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Abstract

There is a special local ring E of order 4, without identity for the
multiplication, defined by E = 〈a, b | 2a = 2b = 0, a2 = a, b2 =
b, ab = a, ba = b〉. We study the algebraic structure of linear codes
over that non-commutative local ring, in particular their residue and
torsion codes. We introduce the notion of quasi self-dual codes over E,
and Type IV codes, that is quasi self-dual codes whose all codewords
have even Hamming weight. We study the weight enumerators of these
codes by means of invariant theory, and classify them in short lengths.
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1 Introduction

The rings of order 4 used as alphabets in coding theory are historically, and
by order of importance, F4 [12], Z4 [10], F2+uF2 [7], and F2×F2 [6]. A quick
look at the classification of finite rings of order 4 shows that these four rings
above are exactly all the rings, amongst the list of 9 rings of order 4, that
possess an identity element for the multiplication [8, 14]. More generally, in
the abundant literature of codes over rings no non-unital ring has ever been
used as alphabet [17, 5].

In this paper, for the first time in the history of Coding Theory, codes
over a non-unital ring are studied. This ring has order four, and is denoted
by E in the classification of [8, 14]. The ring E turns out to be also non-
commutative. Our original intention was to study self-dual codes over E.
However, the usual relation between the size of the code and that of its dual
does not hold in general (see the notion of nice code in the next section). This
situation led us to introduce the notion of quasi self dual code (QSD), that
is of an E-code of length n that is both self-orthogonal and of size 2n. The
aim of this paper is thus to study the structure of QSD codes. In particular
we study a multilevel construction of a QSD code as a function of a pair
of dual codes. Like in the case of other local rings of order 4, the notions
of residue and torsion codes are fundamental [4]. They lead in particular,
to a canonical form for the generator matrix of any E code of given residue
and torsion codes dimensions. However, the characterization of Theorem
6 of a QSD code as a multilevel construction from its residue and torsion
code would not be true over the four commutative rings of order 4. This
characterization is strong enough to allow us to characterize Type IV codes
by their residue code, and to classify them in short lengths.

An important computational tool is the connection with additive codes
over F4, made possible by the fact that E and F4 share the same additive
group. In analogy with [6], we introduce the notion of Type IV codes over
E as those QSD codes, all codewords of which have even Hamming weight.
While additive codes over F4 were introduced in a Quantum coding context
[3], they enter the picture here as a computational tool. Thus, by forgetting
the multiplicative structure, a linear E-code is, in particular an additive code
over F4. The connection is close enough that there is a one-to-one correspon-
dence between the residue and torsion code over E, and the Trace code and
subfield subcode over F4. This allows in particular, efficient computation in
the Magma package dedicated to additive codes [13]. While the additive
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codes classified here are not, in general, strong error correcting codes, they
can have an interesting combinatorial structure as evidenced by Example 3.

We also study the weight enumerators in two and four variables of Type IV
codes from the standpoint of invariant theory. This study refines the theory
of the joint weight enumerator of a binary code and its dual started in [1], to
binary codes containing the all-one vector. This leads us to a Gleason formula
for the weight enumerators of Type IV codes, in four variables (complete
weight enumerator) and by specialization to the weight enumerator in two
variables.

The material is organized as follows. The next section collects basic facts
and definitions about rings, modules, and duality. Section 3 describes the
structure of generator matrices of linear codes over E. Section 4 exploits this
theory to construct QSD codes and derives a criterion for a QSD code to
be Type IV. Section 5 studies the weight enumerators of QSD and Type IV
codes. Section 6 classifies, up to equivalence, QSD codes of length n < 7.
Section 7 concludes the article.

2 Background material

2.1 Binary codes

Denote by wt(x) the Hamming weight of x ∈ Fn2 . The dual of a binary linear
code C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn2 | ∀x ∈ C, (x, y) = 0},

where (x, y) =
∑n

i=1 xiyi, denotes the standard inner product. A code C is
self-orthogonal if it is included in its dual: C ⊆ C⊥. Two binary codes are
equivalent if there is a permutation of coordinates that maps one to the
other.

2.2 Rings

Following [8] we define a ring on two generators a, b by its relations

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.
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A model for that ring can be obtained by taking a, b to be matrices over F2

defined by

a =

(
0 0
0 1

)
, b =

(
0 1
0 1

)
.

