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INTRODUCTION

E STABLISHING dense correspondences across images is one of the fundamental tasks in computer vision [START_REF] Okutomi | A multiple-baseline stereo[END_REF], [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF]. Early works have focused on handling different views of the same scene (stereo matching [START_REF] Okutomi | A multiple-baseline stereo[END_REF], [START_REF] Hosni | Fast cost-volume filtering for visual correspondence and beyond[END_REF]) or successive frames (optical flow [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], [START_REF] Brox | Large displacement optical flow[END_REF]) in a video sequence. Semantic correspondence algorithms (e.g., SIFT Flow [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF]) go one step further, finding a dense flow field between images depicting different instances of the same object or scene category, which has proven useful in various computer vision tasks including object recognition [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF], [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF], semantic segmentation [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], co-segmentation [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], image editing [START_REF] Dale | Image restoration using online photo collections[END_REF], and scene parsing [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF]. Establishing dense semantic correspondences is very challenging especially in the presence of large changes in appearance or scene layout and background clutter. Classical approaches to semantic correspondence [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF], [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], [START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF], [START_REF] Bristow | Dense semantic correspondence where every pixel is a classifier[END_REF], [START_REF] Yang | DAISY filter flow: A generalized discrete approach to dense correspondences[END_REF] typically use an objective function involving fidelity and regularization terms. The fidelity term encourages hand-crafted features (e.g., SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], DAISY [START_REF] Tola | DAISY: An efficient dense descriptor applied to wide-baseline stereo[END_REF]) to be matched along a dense flow field between images, and the regularization term makes it smooth while aligning discontinuities to object boundaries. Hand-crafted features, however, do not capture highlevel semantics (e.g., appearance and shape variations), and they are not robust to image-specific details (e.g., texture, background clutter, occlusion).

Convolutional neural networks (CNNs) have allowed remarkable advances in semantic correspondence in the past few years. Recent methods using CNNs [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Novotnỳ | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF], [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF] benefit from rich semantic features invariant to

The first two authors contributed equally. Corresponding author: Bumsub Ham. intra-class variations, achieving state-of-the-art results. Semantic flow approaches [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Novotnỳ | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF] attempt to find correspondences for individual pixels or patches. They are not seriously affected by non-rigid deformations, but are easily distracted by background clutter. They also require a large amount of data with ground-truth correspondences for training. Although pixel-level semantic correspondences impose very strong constraints, manually annotating them is extremely labor-intensive and somewhat subjective, which limits the amount of training data available [START_REF] Ham | Proposal flow[END_REF]. An alternative is to learn feature descriptors only [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Novotnỳ | AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] or to exploit 3D CAD models together with rendering engines [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF]. Semantic alignment methods [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF], on the other hand, formulate semantic correspondence as a geometric alignment problem and directly regress parameters of a global transformation model (e.g., affine deformation or thin plate spline) between images. They leverage self-supervised learning where ground-truth parameters are generated synthetically using random transformations with, however, a higher sensitivity to non-rigid deformations. Moreover, background clutter prevents focusing on individual objects and interferes with the estimation of the transformation parameters. To overcome this problem, recent methods reduce the influence of distractors by inlier counting [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] or an attention process [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF].

In this paper, we present a new approach to establishing an object-aware semantic flow and propose to exploit binary foreground masks as a supervisory signal during training (Fig. 1). Our approach builds upon the insight that correspondences of high quality between images allow to segment common objects from background. To implement this idea, we introduce a new CNN architecture, dubbed SFNet, that outputs a semantic flow field at a sub-pixel level. We leverage a new and differentiable version of the argmax function, the kernel soft argmax, together with mask/flow consistency and smoothness terms to train SFNet end to end, establishing object-aware correspondences while filtering out distracting details. Our approach has the following advantages: First, it is a good compromise between current semantic flow and alignment methods, since foreground masks are available for large datasets, and they provide an object-level prior for the semantic correspondence task. Exploiting these masks during training makes it possible to focus on learning correspondences between prominent objects and scene elements (masks are of course not used at test time). Second, our method establishes a dense nonparametric flow field (i.e., semantic flow), which is more robust to non-rigid deformations than parametric regression (i.e., semantic alignment). Finally, using the kernel soft argmax allows us to train the whole network end to end, and hence our approach further benefits from high-level semantics specific to the task of semantic correspondence. The main contributions of this paper can be summarized as follows:

• We propose to exploit binary foreground masks, that are widely available and can be annotated more easily than individual point correspondences, to learn semantic flow by incorporating an object-level prior in the learning task. • We introduce a kernel soft argmax function, making our model quite robust to multi-modal distributions while providing a differentiable flow field at a sub-pixel level. • We set a new state of the art on standard benchmarks for semantic correspondence, mask transfer, pose keypoint propagation, and object co-segmentation, clearly demonstrating the effectiveness of our approach. We also provide an extensive experimental analysis with ablation studies.

A preliminary version of this work appeared in [START_REF] Lee | SFNet: Learning object-aware semantic correspondence[END_REF]. This version adds (1) a detailed description of related works exploiting object priors for semantic correspondence; (2) an in-depth presentation of SFNet including the kernel soft argmax and loss terms; (3) more comparisons with the state of the art on different benchmarks including the TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] and recent SPair-71k [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] datasets; (4) an evaluation on the tasks of pose keypoint propagation and object co-segmentation with the JHMDB [START_REF] Jhuang | Towards understanding action recognition[END_REF] and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] datasets, respectively; and (5) an extensive experimental evaluation including a runtime comparison and a performance analysis on SFNet trained using noisy labels (i.e., bounding boxes) or with different dataset. To encourage comparison and future work, our code and model are available online: https://cvlab.yonsei.ac.kr/projects/SFNet.

