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Abstract

Anticipating actions before they are executed is crucial

for a wide range of practical applications including au-

tonomous driving and robotics. While most prior work

in this area requires partial observation of executed ac-

tions, in the paper we focus on anticipating actions sec-

onds before they start. Our proposed approach is the fu-

sion of a purely anticipatory model with a complemen-

tary model constrained to reason about the present. In

particular, the latter predicts present action and scene at-

tributes, and reasons about how they evolve over time.

By doing so, we aim at modeling action anticipation at a

more conceptual level than directly predicting future ac-

tions. Our model outperforms previously reported methods

on the EPIC-KITCHENS and Breakfast datasets.

1. Introduction

Automatic video understanding has improved signifi-

cantly over the last few years. Such advances have mani-

fested in disparate video understanding tasks, including ac-

tion recognition [5, 8, 11, 38, 41], temporal action local-

ization [37, 39, 47, 53], video search [13], video summa-

rization [32] and video categorization [29]. In this work,

we focus on the problem of anticipating future actions in

videos as illustrated in Figure 1.

A significant amount of prior work [5, 8, 11, 21, 23, 38,

41, 42, 46] in automatic video understanding has focused

on the task of action recognition. The goal of action recog-

nition is to recognize what action is being performed in a

given video. While accurate recognition is crucial for a

wide range of practical applications such as video catego-

rization or automatic video filtering, certain settings do not

allow for complete and even partial observation of action

before it happens. For instance, an autonomous car should

be able to recognize the intent of a pedestrian to cross the

road much before the action is actually initiated in order to

avoid an accident. In practical applications where we seek

to act before an action gets executed, being able to antici-

pate the future given the present is critical.

Anticipating the future, especially long-term, is a chal-
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Figure 1: Action anticipation. Examples of action antic-

ipation in which the goal is to anticipate future actions in

videos seconds before they are performed.

lenging task because the future is not deterministic: several

outcomes are possible given the current observation. To re-

duce uncertainty, most work in this field [2, 15, 18, 25, 35,

36] requires partially observed execution of actions. In this

paper, we address the task of action anticipation even when

no partial observation of the action is available. While prior

work [7, 20, 27, 43] has addressed this same task, in this

work, we specifically focus on better leveraging recogni-

tion models to improve future action prediction. We pro-

pose a fusion of two approaches: one directly anticipates

the future while the other first recognizes the present and

then anticipates the future, given the present. We have em-

pirically observed complementary of these two approaches

when evaluating on three distinct and diverse benchmarks:

EPIC-KITCHENS [6], Breakfast [19] and ActivityNet [4].

1.1. Contributions

The contributions of our work are: (i) We propose a

new framework for the task of anticipating human actions

several seconds before they are performed. Our model is

decomposed into two complementary models. The first,

named the predictive model, anticipates action directly from

the visual inputs. The second one, the transitional model,

is first constrained to predict what is happening in the ob-



served time interval and then leverages this prediction to

anticipate the future actions. (ii) We present extensive ex-

periments on three datasets with state-of-the-art results on

the EPIC-KITCHENS [6] and Breakfast action dataset [19].

In addition, our model provides ways to explain its ouputs,

which allows us to easily interpret our model as we demon-

strate in our qualitative analysis.

2. Related work

Predicting the future is a big area. Our work touches on

future frame, motion and semantic mask prediction as well

as human trajectory and action prediction, which we review

below.

Future pixel, motion or semantic mask prediction. Fu-

ture frame prediction has recently attracted many research

efforts. Mathieu et al. [28] predict future frames of a video

by proposing a multi-scale network architecture. They train

it using an adversarial approach to minimize an image gra-

dient difference loss. Vondrick et al. [44] also generate

future video frames using a transformation of pixels from

the past. Xue et al. [51] instead propose a probabilistic

model to generate future frames from a single image. Oh et

al. [30] predict action dependent future frames in old-school

Atari video games. Finn et al. [10] explore video predic-

tion for real-world interactive robot agents. Instead of di-

rectly predicting future pixels, Luc et al. [24] aim at predict-

ing future semantic segmentation mask in videos, Walker et

al. [45] explore future pose prediction in videos and Pinteal

et al. [31] predict motion from single still images. Our work

differs from them as we predict future action labels instead

of predicting pixel level information.

