Yliès Falcone
email: ylies.falcone@univ-grenoble-alpes.fr

Srinivas Pinisetty
email: spinisetty@iitbbs.ac.in

On the Runtime Enforcement of Timed Properties

Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior of systems at runtime. We are interested in such behaviors described by specifications that feature timing constraints formalized in what is generally referred to as timed properties. This tutorial presents a gentle introduction to runtime enforcement (of timed properties). First, we present a taxonomy of the main principles and concepts involved in runtime enforcement. Then, we give a brief overview of a line of research on theoretical runtime enforcement where timed properties are described by timed automata and feature uncontrollable events. Then, we mention some tools capable of runtime enforcement, and we present the TiPEX tool dedicated to timed properties. Finally, we present some open challenges and avenues for future work.

Runtime Enforcement (RE) is a discipline of computer science concerned with enforcing the expected behavior of a system at runtime. Runtime enforcement extends the traditional runtime verification [12-14, 42, 43] problem by dealing with the situations where the system deviates from its expected behavior. While runtime verification monitors are execution observers, runtime enforcers are execution modifiers.

], but none on the enforcement of timed properties (for real-time systems).

 101, 102].

This tutorial comprises four stages:

1. the presentation of a taxonomy of concepts and principles in RE (Sec. 1); 2. the presentation of a framework for the RE of timed properties where specifications are described by timed automata (preliminary concepts are recalled in Sec. 2, the framework is overviewed in Sec. 3, and presented in more details in Sec. 4); 3. the demonstration of the TiPEX [82] tool implementing the framework (Sec. 5); 4. the description of some avenues for future work (Sec. 6).

Principles and Concepts in Runtime Enforcement

In the first stage of the tutorial, we discuss a taxonomy of the main concepts and principles in runtime enforcement (see Fig. 1). We refer to this taxonomy as the RE taxonomy. The RE taxonomy builds upon, specializes, and extends the taxonomy of runtime verification [START_REF] Falcone | A taxonomy for classifying runtime verification tools[END_REF] (RV taxonomy). In particular, the RE taxonomy shares the notions of specification, trace, and deployment with the RV taxonomy. We briefly review and customize these for runtime enforcement in the following for the sake of completeness. The RE taxonomy considers the additional enforceability and enforcement mechanism parts. We also present some application domains where the RE principles were used.

Specification

A specification (Fig. 2) describes (some of) the intended system behavior to be enforced. It usually relies on some abstraction of the actual and detailed system behavior. A specification can be categorized as being explicit or implicit. An explicit specification makes the functional or non-functional requirements of the target system explicit. An explicit specification is expressed by the user using a specification language (e.g., some variant of temporal logic or extension of automata). Such specification language relies on an operational or denotational paradigm to express the intended behavior. The specification language offers modalities which allow referring to the past, present, or future of the execution. Other dimensions of a specification are related to the features allowing expressing the expected behavior with more or less details. The time dimension refers to the underlying model of time, being either a logical time or the actual physical time. The data dimension refers to whether the specification allows reasoning about any form of data involved in the program (values of variables or function parameters). Fig. 2: Taxonomy -specification.

An implicit specification is related to the semantics of the programming language of the target application system, or its programming or memory models. Implicit specifications generally capture a collection of errors that should not appear at runtime because they could lead to unpredictable behavior. Implicit specifications include security concerns (see also Sec. 1.6) such as memory safety [START_REF] De Amorim | The meaning of memory safety[END_REF]105] where some form of memory access errors should be avoided (e.g., use after free, null pointer dereference, overflow) and the integrity of the execution (of the data, data flow, or control flow). They also include absence of concurrency errors [START_REF] Lourenc ¸o | Discovering concurrency errors[END_REF] such as deadlocks, data races, and atomicity violations. Depending on the target system and specification being enforced, the considered notion of trace can contain several sorts of information (Fig. 3): input/output from the system, events or sample states from the system, or signals. The notion of trace can play up to three different roles: it can be the mathematical model of a specification (when a set of traces defines the specification), the sequence of pieces of information from the system which is input to the enforcement mechanism, or the sequence of pieces of information enforced on the system which is output from the enforcement mechanism. In the two latter cases, the observation and imposition of the trace is influenced by the sampling on the system state, which can be triggered according to events or time. Moreover, the trace can contain more or less precise information depending on the points of control and observation provided by instrumentation. Such information can be gathered by evaluating/abstracting the system state at points of intervals of physical time. We refer to [START_REF] Meredith | An overview of the MOP runtime verification framework[END_REF][START_REF] Reger | What is a trace? A runtime verification perspective[END_REF] for more details on the concept of trace.