RELATED WORK

Correspondence problems cover a broad range of topics in computer vision including stereo, motion analysis, object recognition and shape matching. Giving a comprehensive review on these topics is beyond the scope of this paper. We thus focus on representative works related to ours.

Semantic Flow

Classical approaches focus on finding sparse correspondences, e.g., for instance matching [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], or establishing dense matches between nearby views of the same scene/object, e.g., for stereo matching [START_REF] Okutomi | A multiple-baseline stereo[END_REF], [START_REF] Hosni | Fast cost-volume filtering for visual correspondence and beyond[END_REF] and optical flow estimation [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], [START_REF] Brox | Large displacement optical flow[END_REF]. Unlike these, semantic correspondence methods estimate dense matches across pictures containing different instances of the same object or scene category. Early works on semantic correspondence focus on matching local features from hand-crafted descriptors, such as SIFT [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF], [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], [START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF], [START_REF] Bristow | Dense semantic correspondence where every pixel is a classifier[END_REF], DAISY [START_REF] Yang | DAISY filter flow: A generalized discrete approach to dense correspondences[END_REF] and HOG [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], [START_REF] Ham | Proposal flow[END_REF], [START_REF] Yang | Object-aware dense semantic correspondence[END_REF], together with spatial regularization using graphical models [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF], [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], [START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF] or random sampling [START_REF] Yang | DAISY filter flow: A generalized discrete approach to dense correspondences[END_REF], [START_REF] Barnes | Patch-Match: A randomized correspondence algorithm for structural image editing[END_REF]. However, hand-crafting features capturing high-level semantics is extremely hard, and similarities between them are easily distracted, e.g., by clutter, texture, occlusion and appearance variations. There have been many attempts to estimate correspondences robust to background clutter or scale changes between objects/object parts. These use object proposals as candidate regions for matching [START_REF] Ham | Proposal flow[END_REF], [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] or perform matching in scale space [START_REF] Qiu | Scale-space SIFT flow[END_REF].

Recently, image features from CNNs have demonstrated a capacity to both representing high-level semantics and being robust to appearance and shape variations [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], [START_REF] He | Deep residual learning for image recognition[END_REF]. Long et al. [START_REF] Long | Do convnets learn correspondence?[END_REF] apply CNNs to establish semantic correspondences between images. They follow the same procedure as the SIFT Flow [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF] method, but exploit off-the-shelf CNN features trained for the ImageNet classification task [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] due to a lack of training datasets with pixel-level annotations. This problem can be alleviated by synthesizing ground-truth correspondences from 3D models [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF] or augmenting the number of match pairs in a sparse keypoint dataset using interpolation [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]. More recently, new benchmarks for semantic correspondence have been released. PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] provides 1300+ image pairs of 20 image categories with groundtruth annotations from the PASCAL 2011 keypoint dataset [START_REF] Bourdev | Poselets: Body part detectors trained using 3d human pose annotations[END_REF]. SPair-71k [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] consists of over 70k of image pairs from PASCAL 3D+ [START_REF] Xiang | Beyond PASCAL: A benchmark for 3d object detection in the wild[END_REF] and PASCAL VOC 2012 [START_REF] Everingham | The PASCAL visual object classes (VOC) challenge[END_REF] with rich annotations including keypoints, segmentation masks and bounding boxes. These enable learning local features [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Rocco | Neighbourhood consensus networks[END_REF] specific to the task of semantic correspondence. FCSS [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] introduces a learnable local self-similarity descriptor robust to intra-class variations. SCNet [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] and HPF [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] present region descriptors exploiting geometric consistency among object parts. NCN [START_REF] Rocco | Neighbourhood consensus networks[END_REF] analyzes neighborhood consensus patterns in the 4D space of all possible correspondences in order to find spatially consistent matches, disambiguating feature matches on repetitive patterns. Although these approaches using CNN features outperform early methods by large margins, the loss functions they use for training typically do not involve a spatial regularizer mainly due to a lack of differentiability of the flow field. In contrast, our flow field is differentiable, allowing us to train the whole network end to end with a spatial regularizer. 

Feature matching

Semantic Alignment

Several recent methods [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF] formulate semantic correspondence as a geometric alignment problem using parametric models. In particular, these methods first compute feature correlations between images. The feature correlations are then fed into a regression layer to estimate parameters of a global transformation model (e.g., affine, homography, and thin plate spline) to align images. This makes it possible to leverage self-supervised learning [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] using syntheticallygenerated data, and to train the entire CNNs end to end. These approaches apply the same transformation to all pixels, which has the effect of an implicit spatial regularization, providing smooth matches and often outperforming semantic flow methods [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF], [START_REF] Ham | Proposal flow[END_REF]. However, they are easily distracted by background clutter and occlusion [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], since correlations between pairs of features are noisy and include outliers (e.g., between different backgrounds). Although this can be alleviated by using attention models [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] or suppressing outlier matches [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], global transformation models are highly sensitive to non-rigid deformations or local geometric variations. Alternative approaches include estimating local transformation models in a coarse-to-fine scheme [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF] or applying the geometric transformation recursively [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF], but they are computationally expensive. In contrast, our method avoids the problem efficiently by establishing semantic correspondences directly from feature correlations.