Thus, E has characteristic two, and consists of four elements E = {0, a, b, c},
with c = a+ b. The addition table is immediate from these definitions.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

The multiplication table is as follows.

× 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

From this table, we infer that this ring is not commutative, and without
an identity element for the multiplication. It is local with maximal ideal
J = {0, c}, and residue field E/J = F2 = {0, 1}, the finite field of order 2.
Thus we have a c-adic decomposition as follows. Every element e ∈ E can
be written

e = as+ ct,

where s, t ∈ F2 and where we have defined a natural action of F2 on E by
the rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ E. Thus a = 1a, c = 1c and
b = a1 + c1. Note that for all r ∈ E, this action is “distributive” in the sense
that r(s⊕2 t) = rs+ rt, where ⊕2 denote the addition in F2.

Denote by α : E → E/J ' F2 the map of reduction modulo J. Thus
α(0) = α(c) = 0, and α(a) = α(b) = 1. This map is extended in the natural
way in a map from En to F2.

2.3 Modules

A linear E-code of length n is a one-sided E-submodule of En. An additive
code of length n over F4 is an additive subgroup of Fn4 . It is a free F2 module
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with 4k elements for some k ≤ n (here 2k is an integer, but k may be half-
integral). Using a generator matrix G, such a code can be cast as the
F2-span of its rows. To every linear E code C is attached an additive F4

code φ(C) by the substitution

0→ 0, a→ ω, b→ ω2, c→ 1,

where F4 = F2[ω]. Note that the reverse substitution attaches to every addi-
tive F4 code an additive subgroup of En, which may or may not be linear.
Two E-codes are permutation equivalent if there is a permutation of co-
ordinates that maps one to the other.

2.4 Duality

Define an inner product on En as (x, y) =
∑n

i=1 xiyi.
The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En | ∀x ∈ C, (x, y) = 0}.

The left dual C⊥L of C is the left module defined by

C⊥L = {y ∈ En | ∀x ∈ C, (y, x) = 0}.

Thus the left (resp. right) dual of a left (resp. right) module is a left
(resp. right) module. A code is left self-dual (resp. right self-dual) if it is
equal to its left (resp. right) dual. A left self dual code C satisfies C⊥L = C.
Likewise a right self dual code C satisfies C⊥R = C. A code is self-dual if it
is equal to both of its duals.

Remark 1 1. The repetition code of length 2 defined by R2 := {00, aa, bb, cc},
is left self-dual. Its right dual is R⊥R

2 = 〈aa, bb, ab〉, a supercode of R2

of size 8.

2. In length one, we have J⊥R = J. By taking direct sums of J with itself,
we see that (right) self-dual codes over E exist for all lengths.

Remark 1 shows that the product of the sizes of a code and its dual
is not always 4n. A code C of length n is left nice (resp. right nice) if
|C||C⊥L| = 4n (resp. |C||C⊥R | = 4n). A code is nice if it is both left and
right nice.
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Remark 2 J is a right nice code, but it is not a left nice code since n = 1,
and J⊥L = E. Similarly, R2 is not right nice since R⊥R

2 is of size 8.
A code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal iff C ⊆ C⊥L . Likewise, C is self-orthogonal
iff C ⊆ C⊥R . Thus, for a self-orthogonal code C, we always have C ⊆ C⊥L ∩
C⊥R . A code of length n is quasi self-dual if it is self-orthogonal and of size
2n.

Remark 3 Every one-sided nice self-dual code is quasi-self-dual but not con-
versely, as the next example shows.

Example 1 The code R2 as a right module is quasi self-dual but not self-dual
as R2 ( R⊥R

2 .

Following a terminology from [6], a quasi self-dual code over E with all
weights even is called a Type IV code.

3 Structure of linear codes

Let C be code of length n over E. With that code we associate two binary
codes of length n :

1. the residue code defined by res(C) = {α(y) | y ∈ C},

2. the torsion code defined by tor(C) = {x ∈ Fn2 | cx ∈ C}.

