will lead to a state belonging to the same
subset and thus the enforcement device can be turned off. This partition is also useful to
classify timed properties and for the synthesis of enforcement devices.

Formally, Q is partitioned into Q = Gc∪G∪Bc∪B, where QF = Gc ∪G and Q \
QF = Bc∪B, and:

– Gc = QF ∩ pre∗(Q \QF) is the set of currently good states, that is the subset of
accepting states from which non-accepting states are reachable;

– G = QF \Gc = QF \ pre∗(Q \QF) is the set of good states, that is the subset of
accepting states from which only accepting states are reachable;

– Bc = (Q \QF)∩ pre∗(QF) is the set of currently bad states, that is the subset of
non-accepting states from which accepting states are reachable;

– B = (Q\QF)\pre∗(QF) is the set of bad states, that is the subset of non-accepting
states from which only non-accepting states are reachable.

where, for a subset P of Q, pre∗(P) denotes the set of states from which set P is reachable.
It is well known that reachability of a set of locations is decidable using the classical

zone (or region) symbolic representation (see [18]). As QF corresponds to all states with
location in F , the partition can then be symbolically computed on the zone graph.

2.4 Classification of Timed Properties

A timed property is defined by a timed language ϕ ⊆ tw(Σ) that can be recognized
by a timed automaton. That is, the set of regular timed properties are considered. Given
a timed word σ ∈ tw(Σ), we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ .

Definition 1 (Regular, safety, and co-safety properties).
- Regular timed properties are the properties that can be defined by languages accepted

by a TA.
- Safety timed properties are the non-empty prefix-closed regular timed properties.
- Co-safety timed properties are the non-universal3 extension-closed regular timed

properties.
3 The universal property over R≥0×Σ is tw(Σ).

10 Yliès Falcone and Srinivas Pinisetty

Enforcement
Mechanism

Timed Memory

timed property

Event
Emitter

Event
Receiver

timed word timed word

Fig. 9: RE of a timed property. The enforcement mechanism (EM) is synthesized from a timed
property. At runtime, the EM is placed between an event emitter (EE) and event receiver (ER); it
receives as input a timed word from the EE and produces as output a timed word for the ER.

As in the untimed case, safety (resp. co-safety) properties state that “nothing bad should
ever happen” (resp. “something good should happen within a finite amount of time”).

3 Overview of RE Approaches for Timed Properties

In this section, we overview some formal approaches [44,80,81,83,84,91–93] to the
runtime enforcement of timed properties described by timed automata (TA). Properties
can feature uncontrollable events which can be only seen by the enforcement mechanism
(EM) and cannot be acted upon. The runtime enforcement problem is conceptualized as
illustrated in Fig. 9: an EM reads as input a timed word and should transform and output
it so that it complies with a timed property used to obtain the EM, using a timed memory
which accounts for the physical time during which elements have been stored. In all the
following frameworks, EMs are described with two paradigms: a denotational one where
EMs are seen as functions through their input/output behavior, and two operational
ones: input/output labeled transition systems and algorithms. These approaches differ
either in the supported classes of properties for which EMs can be synthesized and the
enforcement operations of the enforcement mechanism.

Runtime enforcement of timed properties [84] (for safety and co-safety properties).
In [84] the first steps to runtime enforcement of (continuous) timed safety and co-safety
properties was introduced. EMs were endowed only with an enforcement operation al-
lowing to delaying events to satisfy the required property. For this purpose, the EM stores
some actions for a certain time period computed when they are received. Requirements
over the EMs ensured that their outputs not only satisfy the required property, but also
with the shortest delay according to the current satisfaction of the property.

Runtime enforcement of regular timed properties [81, 83].The approach in [81, 83] gen-
eralizes [84] and synthesizes EMs for any regular timed property. It allows considering
interesting properties of systems belonging to a larger class specifying some form of
transactional behavior. The difficulty that arises is that the EMs should consider the
alternation between currently satisfying and not satisfying the property4. The unique
enforcement operation is still delaying events as in [84].

4 Indeed, in safety (resp. co-safety) (timed) automaton, there are only good, currently good, and
bad states (resp. bad, currently bad, and good states), and thus the strategies for the EM is
simpler: avoiding the bad states (resp. reaching a good state) [42].