An Object-level Prior for Semantic Correspondence

Several methods [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF], [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF], [START_REF] Ham | Proposal flow[END_REF], [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] leverage object priors (e.g., object proposals, bounding boxes or foreground masks) to learn semantic correspondence. Proposal flow [START_REF] Ham | Proposal flow[END_REF] and its CNN version [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] use object proposals as matching primitives, and consider appearance and geometric consistency constraints to establish region correspondences. OADSC [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] also exploits object proposals, but leverages hierarchical graphs built on the proposals in a coarse-to-fine manner, allowing pixel-level correspondences. Similar to ours, other methods leverage bounding boxes or foreground masks for semantic correspondence. They, however, do not incorporate the object location prior explicitly into loss functions, and use the prior for pre-processing training samples instead. For example, PARN [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF] and FCSS [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] use bounding boxes or foreground masks to generate positive/negative matches within object regions at training time. In [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF], [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF], bounding boxes are used to limit the candidate regions for matching at both training and test time. Contrary to these methods, we incorporate this prior (e.g., bounding boxes or foreground masks) directly into the loss functions to train the network, and outperform the state of the art by a significant margin.

APPROACH

In this section, we describe our approach to establishing objectaware semantic correspondences including the network architecture (Section 3.1) and loss functions (Section 3.2). An overview of our method is shown in Fig. 2.

Network Architecture

Our model consists of three main parts (Fig. 2): We first extract features from source and target images, I s and I t , respectively, using a fully convolutional siamese network, where each of the two branches has the same structure with shared parameters. We then compute matching scores between all pairs of local features in the two images, and assign the best match for each feature using the kernel soft argmax function defined in Sec 3.1.3. All components are differentiable, allowing us to train the whole network end to end. In the following, we describe the network architecture for source to target matching in detail. A target to source match is computed in the same manner.

Feature Extraction

For feature extraction, we exploit a ResNet-101 [START_REF] He | Deep residual learning for image recognition[END_REF] pretrained for the ImageNet classification task [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. Although such CNN features give rich semantics, they typically fire on highly discriminative parts for classification [START_REF] Zhou | Learning deep features for discriminative localization[END_REF]. This may be less adequate for feature matching that requires capturing a spatial deformation for finegrained localization. We thus use additional adaptation layers to extract features specific to the task of semantic correspondence, making them highly discriminative w.r.t both appearance and spatial context. This gives a feature map of size h × w × d for each image that corresponds to h × w grids of d-dimensional local features.

We then apply L2 normalization to the individual d-dimensional features. As will be seen in our experiments, the adaptation layers boost the matching performance drastically.

Feature Matching

Matching scores are computed as the dot product between local features, resulting in a 4-dimensional correlation map of size h × w × h × w as follows:

c(p, q) = f s (p) f t (q), (1) 
where we denote by f s (p) and f t (q) d-dimensional features at positions p = (p x , p y ) and q = (q x , q y ) in the source and target images, respectively.

Kernel Soft Argmax Layer

We could assign the best matches by applying the argmax function over a 2-dimensional correlation map c p (q) = c(p, q), w.r.t all features f t (q) at each spatial location p, i.e., argmax q c p (q). However, argmax is not differentiable. The soft argmax function [START_REF] Honari | Improving landmark localization with semi-supervised learning[END_REF], [START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF] computes an output by a weighted average of all spatial positions with corresponding matching probabilities (i.e., an expected value of all spatial coordinates weighted by corresponding probabilities). Although it is differentiable and enables fine-grained localization at a sub-pixel level, its output is influenced by all spatial positions, which is problematic especially in the case of multimodal distributions (Fig. 3). In other words, the soft argmax best approximates the discrete argmax when the matching probability is uni-modal having one clear peak. We introduce a hybrid version, the kernel soft argmax, that takes advantage of both the soft and discrete argmax. Concretely, it computes correspondences φ(p) for individual locations p as an average of all coordinate pairs q = (q x , q y ) weighted by matching probabilities m p (q) as follows.

φ(p) = q m p (q)q. (2) 
The matching probability m p is computed by applying a spatial softmax function to a L2-normalized version n p of the correlation map c p :

m p (q) = exp(βk p (q)n p (q))
q ∈np exp(βk p (q )n p (q )) .

We perform L2 normalization on the 2-dimensional correlation map c p , adjusting the matching scores f s (p) f t (q) to a common scale before applying the softmax function. β is a "temperature" parameter adjusting the distribution of the softmax output. As the temperature parameter β increases, the softmax function approaches the discrete one with one clear peak, but this may cause an unstable gradient flow at training time. k p is a 2-dimensional Gaussian kernel centered on the position obtained by applying the discrete argmax to the correlation map, i.e., argmax q n p (q). The Gaussian kernel allows us to retain the scores n p near the output of the discrete argmax while suppressing others. That is, the kernel k p has the effect of restricting the range of averaging in (2), and makes the kernel soft argmax less susceptible to multimodal distributions (e.g., from ambiguous matches in clutter and repetitive patterns) while maintaining differentiability. Note that the center position of the Gaussian kernel is changed at every iteration during training, and the matching probability m p is differentiable, since we do not train the Gaussian kernel itself and no gradients are propagated through the discrete argmax. Note also that the normalization of the correlation map is particularly important for semantic alignment methods [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF] (see, for example, Table 2 in [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF]) but its purpose is different from ours. They use the normalization to penalize features having multiple highly-correlated matches, boosting the scores of discriminative matches.

Source image.

Target image. We visualize soft and kernel soft argmax operators in Fig. 3, which shows that the soft argmax yields an incorrect correspondence in the presence of multiple highly correlated features, since a weighted average of matching probabilities m p having multi-modal distributions accumulates positional errors. The kernel soft argmax instead suppresses matching probabilities m p except for the ones around the highest mode, making them have an (approximately) uni-modal distribution and favoring correct correspondences. The discrete argmax for the Gaussian kernel k p can select incorrect correspondences from a correlation map n p during training. This can be handled by flow consistency and smoothness terms in our loss, which will be described in the following section. They penalize inconsistent flows and outlier matches, making it possible to learn feature descriptors in such a way that correlation scores of incorrect matches become smaller. We visualize in Fig. 4 matching probabilities m p and shifts of a dominant mode during training. We can see that the discrete argmax initially selects an incorrect match, but the dominant mode shifts toward a correct match after the second iteration.