It can be checked that for all x ∈ En, we have Tr(φ(x)) = α(x), and thus
res(C) = Tr(φ(C)), where ∀z ∈ F4, T r(z) = z + z2. Similarly, we see that
tor(C) is the subfield subcode of φ(C).

Example 2 The dodecacode, the most famous additive code [3], is not φ(C)
for some E-code C, since it can be checked by electronic computation that
the residue and torsion code would have dimensions 6, and 2 respectively,
contradicting Lemma 1 below.
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Denote by αC the restriction of α to C. We see that tor(C)c = Ker(αC),
and that res(C) = Im(αC). By the first isomorphism theorem applied to the
map αC , we see that |C| = |res(C)||tor(C)|. There is a relationship between
these two codes.

Lemma 1 If C is an E-linear code then res(C) ⊆ tor(C).

Proof. Write an arbitrary codeword in c-adic decomposition form as
ax+ cy, with x, y binary vectors. Since α(ax+ cy) = x, we have x ∈ res(C).
Note that, by definition of the residue code, any x ∈ res(C) arises in that
way. Multiplying the codeword ax+ cy on the left by c, we see that cx ∈ C,
implying x ∈ tor(C).

We let k1 = dim(res(C)), and k2 = dim(tor(C))−k1, a nonegative quan-
tity by Lemma 1, and say that C is of type (k1, k2). It can be seen that
C is free as an E-module iff k2 = 0. Further, by a previous observation,
|C| = |res(C)||tor(C)| = 22k1+k2 . We give a characterization of the generator
matrix of a linear code as a function of these invariants.

Theorem 1 Assume C is an E-linear code of length n and type (k1, k2).
Then a generator matrix G of C is of the form

G =

(
aIk1 X Y

0 cIk2 cZ

)
,

where Ij denotes the identity matrix of order j, the matrices X, Y have entries
in E, and Z is a binary matrix.

Proof. Write the generator matrices of res(C) and tor(C) as G1 =(
Ik1 α(X) α(Y )

)
and G2 =

(
Ik1 α(X) α(Y )
0 Ik2 Z

)
, respectively, where X, Y

are matrices of suitable dimensions with entries in E, and Z is a binary ma-
trix. By the first isomorphism theorem applied to the map αC , the matrix

G can be written in the form

(
R
cT

)
, where

tor(C) = res(C)⊕ 〈T 〉,

and α(R) = G1.

We give a left oriented result and leave the right leaning reader generalize
it.
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Theorem 2 Assume C is a left nice E-linear code of length n and type
(k1, k2). Then a parity check matrix H of C consistent with Theorem 1 is of
the form

H =

(
Y t + ZtX t aZt aIn−k1−k2

cX t cIk2 0

)
,

where Ij denotes the identity matrix of order j, and X, Y, Z are as in Theorem
1. In particular C⊥ is of type (n−k1−k2, k2). If, furthermore C is self-dual,
then n = 2k1 + k2.

Proof. A direct calculation shows that HGt = 0. This shows that, as left
modules, 〈H〉 = En−k1H ⊆ C⊥. Equality follows by size comparison upon
noticing that 〈H〉 has type (n − k1 − k2, k2), and upon observing that by
the niceness hypothesis we have |C||C⊥L| = 4n. The last assertion follows by
unicity of the type k1 = n− k1 − k2.

4 Constructions of quasi self-dual codes

We call the next construction of E-codes from binary codes the multilevel
construction.

Theorem 3 Let B be a self-orthogonal binary code of length n. The code C
defined by the relation

C = aB + cB⊥,

is a quasi-self-dual code. Its residue code is B and its torsion code is B⊥.

Proof. The code C is closed under addition, by linearity of B. Note that
aC ⊆ aB ⊆ C.

Since B is self-orthogonal, we see that cC ⊆ cB ⊆ cB⊥ ⊆ C. Again by
self-orthogonality of B we get bC ⊆ bB ⊆ aB + cB ⊆ aB + cB⊥ ⊆ C.

Thus C is E-linear.
For all x, x′ in B and y, y′ in B⊥ we have the inner products

(ax+ cy, ax′ + cy′) = a(x, x′) + c(y, x′) = 0

since B is self orthogonal. Thus C is self-orthogonal.
Since |C| = |B||B⊥| = 2n, we see that |C| = 2n. The residue and torsion

codes are direct to derive from the definitions.
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Remark 4 1. The same result would hold for the rule C = bB+ cB⊥, by
symmetry of the multiplication table between a and b.