Trace

Enforcement Mechanism

An enforcement mechanism (EM, Fig. 4) is a mechanism in charge of enforcing the desired specification, be it either a mathematical model of the expected-behavior transformation or its realization by algorithms or routines. It is referred to by several names in the literature, e.g., enforcement monitor, reference monitor, enforcer, and enforcement mechanism. Several models of enforcement mechanisms were proposed: security automata [START_REF] Schneider | Enforceable security policies[END_REF], edit-automata [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF] (and its variants [START_REF] Bielova | Do you really mean what you actually enforced?[END_REF]), generalized enforcement monitors [START_REF] Falcone | Runtime enforcement monitors: composition, synthesis, and enforcement abilities[END_REF], iteration suppression automata [START_REF] Bielova | Iterative enforcement by suppression: Towards practical enforcement theories[END_REF], delayers [START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF], delayers with suppression [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF], sanitizers [104], shields [START_REF] Könighofer | Shield synthesis[END_REF], safety shields [107], shields for burst errors [107], and safety guards [108]. An EM reads a trace produced by the target system and produces a new trace where the specification is enforced. It acts like a "filter" on traces. This conceptualization of an EM as a(n) (input/output) filter abstracts away from its actual role, which can be an input sanitizer (filtering out the inputs to the target system), an output sanitizer (filtering out the outputs of the target system), or a reference monitor (granting or denying permission to the action that the system executes). An EM can be generated automatically from the specification (it is said to be synthesized) or programmed manually. Automatically generating an EM provides more confidence and binds it to the specification used to generate it, whereas manual generation permits programming an EM and makes room for customization. There exist several paradigms for describing the behavior of an EM: denotational, when an EM is seen as a mathematical function with the set of traces as domain and codomain; or operational, when the computation steps for an EM are detailed (e.g., rewriting rules, automaton, labelled transition system -LTS, or algorithm). To transform the trace, an EM can use some internal memory to store information from the execution. Such memory can be assumed infinite, finite, or shallow when it cannot record multiple occurrences of the same piece of information. Moreover, using data from the input trace and this memory, enforcement operations in an EM may transform the trace. Examples of enforcement operations include terminating the underlying target system, preventing an action from executing or altering it, executing new actions, etc.

Deployment

Like deployment in runtime verification, deployment in runtime enforcement (Fig. 5) refers to how an EM is integrated within the system: its implementation, organization, and how and when it collects and operates on the trace. One of the first things to consider is the architecture of the system, which can be monolithic, multi-threaded or distributed. One can use a centralized EM (that operates on the whole system) or a decentralized one which adapts to the system architecture and possibly use existing communication mediums for decentralized EMs to communicate. An EM itself can be deployed at several levels: software, operating system or virtual machine, or hardware. The higher the level (in terms of abstraction), the more the mechanism has access to semantic information about the target system, while lower-level deployment provides the enforcement device with finer-grain observation and control capabilities on the target system. The stage refers to when an EM operates, either offline (after the execution) or online (during the execution, synchronously or asynchronously). Offline runtime enforcement (and verification) is conceptually simpler since an EM has access to the complete trace (in e.g., a log) and can thus perform arbitrary enforcement operation. On the contrary, in online enforcement, an EM only knows the execution history and decisions have to be made while considering all possible future behaviors. The placement refers to where an EM operates, either inline or outline, within or outside the existing address space of the initial system. The deployment parameters are constrained by the instrumentation (technique) used to augment the initial system to include an EM. Instrumentation can be software-based or hardware-based depending on the implementation of the target system. In the case of softwarebased instrumentation, it can operate at the level of the source (language) of the application system, its intermediate representation (IR), the binary, or using library interposition. Hardware-based instrumentation [START_REF] Amiar | Compressing microcontroller execution traces to assist system analysis[END_REF][START_REF] Amiar | Fault localization in embedded software based on a single cyclic trace[END_REF][START_REF] Nguyen | The HARMONIA project: Hardware monitoring for automotive systems-of-systems[END_REF][START_REF] Selyunin | Monitoring of MTL specifications with ibm's spiking-neuron model[END_REF] can be for instance realized by observing and controlling the system through a JTAG port and using dedicated hardware (e.g., an FPGA).