Loss

We exploit binary foreground masks as a supervisory signal to train the network, which gives a strong object prior. To this end, we define three losses that guide the network to learn object-aware correspondences without pixel-level ground truth as

L = λ mask L mask + λ flow L flow + λ smooth L smooth , (4)
which consists of mask consistency L mask , flow consistency L flow and smoothness L smooth terms, balanced by the weight parameters (λ mask , λ flow , λ smooth ). In the following, we describe each term in detail.

Mask Consistency Term

We define a flow field F s from source to target images as

F s (p) = φ(p) -p. (5) 
Similarly, a flow field F t (q) from target to source images is defined as φ(q)q. We denote by M s and M t the binary masks of the source and target images, respectively. Values of 0 and 1 in the masks respectively indicate background and foreground Fig. 5: Illustration of the mask consistency loss. We estimate the binary source mask M s by warping the target one M t using the flow field F s . The target mask M t is similarly estimated. We then compute the average error between original and estimated masks to compute the mask consistency loss. This penalizes the correspondences between foreground and background regions, and vice versa. We show foreground parts only for the purpose of visualization. (Best viewed in color.)

regions. We assume that the binary mask in the source images can be reconstructed by warping the mask in the target image and vice versa, if we have discriminative features and correct dense correspondences. To implement this idea, we transfer the target mask M t by warping [START_REF] Jaderberg | Spatial transformer networks[END_REF] using the flow field F s and obtain an estimate of the source mask M s as follows.

M s = W(M t ; F s ) (6) 
where W denotes a warping operator using the flow field, e.g.,

W(M t ; F s )(p) = M t (p + F s (p)) = M t (φ(p)). (7) 
Since the sampling positions from the correspondences φ(p) are typically fractional, we use a bilinear kernel [START_REF] Jaderberg | Spatial transformer networks[END_REF] to compute 

T a r g e t i m a g e Source image

(c) One-to-one matching. 

T a r g e t i m a g e Source image

(c) Flow consistency for both images. 

M t (φ(p)) = qx,qy M t (q x , q y ) max(0, 1 -|φ(p) x -q x |) max(0, 1 -|φ(p) y -q y |). (8) 
We then compute the difference between the source mask M s and its estimate M s . Similarly, we reconstruct the target mask M t from M s using the flow field F t and compute the difference between M t and M t . Accordingly, we define the mask consistency loss (Fig. 5) as

L mask = i∈{s,t} 1 |N i | p (M i (p) -M i (p)) 2 , (9) 
where |N i | is the number of pixels in the mask M i . Although the mask consistency loss does not constrain the background itself, it prevents matches from foreground to background regions and vice versa by penalizing them. This encourages correspondences to be established between features within foreground and background masks, guiding our model to learn object-aware correspondences. Note that the mask consistency loss does not guarantee that our model establishes more accurate correspondences at the object boundaries. Note also that this loss using binary masks does not prevent a many-to-one matching (Fig. 6(a)). That is, it does not penalize a case when many foreground features in an image are matched to a single one in other image. For example, the foreground mask in the source image even can be reconstructed, when all points in the foreground region are matched to a single foreground point in the target image.

Flow Consistency Term

To address the many-to-one matching problem, we propose to use a flow consistency loss. It measures consistency between flow fields F s and F t within foreground masks as

L flow = i∈{s,t} 1 |N i F | p ||(F i (p) + Fi (p)) M i (p)|| 2 2 , (10) 
where |N i F | is the number of foreground pixels in the mask M i , and

Fs = W(F t ; F s ), (11) 
which aligns the flow field F t with respect to F s by warping. Ft is computed similar to [START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF]. We denote by • 2 and the L2 norm and element-wise multiplication, respectively. The multiplication is applied separately for each x and y component. The flow consistency term penalizes inconsistent correspondences (Fig. 6(b)), and favors one-to-one matching (Fig. 6(c)), alleviating the many-to-one matching problem in the mask consistency loss. For example, when the flow fields are consistent with each other, F s and Fs in [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF] have the same magnitude with opposite directions. Note that having multiple matches for individual points (i.e., a one-to-many matching) is impossible within our framework. Similar ideas have been explored in stereo fusion [START_REF] Zbontar | Computing the stereo matching cost with a convolutional neural network[END_REF], [START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF] and optical flow [START_REF] Meister | UnFlow: Unsupervised learning of optical flow with a bidirectional census loss[END_REF], [START_REF] Zou | DF-Net: Unsupervised joint learning of depth and flow using cross-task consistency[END_REF], but without appearance and shape variations. It is hard to incorporate this term in current semantic flow methods based on CNNs [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Rocco | Neighbourhood consensus networks[END_REF], mainly due to a lack of differentiability of the flow field. Recently, Zhou et al. [START_REF] Zhou | Learning dense correspondence via 3D-guided cycle consistency[END_REF] exploit cycle consistency between flow fields, but they regress correspondences directly from concatenated features from source and target images and do not consider background clutter. In contrast, our method establishes a differentiable flow field by computing feature similarities explicitly while considering background clutter.

Although the flow consistency term relieves the many-to-one matching problem, computing this term for a source or a target image only may cause a flow shrinkage problem (Fig. 7(a)). To address this problem, we compute this term w.r.t both source and target images in [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF]. This penalizes inconsistent matches, e.g., between the entire foreground region in the source image and small parts of the target image (Fig. 7(b)). Note that spreading the flow fields over the entire regions is particularly important to handle scale changes between objects (Fig. 7(c)).