2. A similar construction for right modules is immediate and left to the
reader.

The above multilevel construction leads to the following result. Hence-
forth, ⊕ will denote the direct sum of vector spaces and modules.

Corollary 1 If B1, and B2 are two binary codes of length n, with B1 ⊆ B2,
then there is an E-code C with residue code B1 and torsion code B2. If,
furthermore, B1 is self-orthogonal and B2 ⊆ B⊥1 then C is self-orthogonal.
If, in addition, B2 = B⊥1 , then C is quasi self-dual.

Proof. Take C = aB1 + cB2 and apply the construction of Theorem 3.
Note that then |C| = |B1||B2|.

The most general construction of self-dual E-codes from the Residue
/Torsion viewpoint is given in the next theorem, which requires the two
following lemmas.

Lemma 2 For all self-orthogonal E-linear codes C we have

1. res(C) ⊆ res(C)⊥,

2. tor(C) ⊆ res(C)⊥,

3. tor(C) = res(C)⊥ if |C| = 2n.

Proof.
The first statement follows by the fact that α is a ring morphism. Note

that if ax + cy, cz ∈ C for binary vectors x, y, z then (cz, ax + cy) = 0
yielding c(x, z) = 0, hence (x, z) = 0. This proves the second statement. The
last statement follows by 2, and dimension count, since |C| = 22k1+k2 = 2n

yields n− k1 = k1 + k2.

The following lemma does not hold over other rings of size 4.

Lemma 3 If C is a QSD code, and an arbitrary codeword of C is aS + cT,
with S, T binary vectors of length n, then S ∈ res(C), and T ∈ tor(C). In
particular, a res(C) ⊆ C.
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Proof. Since α(aS + cT ) = S, we see that S ∈ res(C). Since res(C) ⊆
tor(C) any S ′ ∈ res(C), satisfies aS ′ ∈ C. Using the self-orthogonality of C,
we get, (aS + cT, aS ′) = 0, and by 1 of Lemma 2 (T, S ′) = 0, ∀S ′ ∈ res(C).
Thus T ∈ res(C)⊥ = tor(C), by 3 of Lemma 2. Since cT ∈ C, we see that
aS = (aS + cT ) + cT ∈ C.

Theorem 4 If a left linear code C of length n is quasi self-dual then

1. res(C) ⊆ res(C)⊥,

2. tor(C) = res(C)⊥,

3. n = 2k1 + k2.

Furthermore, a quasi self-dual code C is Type IV iff res(C) contains the
all-one codeword.

Proof. By Lemma 2, the first two conditions are necessary. The third
condition follows by |C| = 22k1+k2 = 2n.

We claim that a quasi self-dual code C is Type IV iff tor(C) has only even
weight codewords. This happens iff res(C) = tor(C)⊥ contains the all-one
codeword. We now prove the claim.

The condition is necessary as c tor(C) ⊆ C.
To prove that the condition is sufficient, write S, T for binary vectors of

length n, such that aS + cT ∈ C. We see that

wt(aS + cT ) = wt(S) + wt(T )− wt(S ∩ T ),

where we let S ∩ T = (s1t1, . . . , sntn).
By assumption, and Lemma 3, we know that wt(T ) is even. Similarly

wt(S) is even since res(C) ∈ tor(C). Now wt(S ∩ T ) is congruent to (S, T )
modulo 2, which is zero since T ∈ tor(C) = res(C)⊥. Thus wt(aS + cT ) ≡ 0
(mod 2), showing sufficiency.

The power of Lemma 3 is best illustrated by the following three results.

Theorem 5 If C is QSD of minimum Hamming distance d, then d ≤ bn
2
c+1.

If, furthermore, C is Type IV, then d ≤ 2bn+2
4
c.
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Proof. Denote by dR and dT , respectively, the minimum distances of the
residue and torsion codes of C. By definition of tor(C), we have d ≤ dT . By
Lemma 3, we have a res(C) ⊆ C, implying d ≤ dR. The Singleton bound for
binary codes applied to res(C) and tor(C) successively shows then that

d ≤ n− k1 + 1,

d ≤ n− k1 − k2 + 1.