Human trajectory prediction. Predicting human trajec-

tories has also received wide attention [1, 26, 17, 50]. Kitani

et al. [17] approach this task by casting it as an inverse re-

inforcement learning (IRL) problem. Alahi et al. [1] model

prediction of human trajectories as a sequence generation

task and propose to generate these trajectories using recur-

rent neural networks (LSTMs). These work differs from our

as they are predicting an entire sequence of future locations

instead of a single action.

Early-stage action recognition. Our work is related to

the field of action anticipation and early-stage action predic-

tion. A large body of work [2, 15, 18, 25, 35, 36] focuses on

predicting actions given partially observed executions. This

setting differs from action recognition [5, 8, 11, 21, 23, 38,

41, 42, 46] or temporal action detection [37, 39, 47, 53], as

it assumes access to a small fraction (the beginning) of an

action. One early work in this genre is from Ryoo [35], who

uses dynamic bag-of-words to efficiently model the feature

distribution change over time. Hoai et al. [15] and Ma et

al. [25] formulate this task as a ranking problem where a

monotonically non-decreasing prediction score is enforced

as visual evidences are being accumulated. Similarly to

Vondrick et al. [43], Shi et al. [36] aim first at regressing

future visual feature vectors. These feature vectors are then

used as input to an action recognition model for the early-

stage action prediction. Our work differs from early-stage

action prediction, as we aim at predicting an action even

before it has actually started.

Action anticipation. Prior efforts [7, 17, 20, 27, 43] have

been addressing the task of anticipating action before they

are executed. The work of Farha et al. [7] aims at predict-

ing not only one but a sequence of future actions. How-

ever, their experiments concern a restricted setup with a

strong “action grammar” specific to cooking videos with

predefined recipes [19]. Our work is not restricted to these

type of datasets since we are also experimenting on un-

scripted cooking video dataset (EPIC-KITCHENS [6]) and

non cooking video dataset (ActivityNet 200 [4]). Also their

action anticipation approach can only be applied to videos

with annotated sequence of actions whereas our method can

be applied to any type of video dataset. Similarly to Mah-

mud et al. [27], their system is also trained to predict the

start of the next action. Anticipating events before they

occur is also used to predict traffic accidents [16, 40, 52].

Prior work also applied action anticipation in the domain

of sports analytics such as basketball [3, 9], water polo [9],

tennis and soccer [48]. Such models aim to anticipate fu-

ture trajectories of a ball and individual players. IRL has

also been recently applied to activity forecasting from first-

person egocentric daily activity videos [33]. On the other

hand, Wu et al. [49] combine on-wrist motion accelerome-

ter and camera to perform daily intention anticipation. Note

that several of these systems [1, 2, 7, 25, 27, 33, 36, 40, 49]

employ the use of recurrent neural networks (RNNs) to ad-

dress the sequential nature of these predictive tasks.

3. Action Anticipation Model

Our goal is to anticipate an action T seconds before it

starts. More formally, let V denote a video. Then we indi-

cate with Va:b the segment of V starting at time a and end-

ing at time b, and with yc the label of the action that starts at

time c . We would like to find a function f such that f(V0:t)
predicts yt+T . The main idea behind our model is that we

decompose f as a weighted average of two functions, a pre-

dictive model fpred and a transitional model ftrans:

f = αfpred + (1− α)ftrans, α ∈ [0, 1], (1)

where α is a dataset dependent hyper-parameter chosen

by validation. The first function fpred is trained to predict
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Figure 2: Overview of our approach. Our task is to pre-

dict an action T seconds before it starts to be performed.