Smoothness Term

The differentiable flow field also allows us to exploit a smoothness term, as widely used in classical energy-based approaches [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF], [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], [START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF]. We define this term using the first-order derivative of the flow fields F s and F t as

L smooth = i∈{s,t} 1 |N i F | p ||∇F i (p) M i (p)|| 1 , (12) 
where • 1 and ∇ are the L1 norm and the gradient operator, respectively. This regularizes (or smooths) flow fields within foreground regions without being affected by (incorrect) correspondences at background.

EXPERIMENTS

In this section, we give experimental details (Secs. 4.1), and present a detailed analysis and evaluation of our approach on the tasks of semantic correspondence (Section 4.2), mask transfer (Section 4.3), pose keypoint propagation (Section 4.4) and object cosegmentation (Section 4.5). We then present ablation studies for different losses and network architectures, as well as a performance analysis for different training datasets (Section 4.6).

Experimental Details

Implementation

Following [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Rocco | Neighbourhood consensus networks[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF], we use CNN features from ResNet-101 [START_REF] He | Deep residual learning for image recognition[END_REF] trained for ImageNet classification [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. Specifically, we use the networks cropped at conv4-23 and conv5-3 layers, respectively. This results in two feature maps of size 20 × 20 × 1024 and 10 × 10 × 2048, respectively, for a pair of input images of size 320 × 320, and gives a good compromise between localization accuracy and high-level semantics. Adaptation layers are trained with random initialization, separately for each feature map in a residual fashion [START_REF] He | Deep residual learning for image recognition[END_REF]. To compute residuals, we add two blocks of convolutional, batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] and ReLU [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] layers, with padding on top of each feature map, where the sizes of convolutional kernels for conv4-23 and conv5-3 features are 5 × 5 and 3 × 3, respectively. Each block outputs a residual, which is then added to the corresponding input features. We determine the temperature parameter β and standard deviation σ of Gaussian kernel k p using a grid search over (β, σ) pairs, where the maximum search ranges for β and σ are 100 and 10 with intervals of 10 and 1, respectively. We show in Fig. 8 average PCK scores for (β, σ) pairs on the validation split of PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF]. We can see that the PCK performance is robust over a wide range of parameters. We can also see that the PCK scores decrease significantly, when the temperature β is too small, since the matching probability m p approaches a uniform distribution. We select the parameters (β = 50, σ = 5) that give the best performance. Other parameters (λ mask = 3, λ flow = 16, λ smooth = 0.5) are chosen similarly using the validation split of the PF-PASCAL dataset. Note that we perform a grid search on one validation set and fix these parameters in all experiments. As will be seen in experimental results, they generalize well to the test sets of all the datasets used (e.g., PF-WILLOW [START_REF] Ham | Proposal flow[END_REF] and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]) and tasks (e.g., mask transfer and pose keypoint propagation).

Training

Training our network requires pairs of foreground masks for source and target images depicting different instances of the same object category. Although the TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] and Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] datasets provide such pairs, the number of masks in TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] is not sufficient to train our network, and images in Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] lack background clutter. Our model trained with these datasets suffers from overfitting and may not generalize well for other images containing clutter. Motivated by [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Novotny | Self-supervised learning of geometrically stable features through probabilistic introspection[END_REF], we generate pairs of source and target images synthetically from single images by applying random affine transformations and use the synthetically warped pairs as training samples. The corresponding foreground masks are transformed with the same parameters. Contrary to [START_REF] Kanazawa | WarpNet: Weakly supervised matching for single-view reconstruction[END_REF], [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], our model does not perform 1. We upsample the features adapted from conv5-3 using bilinear interpolation.

parametric regression, and thus does not require ground-truth transformation parameters for training. We use the PASCAL VOC 2012 segmentation dataset [START_REF] Everingham | The PASCAL visual object classes (VOC) challenge[END_REF] that consists of 1,464, 1,449, and 1,456 images for training, validation and test, respectively. We exclude 122 images from train/validation sets that overlap with the test split in PF-PASCAL [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF], and train our model with the corresponding 2,791 images. We augment the training dataset by horizontal flipping and color jittering. Note that we do not use the segmentation masks provided by the PASCAL VOC 2012 dataset, that specify the class of the object at each pixel. We instead generate binary foreground masks using all labeled objects, regardless of image categories and the number of objects, at training time. We train our model with a batch size of 16 for about 7k iterations, giving roughly 40 epochs over the training data. We use the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with β 1 = 0.9 and β 2 = 0.999. A learning rate initially set to 3e-5 is divided by 5 after 30 epochs. All networks are trained end to end using PyTorch [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF].

Evaluation Metric

We use the probability of correct keypoint (PCK) [START_REF] Yang | Articulated human detection with flexible mixtures of parts[END_REF] to measure the precision of overall assignment, particularly at sparse keypoints of semantic relevance. We compute the Euclidean distance between warped keypoints using the estimated dense flow and ground truth, and count the number of keypoints whose distances lie within α n max(h n , w n ) pixels, where n ∈ {img, bbox}, α typically set to 0.1, is a tolerance value, and h and w are the height and width, respectively, of an image or an object bounding box. Following [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], we divide keypoint coordinates by the height and width of the image size in case of α img , such that they are normalized in a range of [0, 1] and h img = w img = 1.

Semantic Correspondence

We compare our model to the state of the art on semantic correspondence including hand-crafted and CNN-based methods with the following four benchmark datasets: PF-WILLOW [START_REF] Ham | Proposal flow[END_REF], PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF], SPair-71k [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]. Following the experimental protocol in [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], we use α img for PF-PASCAL and TSS, and α bbox for PF-WILLOW and SPair-71k, respectively. Results for all comparisons have been obtained from the source code or models provided by the authors, unless otherwise specified.

