Density behaviour related to Lévy processes
Abstract
Let p t (x), f t (x) and q * t (x) be the densities at time t of a real Lévy process, its running supremum and the entrance law of the reflected excursions at the infimum. We provide relationships between the asymptotic behaviour of p t (x), f t (x) and q * t (x), when t is small and x is large. Then for large x, these asymptotic behaviours are compared to this of the density of the Lévy measure. We show in particular that, under mild conditions, if p t (x) is comparable to tν(x), as t → 0 and x → ∞, then so is f t (x).
Domains
Probability [math.PR]
Origin : Files produced by the author(s)
Loading...