Our model is a combination of two complementary mod-

ules: the predictive model and the transitional model. While

the predictive model directly anticipates the future action,

the transitional model is first constrained to output what is

currently happening. Then, it uses this information to antic-

ipate future actions.

the future action directly from the observed segment. On

the other hand, ftrans is first constrained to compute high-

level properties of the observed segment (e.g., attributes or

the action performed in the present). Then, in a second

stage, ftrans uses this information to anticipate the future

action. In the next subsections we explain how to learn

fpred and ftrans. Figure 2 presents an overview of the pro-

posed model.

3.1. Predictive model fpred

The goal of the predictive model fpred is to directly an-

ticipate future action from the visual input. As opposed

to ftrans, fpred is not subject to any specific constraint.

Suppose that we are provided with a training video V with

action labels yt0+T , . . . , ytn+T . For each label yti+T , we

want to minimize the loss:

l(fpred(Vs(ti):ti), yti+T ), (2)

where s(ti) = max(0, ti−tpred), l is the cross entropy loss,

tpred is a dataset dependent hyper-parameter, also chosen

by validation, that represents the maximum temporal inter-

val of a video fpred has access to. This hyper-parameter is

essential because looking too much in the past may add ir-

relevant information that degrades prediction performance.

This loss is then summed up over all videos from the train-

ing dataset. In this work, fpred is a linear model which takes

as input a video descriptor which we describe in section 4.2.
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Figure 3: Illustration of our transitional models. Up-

per: our Action Recognition (AR) based transitional model

learns to prediction future actions based on the predictions

of an action recognition classifier applied on current/present

frames (clips). Lower: our Visual Attributes (VA) based

transitional model learns to predict future actions based on

visual attributes of the current/present frames (clips).

3.2. Transitional model ftrans

The transitional model ftrans splits the prediction into

two stages: gs and gt. The first stage gs aims at recog-

nizing a current state s, describing the observed video seg-

ment. The state s can represent an action or a latent action-

attribute. The second stage gt takes as input the current state

s, and anticipates the next action given the current state s.

gs can be thought of as a complex function extracting high-

level information from the observed video segment, while

gt is a simple (in fact, linear) function operating on the state

s and modeling the correlation between the present state

and the future action. We will next explain in detail how

we define the current state s and how we model the transi-

tion function gt. We propose two different approaches for

our transitional model: one that is based on action recogni-

tion and one that relies on visual attributes, as illustrated in

Figure 3.

Transitional Model based on Visual Attributes. In this

approach, we leverage visual attributes [23] to anticipate

the future. Visual attributes have been previously used for

action recognition by Liu et al. [23]. The idea is to first

predefine a set of visual attributes describing the presence

or absence of objects, scenes or atomic actions in a video.

Then, a model is trained on these visual attributes for action

recognition. In this work, we instead use visual attributes

as a means to express the transitional model. The current

state s ∈ [0, 1]a predicted by gs, is then a vector of visual

attributes probabilities, where a is the number of visual at-

tributes. Given the presently observed visual attribute s, gt



predicts the future action. We model gt as a low-rank linear

model:

gt(s) = W2(W1s + b1) + b2, (3)

where W1 ∈ R
r×a,W2 ∈ R

K×r, b1 ∈ R
r, b2 ∈ R

K ,

K ∈ N the number of action classes and r is the rank

of gt. These parameters are learned, in the same manner

as the predictive model, by minimizing the cross entropy

loss between the predicted action given by gt(s) and the

future action ground-truth. Implementing gt through a low-

rank model reduces the number of parameters to estimate.

Empirically, we found that this leads to better accuracy, as

shown in our experiments. The lower part of Figure 3 illus-

trates this case.

Transitional Model based on Action Recognition.