PF-WILLOW and PF-PASCAL

The PF-WILLOW [START_REF] Ham | Proposal flow[END_REF] and PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] datasets provide 900 and 1,351 image pairs of 4 and 20 image categories, respectively, with corresponding ground-truth object bounding boxes and keypoint annotations. The PF-PASCAL dataset is more challenging than other datasets [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], [START_REF] Ham | Proposal flow[END_REF] for semantic correspondence evaluation, featuring different instances of the same object class in the presence of large changes in appearance and scene layout, clutter and scale changes between objects. To evaluate our model, we use PF-WILLOW and the test split of PF-PASCAL provided by [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] corresponding roughly 900 and 300 image pairs, respectively.

We show in Table 1 the average PCK scores for the PF-WILLOW and PF-PASCAL datasets, and compare our method with the state of the art. From this table, we observe five things:

(1) Our model outperforms the state of the art by a significant margin in terms of PCK, especially for the PF-PASCAL dataset. In particular, it shows better performance than other object-aware TABLE 1: Quantitative comparison with the state of the art on the PF-WILLOW [START_REF] Ham | Proposal flow[END_REF] and the test split of the PF-PASCAL [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] in terms of average PCK. Numbers in bold indicate the best performance and underscored ones are the second best. The subscript for each method indicates the corresponding feature extractor. We denote by "F" and "A", respectively, semantic flow and semantic alignment methods. The characters in parentheses correspond to the type of supervisory signal used in training: T: transformation parameters; P: image pairs depicting different instances of the same object category; B: bounding boxes; C: ground-truth correspondences; M: foreground masks. All numbers in PF-WILLOW are taken from [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF]. The results of [START_REF] Ham | Proposal flow[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] in PF-PASCAL are taken from [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF].

Type

Methods PF-WILLOW PF-PASCAL (α bbox = 0.1) (αimg = 0.1) A (T) A2Net res101 [ methods [START_REF] Ham | Proposal flow[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] that focus on establishing region correspondences between prominent objects. A plausible explanation is that establishing correspondences between object proposals is susceptible to shape deformations. ( 2) We can clearly see that our model gives better results than semantic alignment methods on both datasets, but performance gain for the PF-PASCAL dataset, which typically contains pictures depicting a non-rigid deformation and clutter (e.g., in cow and sofa classes), is more significant. For example, the PCK gain over RTN [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF] for the PF-PASCAL (81.9 vs. 75.9) is about four times more than that for the PF-WILLOW (73.5 vs. 71.9), indicating that our semantic flow method is more robust to non-rigid deformations and background clutter than semantic alignment approaches. ( 3) By comparing our model with CNNbased semantic flow methods, we can see that involving a spatial regularizer is significant. These techniques focus on designing fidelity terms (e.g., using a contrastive loss [START_REF] Choy | Universal correspondence network[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF]) to learn a feature space preserving semantic similarities. This is because of a lack of differentiability of the flow field. In contrast, our model gives a differentiable flow field, allowing to exploit a spatial regularizer while further leveraging high-level semantics from CNN features more specific to semantic correspondence. ( 4) Similar to other CNN-based methods [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF], our models with ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] show lower performance than the original ones using ResNet-101. [START_REF] Brox | Large displacement optical flow[END_REF] We confirm once more a finding in [START_REF] Long | Do convnets learn correspondence?[END_REF] that CNN features trained for ImageNet classification [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] clearly show a better ability to handle intra-class variations than hand-crafted ones (HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] in PF-LOM [START_REF] Ham | Proposal flow[END_REF]).

Table 2 shows per-class PCK scores on the PF-PASCAL dataset [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF]. Our model achieves state-of-the-art results for 11 object categories, and outperforms all methods on average by a large margin. The performance gain is significant especially in the presence of non-rigid deformations (e.g., in cow and sheep classes) or distractions such as clutter (e.g., in table and sofa classes). This demonstrates once again that our method is able to establish reliable TABLE 2: Per-class PCK (α img = 0.1) on PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF]. The results of [START_REF] Ham | Proposal flow[END_REF] are taken from [START_REF]End-to-end weakly-supervised semantic alignment[END_REF].

Type

Methods aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv all A (T) A2Net res101 [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] 83 semantic correspondences of keypoints, even for images with large shape variations and clutter by which semantic alignment methods are easily distracted.

SPair-71k

The SPair-71k dataset [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], a large-scale benchmark for semantic correspondence, provides 70,958 image pairs of 18 object categories with ground-truth annotations for object bounding boxes, segmentation masks, and keypoints. The image pairs in SPair-71k feature various changes in viewpoint, scale, truncation, and occlusion. Following the experimental protocol of [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], we evaluate our model on the test split of 12,234 image pairs, and compute PCK scores with α bbox = 0.1 We show in Table 3 the perclass and average PCK scores, and compare our model with the state of the art [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Rocco | Neighbourhood consensus networks[END_REF]. The first five rows show the PCK scores for models provided by authors, without retraining or finetuning on the SPair-71k dataset. We can see that our model achieves the second best performance, demonstrating that it generalizes well to unseen images. It is slightly outperformed by NCN [START_REF] Rocco | Neighbourhood consensus networks[END_REF] (0.4% in terms of the average PCK) but runs about 11 times faster at test time (Table 5). The last six rows show the PCK scores for the models trained with SPair-71k. For fair comparison, we train our model with the training set of SPair-71k (986 images). The results show that it performs best in the presence of non-rigid deformations (i.e., in cat and cow classes). For other object categories, our model outperforms other CNN-based methods except for HPF [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF]. Note that HPF exploits ground-truth correspondences at training time, which gives strong constraints but is extremely labor-intensive. In contrast, our model uses binary foreground masks only, that are widely available and much cheaper to obtain.