On the Runtime Enforcement of Timed Properties 11

Runtime enforcement of regular timed properties by suppressing and delaying events [44].
The approach in [44] considers events composed of actions with absolute occurrence
dates, and allows increasing the dates (while allowing reducing delays between events in
memory). Moreover, suppressing events is also introduced. An event is suppressed if it
is not possible to satisfy the property by delaying, whatever are the future continuations
of the input sequence (i.e., the underlying TA can only reach non-accepting states from
which no accepting state can be reached). In Sec. 4, we overview this framework.
Runtime enforcement of parametric timed properties with practical applications [80].The
framework in [80] makes one step towards practical runtime enforcement by considering
event-based specifications where i) time between events matters and ii) events carry data
values ([54]) from the monitored system. It defines how to enforce parametric timed
specifications which are useful to model requirements from some application domains
such as network security which have constraints both on time and data. For this, it
introduces the model of Parametrized Timed Automata with Variables (PTAVs). PTAVs
extend TAs with session parameters, internal and external variables. The framework
presents how to synthesize EMs as in [44, 83] from PTAVs and shows the usefulness of
enforcing such expressive specifications on application scenarios.
Enforcement of timed properties with uncontrollable events [91, 92].The approach
in [91, 92] presents a framework for enforcing regular untimed and timed properties
with uncontrollable events. An EM cannot delay nor intercept an uncontrollable event.
To cope with uncontrollable events, the notion of transparency should be weakened
to the so-called notion of compliance. Informally, compliance means that the order of
controllable events should be maintained by the EM, while uncontrollable events should
be released as output soon after they are received.
Runtime enforcement of cyber-physical systems [87].In synchronous reactive systems,
terminating the system or delaying the reaction is not feasible. Thus, the approaches
in [44,80,81,83,91,92] are not suitable for such systems. The approach in [87] introduces
a framework for synchronous reactive systems with bidirectional synchronous EMs.
While the framework considers similar notions of soundness, and transparency, it also
introduces the so-called additional requirements of causality and instantaneity which
are specific to synchronous executions. Moreover, the framework considers properties
expressed using a variant of Discrete Timed Automata (DTA).

4 A framework for the Runtime Enforcement of Timed Properties

In this section, we present a framework for the runtime enforcement of timed proper-
ties described by timed automata [44]. Most of the material comes from [44, 79].

4.1 Overview

Given some timed property ϕ and an input timed word σ , the EM outputs a timed
word o that satisfies ϕ . The considered EMs are time retardants, i.e., their main en-
forcement operation consists in delaying the received events5. In addition to introducing
additional delays (increasing dates), for the EM and system to continue executing, the

5 Several application domains have requirements, where the required timing constraints can be
satisfied by increasing dates of some actions [67].

12 Yliès Falcone and Srinivas Pinisetty

EM can suppress events when no delaying is appropriate. However, it can not change the
order of events. The EM may also reduce delays between events stored in its memory.

To ease the design and implementation of EMs in a timed context, they are described
at three levels of abstraction: enforcement functions, enforcement monitors, and enforce-
ment algorithms; all of which can be deployed to operate online. EMs should abide to
some requirements, namely the physical constraint, soundness, transparency.
- The physical constraint says that the output produced for an extension σ ′ of an input

word σ extends the output produced for σ . This stems from the fact that, over time the
enforcement function outputs a continuously growing sequence of events. The output
for a given input can only be modified by appending new events (with greater dates).

- Soundness says that the output either satisfies property ϕ , or is empty. This allows to
output nothing if there is no way to satisfy ϕ . Note that, together with the physical
constraint, this implies that no event can be appended to the output before being sure
that the property will be eventually satisfied with subsequent output events.

- Transparency says that the output is a delayed subsequence of the input σ ; that is with
increased dates, preserved order, and possibly suppressed events.

Notice that for any input σ , releasing ε as output would satisfy soundness, transparency,
and the physical constraint. We want to suppress an event or to introduce additional delay
only when necessary. Additionally, EMs should also respect optimality requirements:
- Streaming behavior and deciding to output as soon as possible. Since an EM does

not know the entire input sequence, for efficiency reasons, the output should be built
incrementally in a streaming fashion. EMs should take decision to release input events
as soon as possible. The EM should wait to receive more events, only when there is no
possibility to correct the input.

- Optimal suppression. Suppressing events should occur only when necessary, i.e.,
when, upon the reception of a new event, there is no possibility to satisfy the property,
whatever is the continuation of the input.

- Optimal dates. Choosing/increasing dates should be done in way that dates are optimal
with respect to the current situation, releasing here as output as soon as possible.