Real-world videos often consist of a sequence of elementary

actions performed by a person in order to reach a final goal

such as Preparing coffee, Changing car tire or Assembling

a chair. Many datasets come with a training set where each

video has been annotated with action labels and segment

boundaries for all occurring actions (e.g EPIC-KITCHENS,

Breakfast). When this is available we can use action labels

instead of predefined visual attributes for state s. The in-

tuition behind our claim is the fact that the anticipation of

the next action significantly depends on the present being-

performed action. In other words, we make a Markov as-

sumption on the sequence of performed actions. More for-

mally, suppose we are provided with an ordered sequence

of action annotations (a0, . . . , aN ) ∈ {1, . . . ,K}N for a

given video, where an defines the action class performed in

video segment Vn. We propose to model P (an+1 = i|Vn)
as follows:

P (an+1 = i|Vn) =
K∑

j=1

P (an+1 = i| an = j)P (an = j|Vn)

(4)

∀n ∈ {0, . . . , N − 1}, i ∈ {1, . . . ,K}. This reformulation

decomposes the computation of P (an+1 = i|Vn) in terms

of two factors: 1) an action recognition model gs(Vn) that

predicts P (an = j|Vn), i.e., the action being performed in

the present; 2) a transition matrix T that captures the statis-

tical correlation between the present and the future action,

i.e., such that Tij ≈ P (an+1 = i| an = j). In this scenario,

gt takes as input the probability scores of each action given

by gs to anticipate the next action in a probabilistic manner:

gt(s) = T s, (5)

P (an+1 = i) =

K∑

j=1

Ti,jsj = [gt(s)]i . (6)

In practice, we compute T by estimating the conditional

probabilities between present and future actions from the

the sequences of action annotations in the training set. The

top part of Figure 3 illustrates this model.

Prediction Explainability. The transitional model ftrans
provides interpretable predictions that can be easily ana-

lyzed for explanation. Indeed, the function gt of the tran-

sitional model takes the form of a simple linear model ap-

plied to the state s, both when using visual attributes as well

as when using action predictions. The linear weights of gt
can be interpreted as conveying the importance of each ele-

ment in s for the anticipation of the action class. For exam-

ple, given an action class k to anticipate, we can analyze the

linear weights of gt to understand which visual attributes or

action class are most responsible for the prediction of action

class k.

It also provides an easy way to diagnose the source

of mispredictions. For example, suppose the transitional

model anticipates wrongly an action k and we seek to

understand the reason behind such misprediction. Let

v1, . . . , va ∈ [0, 1] be the vectors encoding the visual at-

tributes (or action recognition scores) for this wrong pre-

diction. Let also wk,1, . . . , wk,a ∈ R be the learned lin-

ear weights associated to the prediction of action class

k. The top factor for the prediction of action k is

maxi∈[1,a] (wk,ivi). By analyzing this top factor, we can

understand whether the misprediction is due to a recogni-

tion problem (i.e. wrong detection score for the visual at-

tribute/action class) or due to the learned transition weights.

4. Experiments

In this section, we evaluate our approach on three

datasets. Then we provide an ablation study, compare our

method with the state-of-the-arts and present qualitative

analysis of the transitional model.

4.1. Datasets

These datasets were picked because they are diverse and

contain accurate annotated action temporal segments neces-

sary for the evaluation of action anticipation.

EPIC-KITCHENS. EPIC-KITCHENS [6] is a large-

scale cooking video dataset containing 39,594 accurate tem-

poral segment action annotations. Each video is composed

of a sequence of temporal segment annotations. Three dif-

ferent tasks are proposed together with the dataset: object

detection, action recognition and action anticipation. The

action anticipation task is to predict an action one second

before it has started. The dataset contains three different

splits: the training set, the seen kitchens test set (S1) com-

posed of videos from kitchens also appearing in the training



Model Pretrain Fine-tune Action Verb Noun

ResNet-50 Imagenet No 3.4 24.5 7.4
R(2+1)D-18 Kinetics No 5.2 27.2 10.3
R(2+1)D-18 Kinetics EK-Anticip. 5.0 24.6 9.7
R(2+1)D-18 Kinetics EK-Recogn. 6.0 27.6 11.6

Table 1: Effects of pre-training. Action anticipation top-1 per

clip accuracy on EPIC-KITCHENS with different models and pre-

training datasets.

set and finally the unseen kitchens test set (S2) with kitchens

that are not appearing in the training set. A publicly avail-

able challenge is also organized to keep track of the best

performing approach on this anticipation task. Because of

this public challenge, the labels of S1 and S2 test sets are not

available. Thus, most of our results are reported on our val-

idation set composed of the following kitchens: P03, P14,

P23 and P30. We also report results evaluated by the chal-

lenge organizers on the held-out test set. Unless specified

otherwise, for comparison purposes, we report experiments

with T = 1 sec.