Deployment challenges. Deploying an EM with the appropriate parameters raises several challenges and issues. From a bird-eye view, the challenges revolve around ensuring that an EM does not "conflict with the initial system". We discuss this around two questions. First, how to implement the "reference logic" where the enforcement mechanism takes important decisions regarding the system execution? In the case where an EM is a sanitizer, deployment should ensure that all the relevant inputs or outputs go through the enforcement device. In the case where an EM is a reference monitor, the reference logic should ensure that the application actions get executed only if the monitor authorizes it. In security-sensitive or safety-critical applications, users of an enforcement framework may demand formal guarantees. There are some approaches to certify runtime verification mechanisms [START_REF] Aktug | Provably correct runtime monitoring[END_REF][START_REF] Blech | Towards certified runtime verification[END_REF][START_REF] Dam | Provably correct inline monitoring for multithreaded java-like programs[END_REF] and some to verify edit-automata [START_REF] Riganelli | Verifying policy enforcers[END_REF], but more research endeavors are needed in these directions. Second, how to preserve the integrity of the application? As an EM modifies the behavior of the application, it should not alter its functioning by avoiding crashes, preserving its semantics, and not deteriorating its performance. For instance, consider the case where an EM intervenes by forbidding the access to some resource or an action to execute (denying it or postponing it). In case of online monitoring, an EM should be aware of the application semantics and more particularly of its control and data flows. In case of outline monitoring, there should be some signaling mechanism already planned in the application or added through instrumentation. Enforceability (Fig. 6) refers to the concept of determining the specification behavior that can effectively be enforced on systems. EMs should follow some requirements on how they correct the behavior of systems. For instance, soundness refers to the fact that what is output by an EM should comply with the specification while transparency refers to the fact that the modification to the initial system behavior should be minimal. Additional constraints such as optimality can be introduced to several possible modifications that a monitor can make, according to some desired quality of service. Additionally, distances or pre-orders can be defined over valid traces for the same purpose [START_REF] Bielova | Predictability of enforcement[END_REF][START_REF] Khoury | Corrective enforcement: A new paradigm of security policy enforcement by monitors[END_REF]. When it is possible to obtain an EM that enforces a property while complying with the requirements, the property is said to be enforceable, and non-enforceable otherwise. Enforceability of a specification is also influenced by the realizability of EMs. For this, assumptions are made on the feasibility of some operations of an EM. An example is when an EM memorizes input events from the target system, it should not prevent the system from functioning. Another example is when enforcing a timed specification, as the time that elapses between events matters for the satisfaction of the specification, there are assumptions to be made or guarantees to be ensured on the computation time performed by EMs (e.g., the computation time of an EM should be negligible) or on the system communication (e.g., communication overhead or reliability). Moreover, the amount of memory that an EM disposes influences how much from the execution history it can record or events it can store, and thus the enforceable properties [START_REF] Fong | Access control by tracking shallow execution history[END_REF]106]. Furthermore, importantly in a timed context, physical constraints should be taken into consideration: in the online enforcement of a specification, events cannot be released by an EM before being received. The realizability of EMs can benefit from knowledge on the possible system behavior. Such knowledge can come from a (possibly partial) model of the system or static analysis. Knowledge permits upgrading an EM with predictive abilities [START_REF] Pinisetty | Predictive runtime enforcement[END_REF] and it can thus enforce more specifications (see also [START_REF] Babaee | Predictive run-time verification of discrete-time reachability properties in black-box systems using trace-level abstraction and statistical learning[END_REF][START_REF] Pinisetty | Predictive runtime verification of timed properties[END_REF]110] for predictive runtime verification frameworks). Another concern with enforceability is to delineate the sets of enforceable and non-enforceable specifications. Characterizing the set of enforceable specifications allows identifying the (possibly syntactically characterized) fragments of a specification language that can be enforced. For this, one can rely on existing classical classifications of properties, such as the safetyliveness "dichotomy" [START_REF] Alpern | Defining liveness[END_REF][START_REF] Lamport | Proving the correctness of multiprocess programs[END_REF]103] or the safety-progress hierarchy [START_REF] Chang | Characterization of temporal property classes[END_REF][START_REF] Manna | The temporal logic of reactive and concurrent systems -specification[END_REF] classifications. There exist several delineations of enforceable/non-enforceable properties based on different assumptions and EMs; see e.g., [START_REF] Chabot | Extending the enforcement power of truncation monitors using static analysis[END_REF][START_REF] Falcone | Runtime enforcement monitors: composition, synthesis, and enforcement abilities[END_REF][START_REF] Khoury | Corrective enforcement: A new paradigm of security policy enforcement by monitors[END_REF][START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF][START_REF] Schneider | Enforceable security policies[END_REF]. Application domains (Fig. 7) refers to the domains where the principles of runtime enforcement are applied. We briefly refer to some applications of runtime enforcement in categories: usage control and security/privacy, and memory safety. We do not further elaborate the taxonomy for application domains since classifying security domains is subject to interpretation and most implementations of EMs for security address several flavors of security. Regarding applications for usage control, runtime enforcement was applied to enforce usage control policies in [START_REF] Martinelli | Enforcement of U-XACML history-based usage control policy[END_REF], enforcement of the usage of the Android library in [START_REF] Falcone | Runtime verification and enforcement for Android applications with RV-Droid[END_REF], disabling Android advertisements in [START_REF] El-Harake | Blocking advertisements on Android devices using monitoring techniques[END_REF]. Regarding applications in the domain of security, runtime enforcement was applied to enforce the opacity of secrets in [START_REF] Falcone | Enforcement and validation (at runtime) of various notions of opacity[END_REF][START_REF] Ji | Enforcement of opacity by public and private insertion functions[END_REF]109], access control policies in [START_REF] Pavlich-Mariscal | A framework of composable access control definition, enforcement and assurance[END_REF][START_REF] Pavlich-Mariscal | A framework for security assurance of access control enforcement code[END_REF][START_REF] Pavlich-Mariscal | A formal enforcement framework for role-based access control using aspect-oriented programming[END_REF], confidentiality in [START_REF] Chong | SIF: enforcing confidentiality and integrity in web applications[END_REF][START_REF] Hallé | Decentralized enforcement of document lifecycle constraints[END_REF], information-flow policies [START_REF] Chong | SIF: enforcing confidentiality and integrity in web applications[END_REF][START_REF] Ferraiuolo | Hyperflow: A processor architecture for nonmalleable, timing-safe information flow security[END_REF][START_REF] Kozyri | JRIF: reactive information flow control for java[END_REF][START_REF] Kozyri | JRIF: reactive information flow control for java[END_REF], security and authorization policies in [START_REF] Birgisson | Enforcing authorization policies using transactional memory introspection[END_REF][START_REF] Erlingsson | SASI enforcement of security policies: a retrospective[END_REF], privacy policies in [START_REF] Chong | SIF: enforcing confidentiality and integrity in web applications[END_REF][START_REF] Johansen | Enforcing privacy policies with meta-code[END_REF][START_REF] Kumar | Query monitoring and analysis for database privacy -A security automata model approach[END_REF], control-flow integrity in [START_REF] Abadi | Control-flow integrity principles, implementations, and applications[END_REF][START_REF] Davi | ROPdefender: a detection tool to defend against returnoriented programming attacks[END_REF][START_REF] Göktas | Out of control: Overcoming control-flow integrity[END_REF][START_REF] Kayaalp | Branch regulation: Lowoverhead protection from code reuse attacks[END_REF][START_REF] Kiriansky | Secure execution via program shepherding[END_REF], and memory safety in [START_REF] Bruening | Practical memory checking with dr. memory[END_REF][START_REF] Bruening | Using Dr. Fuzz, Dr. Memory, and custom dynamic tools for secure development[END_REF][START_REF] Duck | Stack bounds protection with low fat pointers[END_REF]100].