The enforcement function Eϕ : tw(Σ)→ tw(Σ) for a property ϕ defines how an input
stream σ is transformed into an output stream. An enforcement monitor (see [44]) is a
more concrete view and defines the operational behavior of the EM over time as a timed
labelled transition system. An enforcement algorithm realises enforcement monitor in
pseudo code with two concurrent processes and a shared buffer At an abstract level, one
process stores the received events in the shared buffer and computes their releasing date.
The other process scrutinizes the shared buffer and releases the event at their releasing
dates . In [44], we formally prove that enforcement functions respect the requirements,
that enforcement monitors realizes enforcement functions, that enforcement algorithms
implements enforcement monitors, and that all description of EMs can be optimized for
the particular case of timed safety properties.

4.2 Intuition on an Example

We provide some intuition on the expected behavior of EMs. Consider two processes
that access to and operate on a shared resource. Each process i (with i ∈ {1,2}) has three
interactions with the resource: acquisition (acqi), release (reli), and a specific operation

On the Runtime Enforcement of Timed Properties 13

(opi). Both processes can also execute a common action op. System initialization is
denoted by action init. In the following, variable t keeps track of the evolution of time.

l0 l1l2

op1
x := 0
y := 0

op2
x := 0
y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op2

2 ≤ y
op

y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op1

2 ≤ y
op

y := 0

Fig. 10: TA defining property S1.

Consider one specification, referred
to as S1, of the shared ressource: “Op-
erations op1 and op2 should execute in
a transactional manner. Both actions
should be executed, in any order, and
any transaction should contain one occur-
rence of op1 and op2. Each transaction
should complete within 10 tu. Between
operations op1 and op2, occurrences of operation op can occur. There is at least 2 tu
between any two occurrences of any operation.”

actions

time

op1 op1 op op2

1

2

3

4

5

6

7

8

9

10

input

output

Fig. 11: Illustration of the behav-
ior of an EM enforcing S1.

Figure 11 illustrates the behavior of an EM and
how it transforms an input timed word (red) to a
correct output timed word (blue) satisfying S1; ac-
tions are in abscissa and occurrence dates in ordi-
nate. Note, the satisfaction of the property is not
represented in the figure. The input sequence is
σ = (2,op1) · (3,op1) · (3.5,op) · (6,op2). At t = 2,
the EM can not output action op1 because this ac-
tion alone does not satisfy the specification (and the
EM does not yet know the next events i.e., actions
and dates). If the next action was op2, then, at the
date of its reception, the EM could output action op1
followed by op2, as it could choose dates for both
actions in order to satisfy the timing constraints. At
t = 3 the EM receives a second op1 action. Clearly,
there is no possible date for these two op1 actions to
satisfy the specification, and no continuation could
solve the situation. The EM thus suppresses the sec-
ond op1 action, since this action is the one that pre-
vents satisfiability in the future. At t = 3.5, when
the EM receives action op, the input sequence still
does not satisfy the specification, but there exists
an appropriate delaying of such action so that with
future events, the specification can be satisfied. At
t = 6, the EM receives action op2, it can decide that
action op1 followed by op and op2 can be released as output with appropriate delaying.
Thus, the date associated with the first op1 action is set to 6 (the earliest possible date,
since this decision is taken at t = 6), 8 for action op (since 2 is the minimal delay between
those actions satisfying the timing constraint), and 10 for action op2. Henceforth, as
shown in the figure, the output of the EM for σ is (6,op1) · (8,op) · (10,op2).

14 Yliès Falcone and Srinivas Pinisetty

5 Tool Implementations

Any tool for runtime verification [13] can perform basic enforcement by terminating
the execution of programs violating their specification. There are, however, several
runtime verification tools that go further and feature their own enforcement operations,
for instance Java-MOP and EnforceMOP [70] with handlers, LARVA [31] with compen-
sations [32]. There are also numerous tools in the security domain enforcing (implicit)
specifications related to the security of the monitored applications (memory safety,
control-flow integrity, etc); see [104] for a recent overview.

To the best of our knowledge, there are two tools dedicated to the runtime en-
forcement of timed properties: TiPEX [82] and GREP [93]. TiPEX implements the
framework presented in Sec. 4 and provides additional features to synthesize timed
automata and check the class of a timed automaton as per Def. 1. A detailed description
of the TiPEX tool with some examples is provided in [82]. TiPEX can be downloaded
from [97]. GREP [93] follows the same objectives as TiPEX but is based on game theory
to synthesize the enforcement mechanisms. GREP also handles uncontrollable events.