Breakfast. The Breakfast action dataset [19] is an anno-

tated cooking video dataset of people preparing breakfast

meals. It comes with 11267 temporal segment action an-

notations. Each video is also composed of a sequence of

temporal action segment annotations. The dataset is parti-

tioned into four different train / test splits: S1, S2, S3 and

S4. We quantify performance with the average scores over

all of the four splits. Unless specified differently, for com-

parison purposes, we report experiments with T = 1 sec.

ActivityNet 200. The ActivityNet 200 video dataset [4]

contains 15410 temporal action segment annotations in the

training set and 7654 annotations in the validation set. This

video dataset is mainly used for evaluating action localiza-

tion models but as the videos are provided accurate tempo-

ral segment for each action, we can also use them to evalu-

ate models on action anticipation. As opposed to the EPIC-

KITCHENS [6] and Breakfast [19] datasets, each video

contains only one single action annotation instead of a se-

quence of action segments. For this reason, we cannot

test on ActivityNet the transitional model based on action

recognition. We only train and evaluate on videos in the

datasets with at least 10 seconds of video before the action

starts. In total, the training and validation sets consists of

respectively 9985 and 4948 action localization annotations.

4.2. Video Representation

In this subsection we discuss how we represent the ob-

served video segment V to perform action prediction. Our

overall strategy is to split the video into clips, extract clips

Action Verb Noun

A@1 A@5 A@1 A@5 A@1 A@5

Transitional (VA) 4.6 12.1 25.0 71.7 9.1 24.5
Transitional (AR) 5.1 17.1 25.2 72.0 12.1 33.2
Predictive 6.3 17.3 27.4 73.1 11.9 31.5
Predictive + Transitional (VA) 6.8 18.1 28.4 74.0 12.5 33.0
Predictive + Transitional (AR) 6.7 19.1 27.3 73.5 12.9 34.6

Transitional (AR with GT) 16.1 29.4 29.3 63.3 30.7 44.4
Action recognition 12.1 30.0 39.3 80.0 23.1 49.3

Table 2: Transitional and predictive model ablation. Transi-

tional model and predictive model ablation study on our EPIC-

KITCHENS validation set with T = 1 sec. VA and AR denote

for Visual Attributes and Action Recognition. Grey rows should

be interpreted as accuracies upper bounds.

representation and perform pooling over these clips. Given

an input video segment V , we uniformly split it into small

clips V = [V1, . . . , VN ] where each clip Vi, i ∈ [1, N ] is

short enough (e.g. 8 or 16 frames) that it can be fed into a

pretrained video CNN C. From the penultimate layer of the

CNN we extract an L2-normalized one-dimensional repre-

sentation C(Vi) for each clip Vi. Then we perform a tempo-

ral aggregation Agg([C(V1), . . . , C(VN )]) of the extracted

features in order to get a one-dimensional video representa-

tion for V . In our experiments, C is the R(2+1)D network

of 18-layers from Tran et al. [41]. We perform a simple

max pooling to aggregate features from all clips, but more

sophisticated temporal aggregation techniques [29] can also

be used in our model.

Visual Attributes. Our visual attributes presented in Sec-

tion 3.2 include the taxonomies of Imagenet-1000 [34],

Kinetics-600 [5] and Places-365 [54]. We train two ResNet-

50 [12] CNN models: one on Imagenet-1000 and the other

one on Places-365. For the Kinetics-600 taxonomy, we train

a R(2+1)D-18 [41] model. In total, our set is composed of

1965 (1000+600+365) visual attributes. We densely extract

these visual attributes every 0.5 seconds and apply the tem-

poral max pooling operation to obtain a single vector for

each video, as discussed above.