Enforceability

Application Domains

Real-time Systems and Specifications with Time Constraints

The correctness of real-time systems depends not only on the logical result of the computation but also on the time at which the results are produced. Such systems are specified with requirements with precise constraints on the time that should elapse between actions and events. Formalization of a requirement with time constraints is referred to as a timed property. Timed automata is a formal model used to define timed properties. A timed automaton [START_REF] Alur | A theory of timed automata[END_REF] is a finite automaton extended with a finite set of real valued clocks. It is one of the most studied models for modeling and verifying real-time systems with many algorithms and tools. In this section, we present the preliminaries required to formally define timed requirements and executions (traces) of a system.

Preliminaries and Notations

Untimed concepts. Let Σ denote a finite alphabet. A (finite) word over Σ is a finite sequence of elements of Σ . The length of a word w is the number of elements in it and is denoted by |w|. The empty word over Σ is denoted by ε Σ , or ε when clear from the context. The set of all (resp. non-empty) words over Σ is denoted by Σ * (respectively Σ +). The concatenation of two words w and w is denoted by w • w . A word w is a prefix of a word w, noted w w, whenever there exists a word w such that w = w • w , and w ≺ w if additionally w = w; conversely w is said to be an extension of w .

A language over Σ is a subset of Σ * . The set of prefixes of a word w is denoted by pref(w). For a language L , pref(L

) def = w∈L pref(w) is the set of prefixes of words in L . A language L is prefix-closed if pref(L) = L and extension-closed if L • Σ * = L .
Timed words and timed languages. In a timed setting, we consider the occurrence time of actions. Input and output streams of enforcement mechanisms are seen as sequences of events composed of a date and an action, where the date is interpreted as the absolute time when the action is received by the enforcement mechanism.

Let R ≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of actions. An event is a pair (t, a), where date((t, a))

def = t ∈ R ≥0 is
= (t 1 , a 1)• (t 2 , a 2) • • • (t n , a n), for some n ∈ N, where (t i) i∈[1,n] is a non-decreasing sequence in R ≥0 .
The set of timed words over Σ is denoted by tw(Σ). A timed language is any set L ⊆ tw(Σ). Even though the alphabet (R ≥0 × Σ) is infinite in this case, previous untimed notions and notations (related to length, prefix etc) extend to timed words.

When concatenating two timed words, one should ensure that the result is a timed word, i.e., dates should be non-decreasing. This is ensured if the ending date of the first timed word does not exceed the starting date of the second one. Formally, let

σ = (t 1 , a 1) • • • (t n , a n) and σ = (t 1 , a 1) • • • (t m , a m) be two timed words with end(σ) ≤ start(σ), their concatenation is σ • σ def = (t 1 , a 1) • • • (t n , a n) • (t 1 , a 1) • • • (t m , a m). By con- vention σ • ε def = ε • σ def = σ . Concatenation is undefined otherwise.

Timed Automata

A timed automaton [START_REF] Alur | A theory of timed automata[END_REF] (TA) is a finite automaton extended with a finite set of realvalued clocks. Intuitively, a clock is a variable whose value evolves with the passing of physical time. Let X = {x 1 , . . . , x k } be a finite set of clocks. A clock valuation for X is an element of R X ≥0 , that is a function from X to R ≥0 . For χ ∈ R X ≥0 and δ ∈ R ≥0 , χ + δ is the valuation assigning χ(x) + δ to each clock x of X. Given a set of clocks X ⊆ X, χ[X ← 0] is the clock valuation χ where all clocks in X are assigned to 0. G (X) denotes the set of guards, i.e., clock constraints defined as Boolean combinations of simple constraints of the form x c with x ∈ X, c ∈ N and ∈ {<, ≤, =, ≥, >}. Given g ∈ G (X) and χ ∈ R X ≥0 , we write χ |= g when g holds according to χ. A (semantic) state is a pair composed of a location and a clock valuation.