TSS

The TSS dataset [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] consists of three subsets (FG3DCar, JODS and PASCAL) that contain 400 image pairs of 7 object categories. It provides dense flow fields obtained by interpolating sparse keypoint matches with additional co-segmentation masks. Following the experimental protocol of [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], we compute the PCK scores (α img = 0.05) densely over the foreground object. Table 4 TABLE 4: Quantitative comparison on the TSS dataset [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] in terms of the average PCK. We measure the PCK scores (α img = 0.05) on three subsets (FG3DCar, JODS and PASCAL). All numbers except ours are taken from [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF].

Type Methods FG3D. JODS PASC.

Hand-crafted F DSP SIFT [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 48.7 46.5 38.2 F DFF DAISY [START_REF] Yang | DAISY filter flow: A generalized discrete approach to dense correspondences[END_REF] 49.3 30.3 22.4 F SIFT Flow SIFT [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF] 63.4 52.2 45.3 F PF-LOM HOG [START_REF] Ham | Proposal flow[END_REF] 78.6 65.3 53.1 F TSS HOG [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] 83.0 59.5 48.3 F OADSC HOG [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] 87.5 70.8 72.9

CNN-based

A (T) A2Net vgg16 [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] 87.0 67.0 55.0 A (T) CNNGeo res101 [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 90.1 76.4 56.3 A (T+P) WS-SA res101 [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] 90.3 76.4 56.5 A (P) RTN res101 [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF] 90.1 78.2 63.3 F (B+P) PF-LOM FCSS [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] 83.9 63.5 58.2 F (B+P) DCTM FCSS [START_REF] Kim | DCTM: Discrete-continuous transformation matching for semantic flow[END_REF] 89.1 72.1 61.0 F (M) Ours res101 90.6 78.7 56.5 compares the average PCK on each subset in the TSS dataset.

Our method shows better performance than the state of the art for FG3DCar and JODS. We do not do as well on the PASCAL part of TSS, which contains many image pairs with different poses (e.g., cars captured with left-and right-side viewpoints). Current methods, except for OADSC [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] that is specially designed for handling changes in viewpoint, have a limited capability of finding matches between images with different poses. Ours is no exception.

Runtime Analysis

Table 5 shows runtime comparisons of state-of-the-art methods. For comparison, we run the original source codes implemented using PyTorch [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF]. The average runtime is measured on the same machine with a NVIDIA Titan RTX GPU. The table shows that our model is fastest among the state of the art. Semantic alignment methods [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] estimate parameters of affine and thin place spline sequentially, which degrades runtime performance. Semantic flow methods involve 4-D convolutions [START_REF] Rocco | Neighbourhood consensus networks[END_REF] or a Hough voting process [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] on top of the correlation volume, requiring Source image. Target image. CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF]. WS-SA [START_REF]End-to-end weakly-supervised semantic alignment[END_REF]. HPF [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF]. Ours. additional computations to establish pixel-level correspondences.

Our model, on the other hand, simply assigns the best matches from the correlation volume in a single stage. Most computation time is spent extracting features (23.7 milliseconds). Computing matching scores and establishing correspondences using the kernel soft argmax just take 1.2 milliseconds.

Qualitative Results

Figure 9 shows a visual comparison of alignment results between source and target images with the state of the art on the test split of PF-PASCAL [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF]. To this end, the source images are warped to the target images using the dense flow fields computed by each method. We can see that our method is robust to local non-rigid deformation (e.g., bird beaks and horse legs in the first two rows), scale changes between objects (e.g., front wheels in the third row), and clutter (e.g., wheels in the last row), while semantic alignment methods [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] are not. In particular, the fourth example clearly shows that our method gives more discriminative correspondences, cutting off matches for non-common objects. For example, it does not establish correspondences between a person and background regions in the source and target images, respectively, while CNNGeo [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] and WS-SA [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] fail to cut off matches on these regions. We can also see that all methods do not establish correspondences for occluded regions (e.g., a bicycle saddle in the last row). We also show in Fig. 10 the top 60 matches chosen according to matching probabilities on the PF-WILLOW [START_REF] Ham | Proposal flow[END_REF], PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF], and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] datasets. We can see that most strong matches are established between prominent objects, and matches between foreground and background regions have low matching probabilities.

Mask Transfer

We apply our model to the task of mask transfer on the Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] dataset. This dataset, originally introduced for image classification, provides pictures of 101 image categories with Fig. 10: Top matches on standard benchmarks. We visualize the top 60 matches according to matching probabilities. Each row shows a result on PF-WILLOW [START_REF] Ham | Proposal flow[END_REF], PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF], respectively. (Best viewed in color.) TABLE 6: Quantitative comparison on the Caltech-101 dataset [START_REF] Fei-Fei | One-shot learning of object categories[END_REF].

All numbers but ours are taken from [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF].