Leveraging the present for pretraining. In previous

work [6, 43] the video representation was learned by fine-

tuning a pretrained video CNN on the task of action an-

ticipation. Instead, we propose to finetune the CNN rep-

resentation on the task of action recognition on the target

dataset. More specifically, instead of training the CNN on

video clips sampled before action starts, we train it on clips

sampled in the action segment interval. This is motivated by

the fact that the task of action recognition is “easier’ than ac-

tion anticipation and thus it may lead to better feature learn-

ing. Table 1 reports accuracies on the EPIC-KITCHENS

validation set obtained with our predictive model applied to



Model Accuracy

Random baseline 0.3
Predictive 51.6
Transitional (All VA, Full rank) 48.0
Transitional (Object & Scene VA, Low rank, r = 256) 37.0
Transitional (All VA, Low rank, r = 256) 52.8
Predictive + Transitional (VA, Low rank) 54.8

Table 3: Results on ActivityNet action anticipation. Our meth-

ods compared with baseline on our validation set with T = 5 sec.

VA stands for Visual Attributes.

different CNN representations. These results illustrate the

benefit of fine-tuning the CNN on action recognition, in-

stead of action anticipation as done in prior work [6, 43].

The Table provide also numbers for two additional base-

lines corresponding to 1) using the CNN pretrained on Ki-

netics without finetuning and 2) extracting features from

a ResNet-50 2D CNN pretrained on Imagenet. It can be

noted that the best accuracies for actions, verbs and nouns

are obtained with the CNN finetuned on the action recog-

nition task of EPIC-KITCHENS. Based on these results, in

the rest of the work, we use CNN features computed from

a R(2+1)D-18 first pretrained on Kinetics [5] and then fine-

tuned for action recognition on the target dataset.

4.3. Ablation study

In order to understand the benefits of the different com-

ponents in our model, we evaluate the predictive model sep-

arately from the transitional model. For the transitional

model we report results for both the variant based on Vi-

sual Attributes (VA) as well as the version based on Action

Recognition (AR). Table 2 summarizes the results achieved

on the validation set of EPIC-KITCHENS [6]. The AR

transitional model performs better than the VA transitional

model. However, both are outperformed by the purely-

predictive model. Interestingly, combining the predictive

model with either of the two transitional models yields fur-

ther accuracy gains. This suggests that the predictions are

complementary.

We also show in grey, an accuracy upper bound achieved

when directly recognizing the future frame as opposed to

predicting from the past one (row Action recognition). The

grey row Transitional (AR with GT) experiments shows the

accuracy achieved when the transitional model is provided

the groundtruth label of the last observed action. The im-

provement when using the groundtruth label is significant.

This suggests that a large cause of missing performance

is weak action recognition models and that better action

recognition will produce stronger results for prediction.

We also perform ablation studies on the ActivityNet

dataset in Table 3. Since we are not provided sequences

of action annotations in this dataset, for this experiment we

can only apply the transitional model based on Visual At-

tributes. Here again, we demonstrate the complementarity

of the predictive and transitional models. The average of

both approaches provides the best results for action antici-

pation. We also show the importance of modeling gt as a

low-rank linear model on visual attributes. Constraining gt
to be a low-rank linear model provides a boost of more than

4% in accuracy.

4.4. Comparison to the stateoftheart

We compare our approach to the state-of-the-art on both

the EPIC-KITCHENS and the Breakfast dataset. Table 5

shows our method compared to the recent work of Farha et

al. [7]. The numbers for Vondrick et al. [43] are based on

the reimplementation of this method provided in [7]. Ta-

ble 4 reports results obtained from the EPIC-KITCHENS

unseen kitchens action anticipation challenge submission

server. Note that our EPIC-KITCHENS submission is done

under the anonymous nickname of masterchef and is re-

ported by the row Ours (Predictive [D] + Transitional) in

this paper. On both datasets, our method outperforms all

previously reported results under almost all metrics. Note

that our best submitted model on the EPIC-KITCHENS

challenge is simple and does not make use of any ensem-

bling nor optical flow input.