6 Open Challenges and Avenues for Future Work

We conclude this tutorial by proposing some future research directions.

Enforcement monitoring for systems with limited memory. An enforcement mechanism
basically acts as a filter storing the input events in its memory, until it is certain that the
underlying property will be satisfied. As was the case with untimed properties [16, 17,
50, 106], defining enforcement mechanisms and new enforcement strategies should be
defined when there are bounds on memory usage or limited resources. Delineating the
subset of enforceable timed properties for which effective enforcement mechanisms can
be obtained is also a subject for future work.

Predictive runtime enforcement. Predictive runtime enforcement considers the case where
knowledge about the event emitter is available [86]. When the enforcement mechanism
knows the set of input sequences that it may receive, then it may anticipate decisions
of releasing events as output without storing them in memory nor waiting for future
events, e.g., when it knows that all the possible continuations of the input it has observed
will not violate the property. Predictive runtime enforcement of timed properties poses
several difficulties and challenges that have to be further explored [85, 86].

Realizing requirements automatically. In current research efforts, enforcement mecha-
nisms are seen as modules outside the system, which take as input a stream of events
(output of the system being monitored) and verify or correct this stream according to the
property. For a better adoption of runtime enforcement theories and tools, one direction
is to define methods and instrumentation techniques so that enforcement mechanisms
can realize the requirements (which could not be integrated in the initial application.
For this, one can imagine enforcement monitors (realizing some requirements) inte-
grated as another layer on top of the core functionality or with libraries, inspiring from
aspect-oriented programming [60, 61] and acceptability-oriented computing [95].

Decentralized runtime enforcement. Decentralized runtime verification approaches [15,
29, 37, 40] allow decentralizing the monitoring mechanism on the components of a

On the Runtime Enforcement of Timed Properties 15

system (see [51] for an overview). Such approaches deal with the situations where it
is not desired to impose a central observation point in the system. Frameworks for
decentralized runtime enforcement (of timed properties) have yet to be defined and will
permit enforcing properties on distributed systems. For this purpose, one can inspire
from from generalized consensus to help enforcement mechanisms forge a collective
decisions when applying enforcement operations to the system.
Acknowledgment The authors thank Frédéric Desprez, Antoine El-Hokayem, Raphaël

Jakse, Ali Kassem, and the reviewers for their comments on a preliminary version of this
tutorial. The framework for runtime enforcement of timed properties reported in Sec. 2
to Sec. 5 is based upon joint research efforts with colleagues and friends: Jean-Claude
Fernandez, Thierry Jéron, Hervé Marchand, Laurent Mounier, Omer Nguena-Timo,
Matthieu Renard, and Antoine Rollet.

References

1. Proceedings of the 5th Annual Symp. on Logic in Computer Science (LICS ’90). IEEE
Computer Society (1990)

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles, imple-
mentations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40 (2009)

3. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. J. Log. Algebr. Program.
78(5), 304–339 (2009)

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
5. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Proc. of

the 5th Annual Symp. on Logic in Computer Science (LICS ’90) [1], pp. 414–425
6. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235

(1994)
7. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. In: Proc. of the

Fifth Annual Symp. on Logic in Computer Science (LICS ’90) [1], pp. 390–401
8. Amiar, A., Delahaye, M., Falcone, Y., du Bousquet, L.: Compressing microcontroller ex-

ecution traces to assist system analysis. In: Schirner, G., Götz, M., Rettberg, A., Zanella,
M.C., Rammig, F.J. (eds.) Embedded Systems: Design, Analysis and Verification - 4th
IFIP TC 10 Int. Embedded Systems Symp., IESS 2013. IFIP Advances in Information and
Communication Technology, vol. 403, pp. 139–150. Springer (2013)

9. Amiar, A., Delahaye, M., Falcone, Y., du Bousquet, L.: Fault localization in embedded
software based on a single cyclic trace. In: IEEE 24th Int. Symp. on Software Reliability
Engineering, ISSRE 2013. pp. 148–157. IEEE Computer Society (2013)

10. de Amorim, A.A., Hritcu, C., Pierce, B.C.: The meaning of memory safety. In: Bauer, L.,
Küsters, R. (eds.) Principles of Security and Trust - 7th Int. Conf., POST 2018, Held as Part
of the European Joint Conf.s on Theory and Practice of Software, ETAPS 2018, Proc. LNCS,
vol. 10804, pp. 79–105. Springer (2018)

11. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-time
reachability properties in black-box systems using trace-level abstraction and statistical
learning. In: Colombo and Leucker [30], pp. 187–204

12. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory and Ad-
vanced Topics, LNCS, vol. 10457. Springer (2018)

13. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi,
Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E.,
Zhang, Y.: First int. competition on runtime verification: rules, benchmarks, tools, and final
results of CRV 2014. STTT 21(1), 31–70 (2019)

16 Yliès Falcone and Srinivas Pinisetty

14. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. In:
Bartocci and Falcone [12], pp. 1–33

15. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Form. Meth. in Syst. Design 48(1-2),
46–93 (2016)

16. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite edit au-
tomata. Electr. Notes Theor. Comput. Sci. 229(3), 19–35 (2009)

17. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite and push-
down edit automata. Int. J. Inf. Sec. 12(4), 319–336 (2013)

18. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Proc. of the 4th Advanced Course on Petri Nets - Lecture Notes on
Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer (2003)

19. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? In: Degano, P.,
Guttman, J.D., Martinelli, F. (eds.) Formal Aspects in Security and Trust, 5th Int. Workshop,
FAST 2008. LNCS, vol. 5491, pp. 287–301. Springer (2008)

20. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú., Wieringa, R.J.,
Zannone, N. (eds.) Engineering Secure Software and Systems - Third Int. Symp., ESSoS
2011s. LNCS, vol. 6542, pp. 73–86. Springer (2011)

21. Bielova, N., Massacci, F.: Iterative enforcement by suppression: Towards practical enforce-
ment theories. J. of Computer Security 20(1), 51–79 (2012)

22. Birgisson, A., Dhawan, M., Erlingsson, Ú., Ganapathy, V., Iftode, L.: Enforcing authorization
policies using transactional memory introspection. In: Ning, P., Syverson, P.F., Jha, S. (eds.)
Proc. of the 2008 ACM Conf. on Computer and Communications Security, CCS 2008. pp.
223–234. ACM (2008)

23. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) Formal Methods and Software Engineering - 14th Int. Conference on
Formal Engineering Methods, ICFEM 2012. Lecture Notes in Computer Science, vol. 7635,
pp. 494–509. Springer (2012)

24. Bruening, D., Zhao, Q.: Practical memory checking with dr. memory. In: Proc. of the
CGO 2011, The 9th Int. Symp. on Code Generation and Optimization. pp. 213–223. IEEE
Computer Society (2011)

25. Bruening, D., Zhao, Q.: Using Dr. Fuzz, Dr. Memory, and custom dynamic tools for secure
development. In: IEEE Cybersecurity Development, SecDev 2016, Boston, MA, USA,
November 3-4, 2016. p. 158. IEEE Computer Society (2016)

26. Chabot, H., Khoury, R., Tawbi, N.: Extending the enforcement power of truncation monitors
using static analysis. Computers & Security 30(4), 194–207 (2011)

27. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich,
W. (ed.) Automata, Languages and Programming, 19th Int. Colloquium, ICALP92. LNCS,
vol. 623, pp. 474–486. Springer (1992)

28. Chong, S., Vikram, K., Myers, A.C.: SIF: enforcing confidentiality and integrity in web
applications. In: Provos, N. (ed.) Proc. of the 16th USENIX Security Symp. USENIX
Association (2007)

29. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with a global
clock. Form. Meth. in Syst. Design 49(1-2), 109–158 (2016)

30. Colombo, C., Leucker, M. (eds.): Runtime Verification - 18th Int. Conf., RV 2018, LNCS,
vol. 11237. Springer (2018)

31. Colombo, C., Pace, G.: Runtime verification using LARVA. In: Reger, G., Havelund, K. (eds.)
RV-CuBES 2017. An Int. Workshop on Competitions, Usability, Benchmarks, Evaluation,
and Standardisation for Runtime Verification Tools. Kalpa Publications in Computing, vol. 3,
pp. 55–63. EasyChair (2017)

32. Colombo, C., Pace, G.J.: Recovery within long-running transactions. ACM Comput. Surv.
45(3), 28:1–28:35 (2013)

On the Runtime Enforcement of Timed Properties 17

33. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Provably correct inline monitoring for
multithreaded java-like programs. Journal of Computer Security 18(1), 37–59 (2010)

34. Davi, L., Sadeghi, A., Winandy, M.: ROPdefender: a detection tool to defend against return-
oriented programming attacks. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S.
(eds.) Proc. of the 6th ACM Symp. on Information, Computer and Communications Security,
ASIACCS 2011. pp. 40–51. ACM (2011)