Instead of presenting the formal definitions, we introduce TAs on an example. The timed automaton in Fig. 8 formalizes the requirement "In every 10 time units (tu), there cannot be more than 1 alloc action". The set of locations is L = {l 0 , l 1 , l 2 }, l 0 is the initial location, l 0 and l 1 are accepting locations, and l 2 is a non-accepting location. The set of actions is Σ = {alloc, rel}. There are transitions between locations upon actions. A finite set of real-valued clocks is used to model realtime behavior, set X = {x} in the example. On the transitions, there are i) guards with constraints on clock values (such as x < 10 on the transition between l 1 and l 2 in the example), and ii) assignment to clocks. Upon the first occurrence of action alloc, the automaton moves from l 0 to l 1 , and 0 is is assigned to clock x. In location l 1 , if action alloc is received, and if the value of x is greater than or equal to 10, then the automaton remains in l 1 , resetting the value of clock x to 0. It moves to location l 2 otherwise.

Partitioning the States of a Timed Automaton

Given a TA with semantic states Q and accepting semantic states Q F , following [START_REF] Falcone | What can you verify and enforce at runtime?[END_REF], we can define a partition of Q with four subsets good (G), currently good (G c), currently bad (B c) and bad (B), based on whether a state is accepting or not, and whether accepting or non-accepting states are reachable or not. This partitioning is useful for runtime verification and enforcement. An enforcement device makes decisions by checking the reachable subsets. For example, if all the reachable states belong to the subset B, then it is impossible to correct the input sequence anymore (in the future). If the current state belongs to the subset G, then any sequence will lead to a state belonging to the same subset and thus the enforcement device can be turned off. This partition is also useful to classify timed properties and for the synthesis of enforcement devices.

Formally,

Q is partitioned into Q = G c ∪ G ∪ B c ∪ B, where Q F = G c ∪ G and Q \ Q F = B c ∪ B, and: -G c = Q F ∩ pre * (Q \ Q F)
is the set of currently good states, that is the subset of accepting states from which non-accepting states are reachable;

-G = Q F \ G c = Q F \ pre * (Q \ Q F)
is the set of good states, that is the subset of accepting states from which only accepting states are reachable;

-B c = (Q \ Q F) ∩ pre * (Q F)
is the set of currently bad states, that is the subset of non-accepting states from which accepting states are reachable;

-B = (Q \ Q F) \ pre * (Q F)
is the set of bad states, that is the subset of non-accepting states from which only non-accepting states are reachable.

where, for a subset P of Q, pre * (P) denotes the set of states from which set P is reachable. It is well known that reachability of a set of locations is decidable using the classical zone (or region) symbolic representation (see [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]). As Q F corresponds to all states with location in F, the partition can then be symbolically computed on the zone graph.

Classification of Timed Properties

A timed property is defined by a timed language ϕ ⊆ tw(Σ) that can be recognized by a timed automaton. That is, the set of regular timed properties are considered. Given a timed word σ ∈ tw(Σ), we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ.

Definition 1 (Regular, safety, and co-safety properties).

-Regular timed properties are the properties that can be defined by languages accepted by a TA. -Safety timed properties are the non-empty prefix-closed regular timed properties.

-Co-safety timed properties are the non-universal3 extension-closed regular timed properties.

Enforcement Mechanism

Timed Memory timed property

Event Emitter

Event Receiver timed word timed word Fig. 9: RE of a timed property. The enforcement mechanism (EM) is synthesized from a timed property. At runtime, the EM is placed between an event emitter (EE) and event receiver (ER); it receives as input a timed word from the EE and produces as output a timed word for the ER.

As in the untimed case, safety (resp. co-safety) properties state that "nothing bad should ever happen" (resp. "something good should happen within a finite amount of time").

Overview of RE Approaches for Timed Properties

In this section, we overview some formal approaches [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF][START_REF] Pinisetty | Runtime enforcement of parametric timed properties with practical applications[END_REF][START_REF] Pinisetty | Runtime enforcement of regular timed properties[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF][START_REF] Renard | Optimal enforcement of (timed) properties with uncontrollable events[END_REF][START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF][START_REF] Renard | Runtime enforcement using büchi games[END_REF] to the runtime enforcement of timed properties described by timed automata (TA). Properties can feature uncontrollable events which can be only seen by the enforcement mechanism (EM) and cannot be acted upon. The runtime enforcement problem is conceptualized as illustrated in Fig. 9: an EM reads as input a timed word and should transform and output it so that it complies with a timed property used to obtain the EM, using a timed memory which accounts for the physical time during which elements have been stored. In all the following frameworks, EMs are described with two paradigms: a denotational one where EMs are seen as functions through their input/output behavior, and two operational ones: input/output labeled transition systems and algorithms. These approaches differ either in the supported classes of properties for which EMs can be synthesized and the enforcement operations of the enforcement mechanism.

Runtime enforcement of timed properties [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF] (for safety and co-safety properties).

In [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF] the first steps to runtime enforcement of (continuous) timed safety and co-safety properties was introduced. EMs were endowed only with an enforcement operation allowing to delaying events to satisfy the required property. For this purpose, the EM stores some actions for a certain time period computed when they are received. Requirements over the EMs ensured that their outputs not only satisfy the required property, but also with the shortest delay according to the current satisfaction of the property.