Adding up these two inequalities and using n = 2k1 + k2 yields

2d ≤ 2n− n+ 2 = n+ 2.

Since d is an integer this yields d ≤ bn
2
c+ 1. For a Type IV code, both n and

d are even. Since 2bx/2c is the largest even integer less than a real x, we see

that d ≤ 2b
n
2
+1

2
c = 2bn+2

4
c.

The next result shows that all QSD codes can be obtained by a multilevel
construction.

Theorem 6 If C is QSD, then C = a res(C)⊕ c tor(C) as modules.

Proof. By Lemma 3 we have the inclusion C ⊆ a res(C)+ c tor(C). Com-
paring sizes of both sides shows that equality holds. Indeed, by hypothesis C
has size 2n. Since by Lemma ??, we have res(C) = tor(C)⊥, the size of the
right handside is at most 2n. Thus C = a res(C)+c tor(C), and the counting
argument shows that the sum is direct.

Theorem 7 If C is QSD, and is left linear, then φ(C) = φ(C). If, further-
more, φ(C) is linear then it admits a binary basis.

Proof. By Lemma 3, if as + ct ∈ C, then both as and ct are in C.
By left multiplication, bs = b(as) ∈ C. Thus bs + ct ∈ C, yielding that
φ(as+ ct) = φ(bs+ ct) ∈ φ(C), if φ(as+ ct) ∈ φ(C). The first assertion fol-
lows. If φ(C) is linear, let G = (I,M) be its generator matrix in systematic
form. The fact that φ(C) = φ(C) implies that M = M. The rows of G form
the sought basis.
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Example 3 If C is a QSD code with res(C) = tor(C), then its residue
code is self-dual. It is easy to check by Theorem 6 that φ(C) is obtained by
extension of scalars from res(C). Formally, C = res(C)⊗ F4. Thus, a QSD
code of length 8 can be constructed in that way from the extended Hamming
code, a self-dual code of parameters [8, 4, 4]. Its weight enumerator can be
computed to be as follows.

[< 0, 1 >,< 4, 42 >,< 6, 168 >,< 8, 45 >].

The columns of its check matrix form a triple sum set in the sense of [16],
since the sum of the weights (4 + 6 + 8) equals 3× 8× 3

4
.

5 Weight enumerators

In this section we study the weight enumerators of QSD codes. If r denotes
a vector of En, denote by ni(r) the number of components taking the value
i ∈ E it contains. The complete weight enumerator cweC of an E-code
C can then be defined as the homogeneous polynomial in four variables.

cweC((xi)i∈E) =
∑
r∈C

∏
i∈E

x
ni(r)
i .

The weight enumerator WC(x, y) of C is then defined as WC(x, y) =
cweC((xi)i∈E), when x0 = x and xi = y for i 6= 0. The joint weight enu-
merator of two binary codes is defined as follows. Let u, v denote binary
vectors of length n. We define the integers i(u, v), j(u, v), k(u, v) and l(u, v)
to be the number of indices ι ∈ {1, · · · , n} with (uι, vι) = (0, 0), (0, 1), (1, 0)
and (1, 1), respectively.

The joint weight enumerator J(A,B) of, say, two binary linear codes
A,B, is the four-variable polynomial defined by the formula

J(A,B)(w, x, y, z) =
∑

u∈A, v∈B

wi(u,v)xj(u,v)yk(u,v)zl(u,v).

The following result connects the complete weight enumerator of a QSD
code with that of its residue and torsion codes.

Theorem 8 Order E as (0, c, a, b). If C is QSD, then cweC(w, x, y, z) =
J(res(C), tor(C))(w, x, y, z).
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Proof. By Theorem 6 we can write any element of C in unique fashion
as au + cv, with u ∈ res(C), and v ∈ tor(C). Considering the four cases
(ui, vi) = (0, 0), (0, 1), (1, 0) and (1, 1) yields in succession

(au+ cv)i = aui + cvi = 0, c, a, b.

The result follows.
We proceed to derive the matrix group G under which the cweC of a QSD
code C of residue code R is invariant.

Proposition 1

J(R,R⊥)(w, x, y,−z) = J(R,R⊥)(w, x, y, z).