4.5. Qualitative analysis

As explained in subsection 3.2, through the analysis of

the transitional model ftrans, we can analyze which visual

attributes are responsible for the anticipation of each action

class. To do so, we analyze the linear weights from gt (3)

to list the top visual attributes maximizing the prediction

of each action class. Table 6 shows some action classes

from the ActivityNet 200 [4] dataset and the top-3 visual

attributes that maximize their anticipation. For instance, we

can observe that identifying a Border collie dog (A dog spe-

cialized in the activity of disc dog) in a video is useful for

the prediction of the Disc dog action class. Recognizing

Lemon and Measure cup is indicative for the anticipation of

Making lemonade.

5. Conclusion

We have described a new model for future action an-
ticipation. The main motivating idea for our method is to
model action anticipation as a fusion of two complemen-
tary modules. The predictive approach is a purely antici-
patory model. It aims at directly predicting future action
given the present. On the other hand, the transitional model
is first constrained to recognize what is currently seen and
then uses this output to anticipate future actions. Our ap-
proach achieves state-of-the-art action anticipation perfor-
mances on the EPIC-KITCHENS [6] and Breakfast [19]
datasets.



Action Verb Noun

A@1 A@5 P R A@1 A@5 P R A@1 A@5 P R

Damen et al. (TSN Fusion) [6] 1.7 9.1 1.0 0.9 25.4 68.3 13.0 5.7 9.8 27.2 5.1 5.6
Damen et al. (TSN Flow) [6] 1.8 8.2 1.1 0.9 25.6 67.6 10.8 6.3 8.4 24.6 5.0 4.7
Damen et al. (TSN RGB) [6] 2.4 9.6 0.9 1.2 25.3 68.3 7.6 6.1 10.4 29.5 8.8 6.7
DMI-UNICT 7.3 18.8 2.5 4.0 27.2 69.3 13.6 9.2 12.4 30.7 8.7 8.9
Ours (Predictive) 6.1 18.0 1.6 2.9 27.5 71.1 12.3 8.4 10.8 30.6 8.6 8.7
Ours (Predictive + Transitional) 7.2 19.3 2.2 3.4 28.4 70.0 11.6 7.8 12.4 32.2 8.4 9.9

Table 4: EPIC-KITCHENS results on hold-out unseen test set S2. The official ranking is based on the action top 1 accuracy score

(A@1). A@1: top-1 accuracy, A@5: top-5 accuracy, P: precision, R: recall. Challenge website details: https://competitions.

codalab.org/competitions/20071. Note that our best model was submitted under the anonymous nickname masterchef.

Model Accuracy

Random baseline 2.1
Vondrick et al. [43] 8.1
Abu Farha et al. (CNN) [7] 27.0
Abu Farha et al. (RNN) [7] 30.1
Ours (Transitional (AR)) 23.9
Ours (Predictive) 31.9
Ours (Predictive + Transitional (AR)) 32.3

Ours (Transitional (AR with GT)) 43.0

Table 5: Comparison to state-of-the-art on the Breakfast. We

report anticipation accuracy averaged over all of the test splits of

Breakfast dataset[19] and use T = 1 sec.

Action to anticipate Top-3 visual attributes

Applying sunscreen Sunscreen, Lotion, Swimming trunk

Bull fighting Ox, Bulldozing, Bullring

Camel ride Arabian camel, Crane, Riding scooter

Disc dog Border collie, Collie, Borzoi

Drinking coffee Hamper, Coffee mug, Espresso

Making an omelette Cooking egg, Wok, Shaking head

Making lemonade Lemon, Measure cup, Pitch

Playing ice hockey Hockey arena, Hokey stop, Teapot

Preparing pasta Guacamole, Carbonara, Frying pan

Preparing salad Wok, Head cabbage, Winking

Raking leaves Hay, Sweeping floor, Rapeseed

Using parallel bars Parallel bars, High jump, Coral fungus

Table 6: Top-3 attributes that indicative of actions. Top-3 vi-

sual attributes activations for the anticipation of some action class

from the ActivityNet 200 dataset.
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