Runtime enforcement of regular timed properties [START_REF] Pinisetty | Runtime enforcement of regular timed properties[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF].The approach in [START_REF] Pinisetty | Runtime enforcement of regular timed properties[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF] generalizes [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF] and synthesizes EMs for any regular timed property. It allows considering interesting properties of systems belonging to a larger class specifying some form of transactional behavior. The difficulty that arises is that the EMs should consider the alternation between currently satisfying and not satisfying the property 4 . The unique enforcement operation is still delaying events as in [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF].

Runtime enforcement of regular timed properties by suppressing and delaying events [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF]. The approach in [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF] considers events composed of actions with absolute occurrence dates, and allows increasing the dates (while allowing reducing delays between events in memory). Moreover, suppressing events is also introduced. An event is suppressed if it is not possible to satisfy the property by delaying, whatever are the future continuations of the input sequence (i.e., the underlying TA can only reach non-accepting states from which no accepting state can be reached). In Sec. 4, we overview this framework. Runtime enforcement of parametric timed properties with practical applications [START_REF] Pinisetty | Runtime enforcement of parametric timed properties with practical applications[END_REF].The framework in [START_REF] Pinisetty | Runtime enforcement of parametric timed properties with practical applications[END_REF] makes one step towards practical runtime enforcement by considering event-based specifications where i) time between events matters and ii) events carry data values ([START_REF] Havelund | Monitoring events that carry data[END_REF]) from the monitored system. It defines how to enforce parametric timed specifications which are useful to model requirements from some application domains such as network security which have constraints both on time and data. For this, it introduces the model of Parametrized Timed Automata with Variables (PTAVs). PTAVs extend TAs with session parameters, internal and external variables. The framework presents how to synthesize EMs as in [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF] from PTAVs and shows the usefulness of enforcing such expressive specifications on application scenarios. Enforcement of timed properties with uncontrollable events [START_REF] Renard | Optimal enforcement of (timed) properties with uncontrollable events[END_REF][START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF].The approach in [START_REF] Renard | Optimal enforcement of (timed) properties with uncontrollable events[END_REF][START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF] presents a framework for enforcing regular untimed and timed properties with uncontrollable events. An EM cannot delay nor intercept an uncontrollable event.

To cope with uncontrollable events, the notion of transparency should be weakened to the so-called notion of compliance. Informally, compliance means that the order of controllable events should be maintained by the EM, while uncontrollable events should be released as output soon after they are received. Runtime enforcement of cyber-physical systems [START_REF] Pinisetty | Runtime enforcement of cyber-physical systems[END_REF].In synchronous reactive systems, terminating the system or delaying the reaction is not feasible. Thus, the approaches in [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF][START_REF] Pinisetty | Runtime enforcement of parametric timed properties with practical applications[END_REF][START_REF] Pinisetty | Runtime enforcement of regular timed properties[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties revisited[END_REF][START_REF] Renard | Optimal enforcement of (timed) properties with uncontrollable events[END_REF][START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF] are not suitable for such systems. The approach in [START_REF] Pinisetty | Runtime enforcement of cyber-physical systems[END_REF] introduces a framework for synchronous reactive systems with bidirectional synchronous EMs. While the framework considers similar notions of soundness, and transparency, it also introduces the so-called additional requirements of causality and instantaneity which are specific to synchronous executions. Moreover, the framework considers properties expressed using a variant of Discrete Timed Automata (DTA).

A framework for the Runtime Enforcement of Timed Properties

In this section, we present a framework for the runtime enforcement of timed properties described by timed automata [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF]. Most of the material comes from [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF][START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF].

Overview

Given some timed property ϕ and an input timed word σ , the EM outputs a timed word o that satisfies ϕ. The considered EMs are time retardants, i.e., their main enforcement operation consists in delaying the received events 5 . In addition to introducing additional delays (increasing dates), for the EM and system to continue executing, the EM can suppress events when no delaying is appropriate. However, it can not change the order of events. The EM may also reduce delays between events stored in its memory.

To ease the design and implementation of EMs in a timed context, they are described at three levels of abstraction: enforcement functions, enforcement monitors, and enforcement algorithms; all of which can be deployed to operate online. EMs should abide to some requirements, namely the physical constraint, soundness, transparency.

-The physical constraint says that the output produced for an extension σ of an input word σ extends the output produced for σ . This stems from the fact that, over time the enforcement function outputs a continuously growing sequence of events. The output for a given input can only be modified by appending new events (with greater dates). -Soundness says that the output either satisfies property ϕ, or is empty. This allows to output nothing if there is no way to satisfy ϕ. Note that, together with the physical constraint, this implies that no event can be appended to the output before being sure that the property will be eventually satisfied with subsequent output events. -Transparency says that the output is a delayed subsequence of the input σ ; that is with increased dates, preserved order, and possibly suppressed events. Notice that for any input σ , releasing ε as output would satisfy soundness, transparency, and the physical constraint. We want to suppress an event or to introduce additional delay only when necessary. Additionally, EMs should also respect optimality requirements: -Streaming behavior and deciding to output as soon as possible. Since an EM does not know the entire input sequence, for efficiency reasons, the output should be built incrementally in a streaming fashion. EMs should take decision to release input events as soon as possible. The EM should wait to receive more events, only when there is no possibility to correct the input. -Optimal suppression. Suppressing events should occur only when necessary, i.e., when, upon the reception of a new event, there is no possibility to satisfy the property, whatever is the continuation of the input. -Optimal dates. Choosing/increasing dates should be done in way that dates are optimal with respect to the current situation, releasing here as output as soon as possible.