Proof.
By orthogonality of u ∈ R and v ∈ R⊥, we see that l(u, v) is even.

Proposition 2

J(R,R⊥)(w, x, y, z) = 1
2n
J(R,R⊥)(w + x+ y + z,

w + x− y − z, w − x+ y − z, w − x− y + z).

Proof. Combine MacWilliams identity [12, (32) p.148] between J(R,R⊥)
and J(R⊥, R) with the relation [12, (29) p.148].
Further, there is the following relation for n even.

Proposition 3 If n is even, then

J(R,R⊥)(−w,−x,−y,−z) = J(R,R⊥)(w, x, y, z).

Proof. Follows by homogeneity of the polynomial.

The polynomial J(R,R⊥) is an invariant of degree n of a group G =
〈H, J,−I〉 of order 24, where

2H =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,
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and

J =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

The three generators are implied by the three above propositions. The
Molien series of G is

1 + 2t2 + t4

(1− t2)3(1− t6)
.

This is consistent with the Molien series of [1, §3]. The relevant primary
and secondary invariants can be found in [1, Appendix]. If, furthermore, C
is Type IV, we need to use the fact that, by Theorem 4, R⊥ has only even
weight codewords .

Proposition 4 If C is Type IV, then

J(R,R⊥)(w,−x, y,−z) = J(R,R⊥)(w, x, y, z).

Proof. By Theorem 4, the QSD code C is Type IV iff R contains the
all-one vector, that is to say iff R⊥ has only even weights. Since the weight
of v ∈ R⊥ in terms of exponents of J(R,R⊥) is j + l, we see that j + l is an
even number. The result follows.

This means that cweC is invariant under K where

K =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

Let G4 = 〈G,K〉. It turns out that G4 is a group of order 48 with Molien
series

1 + t4

(1− t2)2(1− t4)(1− t6)
.

Define the following four primary invariants, of respective degrees 2, 2, 4, 6.
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f2 = w2 + x2 + y2 + z2,

f ′2 = wy − 1/2x2 − 1/2z2,

f4 = w4 + 6wx2y + 6wyz2 − 1/2x4 + 3x2z2 + y4 − 1/2z4,

f6 = w6 + 6/17w5y + 15/17w4x2 + 15/17w4y2 + 15/17w4z2 +

60/17w3x2y + 20/17w3y3 + 60/17w3yz2 + 15/17w2x4 +

90/17w2x2y2 + 90/17w2x2z2 + 15/17w2y4 + 90/17w2y2z2 +

15/17w2z4 + 30/17wx4y + 60/17wx2y3 + 180/17wx2yz2 +

6/17wy5 + 60/17wy3z2 + 30/17wyz4 + 1/17x6 + 15/17x4y2 +

15/17x4z2 + 15/17x2y4 + 90/17x2y2z2 + 15/17x2z4 + y6 +

15/17y4z2 + 15/17y2z4 + 1/17z6.

We also need the secondary invariant of degree four

h4 = w4 + 10w2x2 − 2w2y2 − 2w2z2 + x4 − 2x2y2 − 2x2z2 + y4 + 10y2z2 + z4.

After specialization of the variables (w = x and x = y = z = y) we obtain
polynomials in two variables x, y.

g2 = x2 + 3y2,

g′2 = xy − y2,
g4 = x4 + 12xy3 + 3y4,

g6 = x6 + 6/17x5y + 45/17x4y2 + 140/17x3y3 + 315/17x2y4 + 366/17xy5 + 199/17y6

h′4 = x4 + 6x2y2 + 9y4.

We summarize the above discussion in the following Theorem.

Theorem 9 If C is a Type IV E-code then its complete weight enumerator is
in the C[f2, f

′
2, f4, f6]-module C[f2, f

′
2, f4, f6]+h4C[f2, f

′
2, f4, f6]. Its Hamming

weight enumerator is in the algebra C[g2, g
′
2, g4, g6]-module C[g2, g

′
2, g4, g6] +

h′4C[g2, g
′
2, g4, g6].

Remark 5 1. The repetition code R2 has weight enumerator g2.

2. The group G4 has the same size and Molien series as the group appear-
ing in [15, §7.7] acting on the cwe of trace self-dual additive even codes
that contain the all-one vector.