35. Duck, G.J., Yap, R.H.C., Cavallaro, L.: Stack bounds protection with low fat pointers. In:
24th Annual Network and Distributed System Security Symp., NDSS 2017. The Internet
Society (2017)

36. El-Harake, K., Falcone, Y., Jerad, W., Langet, M., Mamlouk, M.: Blocking advertisements on
Android devices using monitoring techniques. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation - 6th Int. Symp., ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 239–253. Springer (2014)

37. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algorithms. In:
Bultan, T., Sen, K. (eds.) Proc. of the 26th ACM SIGSOFT Int. Symp. on Software Testing
and Analysis. pp. 372–375. ACM (2017)

38. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospective. In:
Kienzle, D.M., Zurko, M.E., Greenwald, S.J., Serbau, C. (eds.) Proc. of the 1999 Workshop
on New Security Paradigms. pp. 87–95. ACM (1999)

39. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification - First Int. Conf., RV 2010. LNCS, vol. 6418, pp. 89–105. Springer (2010)

40. Falcone, Y., Cornebize, T., Fernandez, J.: Efficient and generalized decentralized monitoring
of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) Formal Techniques for Dis-
tributed Objects, Components, and Systems - 34th IFIP WG 6.1 Int. Conf., FORTE 2014,
Held as Part of the 9th Int. Federated Conf. on Distributed Computing Techniques, DisCoTec
2014. LNCS, vol. 8461, pp. 66–83. Springer (2014)

41. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for Android appli-
cations with RV-Droid. In: Qadeer and Tasiran [89], pp. 88–95

42. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime? STTT
14(3), 349–382 (2012)

43. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled,
D.A., Kalus, G. (eds.) Engineering Dependable Software Systems, NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 34, pp. 141–175. IOS
Press (2013)

44. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed
properties by suppressing and delaying events. Sci. Comput. Program. 123, 2–41 (2016)

45. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. In: Colombo and Leucker [30], pp. 241–262

46. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of various notions of
opacity. Discrete Event Dynamic Systems 25(4), 531–570 (2015)

47. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci and Falcone [12], pp. 103–134

48. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: com-
position, synthesis, and enforcement abilities. Form. Meth. in Syst. Design 38(3), 223–262
(2011)

49. Ferraiuolo, A., Zhao, M., Myers, A.C., Suh, G.E.: Hyperflow: A processor architecture for
nonmalleable, timing-safe information flow security. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proc. of the 2018 ACM SIGSAC Conf. on Computer and Communications
Security, CCS 2018. pp. 1583–1600. ACM (2018)

18 Yliès Falcone and Srinivas Pinisetty

50. Fong, P.W.L.: Access control by tracking shallow execution history. In: 2004 IEEE Symp.
on Security and Privacy (S&P 2004). pp. 43–55. IEEE Computer Society (2004)

51. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised and dis-
tributed systems. In: Bartocci and Falcone [12], pp. 176–210

52. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Overcoming
control-flow integrity. In: 2014 IEEE Symp. on Security and Privacy, SP 2014. pp. 575–589.
IEEE Computer Society (2014)

53. Hallé, S., Khoury, R., Betti, Q., El-Hokayem, A., Falcone, Y.: Decentralized enforcement of
document lifecycle constraints. Inf. Syst. 74(Part), 117–135 (2018)

54. Havelund, K., Reger, G., Thoma, D., Zalinescu, E.: Monitoring events that carry data. In:
Bartocci and Falcone [12], pp. 61–102

55. Ji, Y., Wu, Y., Lafortune, S.: Enforcement of opacity by public and private insertion functions.
Automatica 93, 369–378 (2018)

56. Johansen, H.D., Birrell, E., van Renesse, R., Schneider, F.B., Stenhaug, M., Johansen, D.:
Enforcing privacy policies with meta-code. In: Kono, K., Shinagawa, T. (eds.) Proc. of
the 6th Asia-Pacific Workshop on Systems, APSys 2015. pp. 16:1–16:7. ACM (2015),
https://doi.org/10.1145/2797022

57. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N.B., Ponomarev, D.: Branch regulation: Low-
overhead protection from code reuse attacks. In: 39th Int. Symp. on Computer Architecture
(ISCA 2012). pp. 94–105. IEEE Computer Society (2012)

58. Khoury, R., Tawbi, N.: Corrective enforcement: A new paradigm of security policy enforce-
ment by monitors. ACM Trans. Inf. Syst. Secur. 15(2), 10:1–10:27 (2012)

59. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime monitors? A
survey. Computer Science Review 6(1), 27–45 (2012)

60. Kiczales, G.: Aspect-oriented programming. In: Roman et al. [96], p. 730
61. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: Roman

et al. [96], pp. 49–58
62. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.