The enforcement function E ϕ : tw(Σ) → tw(Σ) for a property ϕ defines how an input stream σ is transformed into an output stream. An enforcement monitor (see [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF]) is a more concrete view and defines the operational behavior of the EM over time as a timed labelled transition system. An enforcement algorithm realises enforcement monitor in pseudo code with two concurrent processes and a shared buffer At an abstract level, one process stores the received events in the shared buffer and computes their releasing date. The other process scrutinizes the shared buffer and releases the event at their releasing dates . In [START_REF] Falcone | Runtime enforcement of regular timed properties by suppressing and delaying events[END_REF], we formally prove that enforcement functions respect the requirements, that enforcement monitors realizes enforcement functions, that enforcement algorithms implements enforcement monitors, and that all description of EMs can be optimized for the particular case of timed safety properties.

Intuition on an Example

We provide some intuition on the expected behavior of EMs. Consider two processes that access to and operate on a shared resource. Each process i (with i ∈ {1, 2}) has three interactions with the resource: acquisition (acq i), release (rel i), and a specific operation (op i). Both processes can also execute a common action op. System initialization is denoted by action init. In the following, variable t keeps track of the evolution of time. Consider one specification, referred to as S 1 , of the shared ressource: "Operations op 1 and op 2 should execute in a transactional manner. Both actions should be executed, in any order, and any transaction should contain one occurrence of op 1 and op 2 . Each transaction should complete within 10 tu. Between operations op 1 and op 2 , occurrences of operation op can occur. There is at least 2 tu between any two occurrences of any operation." Figure 11 illustrates the behavior of an EM and how it transforms an input timed word (red) to a correct output timed word (blue) satisfying S 1 ; actions are in abscissa and occurrence dates in ordinate. Note, the satisfaction of the property is not represented in the figure. The input sequence is σ = (2, op 1) • (3, op 1) • (3.5, op) • (6, op 2). At t = 2, the EM can not output action op 1 because this action alone does not satisfy the specification (and the EM does not yet know the next events i.e., actions and dates). If the next action was op 2 , then, at the date of its reception, the EM could output action op 1 followed by op 2 , as it could choose dates for both actions in order to satisfy the timing constraints. At t = 3 the EM receives a second op 1 action. Clearly, there is no possible date for these two op 1 actions to satisfy the specification, and no continuation could solve the situation. The EM thus suppresses the second op 1 action, since this action is the one that prevents satisfiability in the future. At t = 3.5, when the EM receives action op, the input sequence still does not satisfy the specification, but there exists an appropriate delaying of such action so that with future events, the specification can be satisfied. At t = 6, the EM receives action op 2 , it can decide that action op 1 followed by op and op 2 can be released as output with appropriate delaying. Thus, the date associated with the first op 1 action is set to 6 (the earliest possible date, since this decision is taken at t = 6), 8 for action op (since 2 is the minimal delay between those actions satisfying the timing constraint), and 10 for action op 2 . Henceforth, as shown in the figure, the output of the EM for σ is (6, op 1) • (8, op) • (10, op 2).

Tool Implementations

Any tool for runtime verification [START_REF] Bartocci | First int. competition on runtime verification: rules, benchmarks, tools, and final results of CRV 2014[END_REF] can perform basic enforcement by terminating the execution of programs violating their specification. There are, however, several runtime verification tools that go further and feature their own enforcement operations, for instance Java-MOP and EnforceMOP [START_REF] Luo | Enforcemop: a runtime property enforcement system for multithreaded programs[END_REF] with handlers, LARVA [START_REF] Colombo | Runtime verification using LARVA[END_REF] with compensations [START_REF] Colombo | Recovery within long-running transactions[END_REF]. There are also numerous tools in the security domain enforcing (implicit) specifications related to the security of the monitored applications (memory safety, control-flow integrity, etc); see [104] for a recent overview.

To the best of our knowledge, there are two tools dedicated to the runtime enforcement of timed properties: TiPEX [START_REF] Pinisetty | Tipex: A tool chain for timed property enforcement during execution[END_REF] and GREP [START_REF] Renard | Runtime enforcement using büchi games[END_REF]. TiPEX implements the framework presented in Sec. 4 and provides additional features to synthesize timed automata and check the class of a timed automaton as per Def. 1. A detailed description of the TiPEX tool with some examples is provided in [START_REF] Pinisetty | Tipex: A tool chain for timed property enforcement during execution[END_REF]. TiPEX can be downloaded from [START_REF] Pinisetty | TiPEX website[END_REF]. GREP [START_REF] Renard | Runtime enforcement using büchi games[END_REF] follows the same objectives as but is based on game theory to synthesize the enforcement mechanisms. GREP also handles uncontrollable events.