3. It is an open problem to describe the invariant ring of Type IV codes
by only using invariants that are weight enumerators.
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6 Short length classification (n < 7)

In the following, we classify, up to equivalence, QSD codes by means of the
multilevel construction, and of the characterization of Theorem 6. To each
binary self orthogonal code is attached a QSD code, it is the residue code of.
The torsion code is then the dual of the self-orthogonal code. By Theorem
4 and Theorem 6, classifying QSD E-codes up to permutation equivalence
is equivalent to classifying self-orthogonal binary codes up to equivalence.
Likewise, classifying Type IV QSD E-codes up to permutation equivalence is
equivalent to classifying self-orthogonal binary codes containing the all-one
vector up to equivalence.

We thus construct self-orthogonal codes by hand in short lengths and rely
on the classification of Hou [11] to know the maximum number of equivalence
classes.

Some codes can be generated by triads or tetrads. Recall that an isotropic
vector x ∈ En is any vector satisfying (x, x) = 0. We define a triad as an
isotropic vector of Hamming weight three in En with n ≥ 3. Likewise we de-
fine a tetrad as an isotropic vector of Hamming weight four in En with n ≥ 4.

We use the term additive generator matrix to mean that the code is
obtained by taking sums of the rows. Thus, the additive generator matrix of
a QSD code is always a square matrix.

6.1 n = 2 (2 codes)

A QSD code that is not type IV can be constructed by the multilevel con-
struction from the binary self-orthogonal code {

(
0 0

)
} and its dual, F2

2. Its
generator matrix is

cI2 =

(
c 0
0 c

)
and its weight distribution is [< 0, 1 >,< 1, 2 >,< 2, 1 >].

The other one is a type IV E-code with residue code the binary self-orthogonal
code generated by

(
1 1

)
. Its generator matrix is

(
a a

)
and its weight

distribution is [< 0, 1 >,< 2, 3 >]. Its φ-image is F4-linear.
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6.2 n = 3 (2 codes)

One QSD code can be constructed from the binary self-orthogonal code gen-
erated by

(
0 0 0

)
. Its generator matrix is cI3 and its weight distribution

is [< 0, 1 >,< 1, 3 >,< 2, 3 >,< 3, 1 >].

The other QSD code can be constructed from the binary self-orthogonal code

generated by
(
1 0 1

)
. Its additive generator matrix is

a 0 a
c 0 c
0 c 0

 and its

weight distribution is [< 0, 1 >,< 1, 1 >,< 2, 3 >,< 3, 3 >].

6.3 n = 4, 5, 6

We summarize the information in the following four tables.
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Table 1: codes of length 4

Residue code Generator Matrix weight distribution Type IV
〈
(
0 0 0 0

)
〉 cI4 [< 0, 1 >,< 1, 4 >,< 2, 6 >,< 3, 4 >,< 4, 1 >] no

〈
(
1 0 0 1

)
〉


c 0 0 c
a 0 0 a
0 c 0 0
0 0 c 0

 , [< 0, 1 >,< 1, 2 >,< 2, 4 >,< 3, 6 >,< 4, 3 >] no

〈
(
1 1 1 1

)
〉


c 0 0 c
a a a a
0 c 0 c
0 0 c c

 , [< 0, 1 >,< 2, 6 >,< 4, 9 >] no

〈
(

1 0 1 0
0 1 0 1

)
〉
(
a 0 a 0
0 a 0 a

)
[< 0, 1 >,< 2, 6 >,< 4, 9 >] yes
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Table 2: codes of length 5

