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Multi-energy optimization in a Smart Grid

Machine learning for energy prediction

Machine Learning for energy optimization

Machine learning for flexibility qualification
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Meridia Smart Energy project
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Maximize self-consumption and energy self-sufficiency of the smart grid

Reduce energy consumption , Time-of-Use costs, and load peaks

Minimize GHG emissions of energy consumption and mobility
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Multi-energy optimization
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District Heating System
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Heat storage (phase-changing (geothermal)
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}BSL;; Methods used for energy optimization:
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A summary of the Scopus-indexed publications with focus on
building energy optimization over years 1972-2016 - a zoom
over the years 2011-2016 (Mocanu, 2017)
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« Supervised energy prediction methods:

Electrical load forecast:

||||||

~ Artificial Neural Networks, Recurrent Neural Networks, SVM,
... Hidden Markov Models, Conditional Restricted Boltzman
I Machines, FCRBM, GRBM

~ Thermal load forecast:

~ SVM, Feed Forward Neural Networks, Regression Trees,
— Multi Linear Regression, Gaussian Mixture Model,

{ @ SVM have a higher performance (ldowu, 2018)

GMM is comparable in terms of accuracy but much faster

RT have relatively higher performance error
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Machine Learning for energy prediction

« Unsupervised energy prediction methods:

Do not require historical data from the considered building.
Learning a model for a building and transferring it to another
building (Mocanu, 2017)

DBN (Deep Belief Networks) for feature extraction

RL (Reinforcement Learning) for knowledge transfer between
building models: SARSA, Q-learning

Knowledge transfer to: predict new behavior of existing
buildings or completely new types of buildings
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* Uncertain influencing factors and complex building energy
behavior

* Level of aggregation for prediction:

Most of the methods (ANN, RNN, SVM, CRBM, FCRBM ) perform
& better when predicting in the aggregated level than when predicting
the demand of intermittent appliances

........

* Importance of feature selection in energy prediction:
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The accuracy, in descending order, achieved by different combinations of
parameters for Heating load (HL) and cooling load (CL) [Mocanu, 2017]

Centre de Mathématiques Appliquées - MINES ParisTech



« Multi-energy optimization in a Smart Grid

« Machine learning for energy prediction

« Machine learning for flexibility qualification J




//@// Ed  Machine Learning for energy optimization
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Energy Time-of-Use Cost minimization, load peak reduction:

\
* Linear Programming * A hybrid method
* Dynamic between RL and DL
Programming * DQN (Deep Q-
* Heuristics (PSO...) Learning),_DPG
- Game theory (Deep Policy
« Fuzzy methods Gradient)
: i Deep
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}Z/ Ed  Machine Learning for energy optimization

TS Deep RL

After it learns
how to act, it
can make
decisions (exp
choosing the
optimal control
action) in a
few ms

PSO (and
other
heuristics)

Need to re-run
the costly
optimization
process for
each decision
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« Machine learning for energy prediction

« Machine Learning for optimization
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}/j/j/ HilEd  Machine Learning for flexibility qualification

Objectives:

* Quantify the flexibility of the Smart Grid’s buildings

« Determine how much flexibility can be used at a certain time
instant

- Estimate the optimized energy consumption

Classification Methods for energy disaggregation (extraction

of appliance-level energy consumption signals from aggregated
; energy consumption): SVM, KNN, NB, AdaBoost

Restricted Boltzman Machines for feature extraction (to
improve the performance of these classification methods)

Deep learning methods for prediction
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Conclusion:

OPredict,

schedule,
OMachine learn,
Learning make
+ decisions
OHistorical Classical
+ optimization
Simulated
data

« It is difficult to make predictions, especially about the future... »
Niels Bohr
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