Open Challenges and Avenues for Future Work

We conclude this tutorial by proposing some future research directions.

Enforcement monitoring for systems with limited memory. An enforcement mechanism basically acts as a filter storing the input events in its memory, until it is certain that the underlying property will be satisfied. As was the case with untimed properties [START_REF] Beauquier | Security policies enforcement using finite edit automata[END_REF][START_REF] Beauquier | Security policies enforcement using finite and pushdown edit automata[END_REF][START_REF] Fong | Access control by tracking shallow execution history[END_REF]106], defining enforcement mechanisms and new enforcement strategies should be defined when there are bounds on memory usage or limited resources. Delineating the subset of enforceable timed properties for which effective enforcement mechanisms can be obtained is also a subject for future work.

Predictive runtime enforcement. Predictive runtime enforcement considers the case where knowledge about the event emitter is available [START_REF] Pinisetty | Predictive runtime enforcement[END_REF]. When the enforcement mechanism knows the set of input sequences that it may receive, then it may anticipate decisions of releasing events as output without storing them in memory nor waiting for future events, e.g., when it knows that all the possible continuations of the input it has observed will not violate the property. Predictive runtime enforcement of timed properties poses several difficulties and challenges that have to be further explored [START_REF] Pinisetty | Predictive runtime verification of timed properties[END_REF][START_REF] Pinisetty | Predictive runtime enforcement[END_REF].

Realizing requirements automatically. In current research efforts, enforcement mechanisms are seen as modules outside the system, which take as input a stream of events (output of the system being monitored) and verify or correct this stream according to the property. For a better adoption of runtime enforcement theories and tools, one direction is to define methods and instrumentation techniques so that enforcement mechanisms can realize the requirements (which could not be integrated in the initial application. For this, one can imagine enforcement monitors (realizing some requirements) integrated as another layer on top of the core functionality or with libraries, inspiring from aspect-oriented programming [START_REF] Kiczales | Aspect-oriented programming[END_REF][START_REF] Kiczales | Aspect-oriented programming and modular reasoning[END_REF] and acceptability-oriented computing [START_REF] Rinard | Acceptability-oriented computing[END_REF].

Decentralized runtime enforcement. Decentralized runtime verification approaches [START_REF] Bauer | Decentralised LTL monitoring[END_REF][START_REF] Colombo | Organising LTL monitors over distributed systems with a global clock[END_REF][START_REF] El-Hokayem | THEMIS: a tool for decentralized monitoring algorithms[END_REF][START_REF] Falcone | Efficient and generalized decentralized monitoring of regular languages[END_REF] allow decentralizing the monitoring mechanism on the components of a system (see [START_REF] Francalanza | Runtime verification for decentralised and distributed systems[END_REF] for an overview). Such approaches deal with the situations where it is not desired to impose a central observation point in the system. Frameworks for decentralized runtime enforcement (of timed properties) have yet to be defined and will permit enforcing properties on distributed systems. For this purpose, one can inspire from from generalized consensus to help enforcement mechanisms forge a collective decisions when applying enforcement operations to the system.

Fig. 1 :

 1 Fig. 1: Taxonomy of concepts in runtime enforcement.

Fig. 3 :

 3 Fig. 3: Taxonomy -trace.

Fig. 4 :

 4 Fig. 4: Taxonomy -enforcement mechanism.

Fig. 5 :

 5 Fig. 5: Taxonomy -deployment.

Fig. 6 :

 6 Fig. 6: Taxonomy -enforceability.

Fig. 7 :

 7 Fig. 7: Taxonomy -application domains.

 the absolute time at which the action act((t, a)) def = a ∈ Σ occurs. A timed word over the finite alphabet Σ is a finite sequence of events σ

10 ΣFig. 8 :

 108 Fig. 8: Example of TA.

Fig. 10 :

 10 Fig. 10: TA defining property S 1 .

Fig. 11 :

 11 Fig. 11: Illustration of the behavior of an EM enforcing S 1 .

The universal property over R ≥0 × Σ is tw(Σ).

Indeed, in safety (resp. co-safety) (timed) automaton, there are only good, currently good, and bad states (resp. bad, currently bad, and good states), and thus the strategies for the EM is simpler: avoiding the bad states (resp. reaching a good state)[START_REF] Falcone | What can you verify and enforce at runtime?[END_REF].

Several application domains have requirements, where the required timing constraints can be satisfied by increasing dates of some actions[START_REF]12th Int. Workshop on Discrete Event Systems[END_REF].

Acknowledgment The authors thank Frédéric Desprez, Antoine El-Hokayem, Raphaël Jakse, Ali Kassem, and the reviewers for their comments on a preliminary version of this tutorial. The framework for runtime enforcement of timed properties reported in Sec. 2 to Sec. 5 is based upon joint research efforts with colleagues and friends: Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand, Laurent Mounier, Omer Nguena-Timo, Matthieu Renard, and Antoine Rollet.

This work is supported by the French national program "Programme Investissements d'Avenir IRT Nanoelec" (ANR-10-AIRT-05).