Residue code Generator Matrix weight distribution Type IV
〈
(
0 0 0 0 0

)
〉 cI5 [< 0, 1 >,< 1, 5 >,< 2, 10 >,< 3, 10 >,< 4, 5 >,< 5, 1 >] no

〈
(
1 1 0 0 0

)
〉


a a 0 0 0
c c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c

〉 [< 0, 1 >,< 1, 3 >,< 2, 6 >,< 3, 10 >,< 4, 9 >,< 5, 3 >] no

〈
(
1 1 1 1 0

)
〉


a a a a 0
c 0 0 c 0
0 c 0 c 0
0 0 0 0 c

 [< 0, 1 >,< 1, 1 >,< 2, 6 >,< 3, 6 >,< 4, 9 >,< 5, 9 >] no

〈
(

1 0 1 0 0
0 1 0 0 1

)
〉


c 0 c 0 0
a 0 a 0 0
0 c 0 0 c
0 a 0 0 a
0 0 0 c 0

 [< 0, 1 >,< 1, 1 >,< 2, 6 >,< 3, 6 >,< 4, 9 >,< 5, 9 >] no

19



Table 3: codes of length 6, part I

Residue code Generator Matrix weight distribution Type IV
〈
(
0 0 0 0 0 0

)
〉 cI6 [< 0, 1 >,< 1, 6 >,< 2, 15 >,< 3, 20 >,< 4, 15 >,< 5, 6 >,< 6, 1 >]. no

〈
(
1 1 0 0 0 0

)
〉


a a 0 0 0 0
c c 0 0 0 0
0 0 c 0 0 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 c

 [< 0, 1 >,< 1, 4 >,< 2, 9 >,< 3, 16 >,< 4, 19 >,< 5, 12 >,< 6, 3 >] no

〈
(
1 1 1 1 0 0

)
〉


a a a a 0 0
c 0 0 c 0 0
0 c 0 c 0 0
0 0 c c 0 0
0 0 0 0 c 0
0 0 0 0 0 c

 [< 0, 1 >,< 1, 2 >,< 2, 7 >,< 3, 12 >,< 4, 15 >,< 5, 18 >,< 6, 9 >] no

〈
(
1 1 1 1 1 1

)
〉


a a a a a a
c 0 0 0 0 c
0 c 0 0 0 c
0 0 c 0 0 c
0 0 0 c 0 c
0 0 0 0 c c

 [< 0, 1 >,< 2, 15 >,< 4, 15 >,< 6, 33 >] no
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Table 4: codes of length 6, part II

Residue code Generator Matrix weight distribution Type IV

〈
(

1 0 1 0 0 0
0 1 0 0 1 0

)
〉


c 0 c 0 0 0
a 0 a 0 0 0
0 c 0 0 c 0
0 a 0 0 a 0
0 0 0 c 0 0
0 0 0 0 0 c

 [< 0, 1 >,< 1, 2 >,< 2, 7 >,< 3, 12 >,< 4, 15 >,< 5, 18 >,< 6, 9 >] no

〈
(

1 0 1 1 0 1
0 1 0 1 1 1

)
〉


c 0 0 0 c c
a 0 a a 0 a
0 c 0 0 c 0
0 a 0 a a a
0 0 c 0 c c
0 0 0 c 0 c

 [< 0, 1 >,< 2, 3 >,< 3, 8 >,< 4, 15 >,< 5, 24 >,< 6, 13 >] no

〈
(

1 1 1 1 0 0
0 0 0 0 1 1

)
〉


a a a a 0 0
0 0 0 0 a a
c 0 0 c 0 0
0 c 0 c 0 0
0 0 c c 0 0
0 0 0 0 c c

 [< 0, 1 >,< 2, 9 >,< 4, 27 >,< 6, 27 > no

〈

1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 1

〉
a 0 a 0 0 0

0 a 0 0 a 0
0 0 0 a 0 a

 [< 0, 1 >,< 2, 9 >,< 4, 27 >,< 6, 27 >] no

21



7 Conclusion and open problems

In this article we have studied quasi self-dual codes over the non-unital non-
commutative ring E of order four. The existence of codes that are not nice
preclude any attempt to derive a general MacWilliams formula, since this
would imply a relation between the size of a code and that of its dual. We
have thus introduced QSD codes as an alternative to the concept of self-dual
codes. However, the special structure of QSD codes allowed us to use the
invariant approach to the joint weight enumerator of the residue code and
the torsion code.

Eventually, we gave a classification up to length 6 of the QSD codes, and of
the Type IV QSD codes. Reference [11] allows us to reduce the classification
problem for QSD codes to that of binary self-orthogonal codes. Since such
a classification is not known in the literature for n > 6, another technique is
needed in higher lengths. One possibility would be to derive a mass formula,
as it exists already over certain rings [2, 9].
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