In: Boneh, D. (ed.) Proc. of the 11th USENIX Security Symp. pp. 191–206. USENIX (2002)
63. Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L.R., Könighofer, R., Topcu, U., Wang,

C.: Shield synthesis. Form. Meth. in Syst. Design 51(2), 332–361 (2017)
64. Kozyri, E., Arden, O., Myers, A.C., Schneider, F.B.: JRIF: reactive information flow control

for java. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic, D. (eds.) Foundations of
Security, Protocols, and Equational Reasoning - Essays Dedicated to Catherine A. Meadows.
LNCS, vol. 11565, pp. 70–88. Springer (2019)

65. Kumar, A., Ligatti, J., Tu, Y.: Query monitoring and analysis for database privacy - A security
automata model approach. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S., Li, T.,
Zhang, Y. (eds.) Web Information Systems Engineering - WISE 2015 - 16th Int. Conf., Part
II. LNCS, vol. 9419, pp. 458–472. Springer (2015)

66. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng.
3(2), 125–143 (1977)

67. Lesage, J., Faure, J., Cury, J.E.R., Lennartson, B. (eds.): 12th Int. Workshop on Discrete
Event Systems, WODES 2014. Int. Federation of Automatic Control (2014)

68. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

69. Lourenço, J.M., Fiedor, J., Krena, B., Vojnar, T.: Discovering concurrency errors. In: Bartocci
and Falcone [12], pp. 34–60

70. Luo, Q., Rosu, G.: Enforcemop: a runtime property enforcement system for multithreaded
programs. In: Pezzè, M., Harman, M. (eds.) Int. Symp. on Software Testing and Analysis,
ISSTA. pp. 156–166. ACM (2013)

On the Runtime Enforcement of Timed Properties 19

71. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems - specification.
Springer (1992)

72. Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal Methods, Verification
and Validation - 7th Int. Symp., ISoLA 2016, Part II, LNCS, vol. 9953 (2016)

73. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML history-based
usage control policy. In: Barthe, G., Markatos, E.P., Samarati, P. (eds.) Security and Trust
Management - 12th Int. Workshop, STM 2016. LNCS, vol. 9871, pp. 64–81. Springer (2016)

74. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. STTT 14(3), 249–289 (2012)

75. Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R., Jaksic, S., Selyunin, K.: The HARMONIA
project: Hardware monitoring for automotive systems-of-systems. In: Margaria and Steffen
[72], pp. 371–379

76. Pavlich-Mariscal, J.A., Demurjian, S.A., Michel, L.D.: A framework of composable ac-
cess control definition, enforcement and assurance. In: Bastarrica, M.C., Solar, M. (eds.)
XXVII Int. Conf. of the Chilean Computer Science Society (SCCC 2008). pp. 13–22. IEEE
Computer Society (2008)

77. Pavlich-Mariscal, J.A., Demurjian, S.A., Michel, L.D.: A framework for security assurance
of access control enforcement code. Computers & Security 29(7), 770–784 (2010)

78. Pavlich-Mariscal, J.A., Michel, L., Demurjian, S.A.: A formal enforcement framework for
role-based access control using aspect-oriented programming. In: Briand, L.C., Williams, C.
(eds.) Model Driven Engineering Languages and Systems, 8th Int. Conf., MoDELS 2005.
LNCS, vol. 3713, pp. 537–552. Springer (2005)

79. Pinisetty, S.: Runtime enforcement of timed properties. (Enforcement à l’éxécution de
propriétés temporisées). Ph.D. thesis, University of Rennes 1, France (2015)

80. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric timed
properties with practical applications. In: Lesage et al. [67], pp. 420–427

81. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of regular timed
properties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong, J. (eds.) Symp. on Applied
Computing, SAC 2014. pp. 1279–1286. ACM (2014)

82. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Tipex: A tool chain for timed property
enforcement during execution. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification -
6th Int. Conf., RV 2015. LNCS, vol. 9333, pp. 306–320. Springer (2015)

83. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.: Runtime
enforcement of timed properties revisited. Form. Meth. in Syst. Design 45(3), 381–422
(2014)

84. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.L.: Runtime
enforcement of timed properties. In: Qadeer and Tasiran [89], pp. 229–244

85. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Predictive
runtime verification of timed properties. J. of Systems and Software 132, 353–365 (2017)

86. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. Form. Meth. in Syst. Design 51(1), 154–199 (2017)

87. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., Hanxleden, R.V.: Runtime
enforcement of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16(5s), 178:1–
178:25 (Sep 2017)

88. Pnueli, A.: Embedded systems: Challenges in specification and verification. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) Embedded Software, Second International Conf. Lecture
Notes in Computer Science, vol. 2491, pp. 1–14. Springer (2002)

89. Qadeer, S., Tasiran, S. (eds.): Runtime Verification, Third Int. Conf., RV 2012, LNCS, vol.
7687. Springer (2013)

90. Reger, G., Havelund, K.: What is a trace? A runtime verification perspective. In: Margaria
and Steffen [72], pp. 339–355

20 Yliès Falcone and Srinivas Pinisetty

91. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement of (timed)
properties with uncontrollable events. Mathematical Structures in Computer Science 29(1),
169–214 (2019)

92. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of
(timed) properties with uncontrollable events. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) Theoretical Aspects of Computing - ICTAC 2015 - 12th Int. Colloquium. LNCS, vol.
9399, pp. 542–560. Springer (2015)

93. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement using büchi games. In: Erdogmus,
H., Havelund, K. (eds.) Proc. of the 24th ACM SIGSOFT Int. SPIN Symp. on Model
Checking of Software. pp. 70–79. ACM (2017)

94. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In: Lahiri,
S.K., Reger, G. (eds.) Runtime Verification - 17th Int. Conference, RV 2017. Lecture Notes
in Computer Science, vol. 10548, pp. 241–258. Springer (2017)

95. Rinard, M.C.: Acceptability-oriented computing. In: Crocker, R., Jr., G.L.S. (eds.) Compan-
ion of the 18th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2003. pp. 221–239. ACM (2003)

96. Roman, G., Griswold, W.G., Nuseibeh, B. (eds.): 27th Int. Conf. on Software Engineering
(ICSE 2005). ACM (2005)

97. S. Pinisetty et al.: TiPEX website. https://srinivaspinisetty.github.io/Timed-Enforcement-
Tools/ (2015)

98. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

99. Selyunin, K., Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R.: Monitoring of MTL spec-
ifications with ibm’s spiking-neuron model. In: Fanucci, L., Teich, J. (eds.) 2016 Design,
Automation & Test in Europe Conf. & Exhibition, DATE 2016. pp. 924–929. IEEE (2016)

100. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with bit-precision.
In: Proc. of the 2005 USENIX Annual Technical Conf. pp. 17–30. USENIX (2005)

101. Sifakis, J.: Modeling real-time systems. In: Proc. of the 25th IEEE Real-Time Systems Symp.
(RTSS 2004). pp. 5–6. IEEE Computer Society (2004)

102. Sifakis, J., Tripakis, S., Yovine, S.: Building models of real-time systems from application
software. Proc. of the IEEE 91(1), 100–111 (2003)

103. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Asp. Comput. 6(5),
495–512 (1994)

104. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.: Sok:
Sanitizing for security. CoRR abs/1806.04355 (2018)

105. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in memory. In: 2013 IEEE
Symp. on Security and Privacy, SP 2013. pp. 48–62. IEEE Computer Society (2013)

106. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under memory-
limitation constraints. Inf. Comput. 206(2-4), 158–184 (2008)

107. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties under burst
error. In: Rayadurgam, S., Tkachuk, O. (eds.) NASA Formal Methods - 8th Int. Symp. LNCS,
vol. 9690, pp. 65–81. Springer (2016)

108. Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: Runtime enforcement for safety-critical
cyber-physical systems: Invited. In: Proc. of the 54th Annual Design Automation Conf. pp.
84:1–84:6. ACM (2017)

109. Yin, X., Lafortune, S.: A new approach for synthesizing opacity-enforcing supervisors
for partially-observed discrete-event systems. In: American Control Conf., ACC 2015. pp.
377–383. IEEE (2015)

110. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In:
Goodloe, A., Person, S. (eds.) NASA Formal Methods - 4th Int. Symp., NFM 2012. LNCS,
vol. 7226, pp. 418–432. Springer (2012)

