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1 • Multi-energy optimization in a Smart Grid 

2 
• Machine learning for energy prediction 

3 
• Machine Learning for energy optimization 

4 
• Machine learning for flexibility qualification 

Agenda: 



Meridia Smart Energy project 

Centre de Mathématiques Appliquées - MINES ParisTech 

• Maximize self-consumption and energy self-sufficiency of the smart grid 

• Reduce energy consumption , Time-of-Use costs, and  load peaks 

• Minimize GHG emissions of energy consumption and mobility 
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Centre de Mathématiques Appliquées - MINES ParisTech 

Multi-energy optimization 

 

District Cooling system 
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Ice storage tanks 
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(geothermal) 

Heat storage (phase-changing 
materials) 

Heated water storage tanks 

Cooling Heating 

Electricity 
 

 

Residential/ office buildings 

PV panels 

Battery storage system 

Electric Vehicle Charging 
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Public lighting 
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Main Challenges: 

Centre de Mathématiques Appliquées - MINES ParisTech 

Multi-energy 
optimization 
of the Smart 

grid 

Large amounts of 
on-line operational 
data (sensors, sub-

metering …) 

Need for real-time 
or near real-time 

response 

Dynamic properties 
(ex of District 
Heating and 

Cooling System) 
require a high level 

of details 

Uncertain 
influencing factors ( 
demand, behavior, 

prices, weather 
conditions, building 

construction…) 
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Methods used for energy optimization: 

Centre de Mathématiques Appliquées - MINES ParisTech 

A summary of the Scopus-indexed publications with focus on 

building energy optimization over years 1972-2016 - a zoom 

over the years 2011-2016 (Mocanu, 2017) 
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1 • Multi-energy optimization in a Smart Grid 

2 
• Machine learning for energy prediction 

3 
• Machine Learning for optimization 

4 
• Machine learning for flexibility qualification 

Agenda: 



Machine Learning for energy prediction 

8 Centre de Mathématiques Appliquées - MINES ParisTech 

• Supervised energy prediction methods:   

 

Electrical load forecast: 

Artificial Neural Networks, Recurrent Neural Networks, SVM, 

Hidden Markov Models, Conditional Restricted Boltzman 

Machines, FCRBM, GRBM 

 

Thermal load forecast: 

SVM, Feed Forward Neural Networks, Regression Trees, 

Multi Linear Regression, Gaussian Mixture Model, 

 SVM have a higher performance (Idowu, 2018) 

 GMM is comparable in terms of accuracy but much faster 

 RT have relatively higher performance error 
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Machine Learning for energy prediction 

9 Centre de Mathématiques Appliquées - MINES ParisTech 

• Unsupervised energy prediction methods:  

Do not require historical data from the considered building. 

Learning a model for a building and transferring it to another 

building (Mocanu, 2017) 

 

DBN (Deep Belief Networks) for feature extraction 

RL (Reinforcement Learning) for knowledge transfer between 

building models: SARSA, Q-learning 

 

Knowledge transfer to: predict new behavior of existing 

buildings or completely new types of buildings 
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Main Challenges for energy prediction 

Centre de Mathématiques Appliquées - MINES ParisTech 

• Uncertain influencing factors and complex building energy 

behavior 

 
  
• Level of aggregation for prediction:     

Most of the methods (ANN, RNN, SVM, CRBM, FCRBM ) perform 

better when predicting in the aggregated level than when predicting 

the demand of intermittent appliances 

• Importance of feature selection in energy prediction:   

The accuracy, in descending order, achieved by different combinations of 

parameters for Heating load (HL) and cooling load (CL) [Mocanu, 2017] 
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1 • Multi-energy optimization in a Smart Grid 

2 
• Machine learning for energy prediction 

3 
• Machine Learning for optimization 

4 
• Machine learning for flexibility qualification 

Agenda: 



Machine Learning for energy optimization 

Centre de Mathématiques Appliquées - MINES ParisTech 

Energy Time-of-Use Cost minimization, load peak reduction: 

• Linear Programming 

• Dynamic 
Programming 

• Heuristics (PSO…) 

• Game theory 

• Fuzzy methods 
 

A wide range of 
methods 

Time 
consuming 
procedures 

• A hybrid method 
between RL and DL 

• DQN (Deep Q-
Learning), DPG 
(Deep Policy 
Gradient) 

Deep 
Reinforcement 

Learning 

Compute all/part 

of possible 

solutions and 

choose the best 

one 

Fail to consider 

on-line solutions 

for large-scale 

real databases 
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Machine Learning for energy optimization 

Centre de Mathématiques Appliquées - MINES ParisTech 

 

After it learns 
how to act, it 
can make 
decisions (exp 
choosing the 
optimal control 
action) in a 
few ms 

Deep RL 

 

Need to re-run 
the costly 
optimization 
process for 
each decision 

PSO (and 
other 

heuristics) 
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1 • Multi-energy optimization in a Smart Grid 

2 
• Machine learning for energy prediction 

3 
• Machine Learning for optimization 

4 
• Machine learning for flexibility qualification 

Agenda: 



Machine Learning for flexibility qualification 

Centre de Mathématiques Appliquées - MINES ParisTech 

Objectives: 

• Quantify the flexibility of the Smart Grid’s buildings 

• Determine how much flexibility can be used at a certain time 

instant 

• Estimate the optimized energy consumption 

 

 

 

Classification Methods for energy disaggregation (extraction 

of appliance-level energy consumption signals from aggregated 

energy consumption): SVM, KNN, NB, AdaBoost 

Restricted Boltzman Machines for feature extraction (to 

improve the performance of these classification methods) 

Deep learning methods for prediction 
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Conclusion: 

Centre de Mathématiques Appliquées - MINES ParisTech 

 

         « It is difficult to make predictions, especially about the future… »                                                                              

      Niels Bohr 

 

Historical  

+ 

Simulated 
data 

Machine 
Learning 

+  

Classical 
optimization 

Predict, 
schedule, 
learn,  

make 
decisions 
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