Type

Methods

LT-ACC IoU

Hand-crafted F DeepFlow SIFT [START_REF] Revaud | DeepMatching: Hierarchical deformable dense matching[END_REF] 0.74 0.40 F GMK SIFT [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] 0.77 0.42 F SIFT Flow SIFT [START_REF] Liu | SIFT flow: Dense correspondence across scenes and its applications[END_REF] 0.75 0.48 F DSP SIFT [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 0.77 0.47 F PF-LOM HOG [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] 0.78 0.50 F OADSC HOG [START_REF] Yang | Object-aware dense semantic correspondence[END_REF] 0.81 0.55

CNN-based

A (T) A2Net vgg16 [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF] 0.80 0.57 A (T) CNNGeo res101 [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF] 0.83 0.61 A (T+P) WS-SA res101 [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] 0.85 0.63 F (B+P) PF-LOM FCSS [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF] 0.83 0.52 F (C+P) SCNet-AG vgg16 [START_REF] Han | SCNet: Learning semantic correspondence[END_REF] 0.79 0.51 F (P) NCN res101 [START_REF] Rocco | Neighbourhood consensus networks[END_REF] 0.85 0.60 F (C+P) HPF res101 [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] 0.87 0.63 F (M) Ours res101 0.88 0.67 ground-truth object masks. Unlike the PF [START_REF] Ham | Proposal flow[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] and TSS [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] datasets, it does not provide ground-truth keypoint annotations. For fair comparison, we use 15 image pairs, provided by [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], for each object category, and use the corresponding 1,515 image pairs for evaluation. Following the experimental protocol in [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], we compute matching accuracy with two metrics using the groundtruth masks: Label transfer accuracy (LT-ACC) and the intersectionover-union (IoU) metric. Both metrics count the number of correctly labeled pixels between ground-truth and transformed masks using dense correspondences, where the LT-ACC evaluates the overall matching quality while the IoU metric focuses more on foreground Source image. Target image. Alignment. Label transfer. objects. Following [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Seo | Attentive semantic alignment with offset-aware correlation kernels[END_REF], we exclude the LOC-ERR metric, since it measures the localization error of correspondences using object bounding boxes due to a lack of keypoint annotations, which does not cover rotations, affine or deformable transformations. The LT-ACC and IoU comparisons on the Caltech-101 dataset are shown in Table 6. Although this dataset provides ground-truth object masks, we do not retrain or fine-tune our model to evaluate its generalization ability on other datasets. From this table, we can see that (1) our model generalizes better than other CNN-based methods for other images outside the training dataset; and (2) it outperforms the state of the art in terms of the LT-ACC and IoU, verifying once more that our model focuses on regions containing objects while filtering out background clutter, even without using object proposals [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF] Kim | FCSS: Fully convolutional self-similarity for dense semantic correspondence[END_REF], [START_REF] Yang | Object-aware dense semantic correspondence[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] or inlier counting [START_REF]End-to-end weakly-supervised semantic alignment[END_REF]. In Fig. 11, we show alignment and label transfer examples on the Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] dataset. We can see that our method is robust against local non-rigid deformations (e.g., bird's neck, body, and legs).

Pose Keypoint Propagation

We apply our model to the task of keypoint propagation on the JHMDB [START_REF] Jhuang | Towards understanding action recognition[END_REF] dataset. We propagate ground-truth pose keypoints in the first frame to subsequent ones by estimating semantic correspondences between them. The JHMDB [START_REF] Jhuang | Towards understanding action recognition[END_REF] dataset contains 928 clips of 21 action categories with pose keypoints, segmentation masks of humans in action, obtained by a 2D articulated human puppet model [START_REF] Zuffi | From pictorial structures to deformable structures[END_REF], and provides three splits, where each split consists of training and test sets. Following the experimental protocol of [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF], [START_REF] Vondrick | Tracking emerges by colorizing videos[END_REF], we test our model on the test set in the split 1 corresponding to 268 clips of action categories, without retraining or fine-tuning on the dataset. We normalize keypoint coordinates in the range of [0,1] by dividing them with the height and width of the human bounding box size, respectively, and use Input.

TimeCycle res50 [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF]. Ours res50 .

Fig. 12: Visual comparison of keypoint propagation results on the JHMDB dataset [START_REF] Jhuang | Towards understanding action recognition[END_REF]. Given an input labeled with the ground-truth pose keypoints, we propagate them through video sequences. Compared to the state of the art, our method is more robust to background clutter, large displacements, and occlusion. The keypoints are shown in circles. (Best viewed in color.) TABLE 7: Quantitative comparison on the JHMDB dataset [START_REF] Jhuang | Towards understanding action recognition[END_REF].

All numbers except for HPF [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF] are taken from [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF]. Identity: copying labels in the first frame; † : models trained from scratch; V: unlabeled video frames.

Methods PCK PCK (α bbox = 0.1) (α bbox = 0. We show in Table 7 the average PCK scores for the keypoint propagation task, and compare our method with the state of the art including self-supervised methods [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF], [START_REF] Vondrick | Tracking emerges by colorizing videos[END_REF]. From this table, we can see that our model based on ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] outperforms the state of the art, even without using video datasets for training. For example, TimeCycle [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF] is trained with the VLOG [START_REF] Fouhey | From lifestyle vlogs to everyday interactions[END_REF] dataset that contains 114k videos with the total length of 344 hours. Training networks with such video datasets requires lots of computational resources and training time. We can also see that our model outperforms HPF [START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF], demonstrating once again its generalization ability to unseen images during training. Figure 12 shows a visual comparison of keypoint propagation results with the TimeCycle [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF] method on the JHMDB [START_REF] Jhuang | Towards understanding action recognition[END_REF] dataset. The qualitative results for the comparison have been obtained from the original model [START_REF] Wang | Learning correspondence from the cycle-consistency of time[END_REF] provided by the authors. We predict the keypoints in the rest of the videos, by propagating ground 
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Fig. 13: A visual example of predicting co-segmentation masks.

We extract common objects between source and target images by element-wise multiplication between predicted and warped masks.

truth in the first frame. We can see that our method is more robust to background clutter (e.g., body parts in the first row) and large displacements (e.g., elbows and wrists in the second row). Moreover, it is not seriously affected by occlusion (e.g., ankles and wrists in the last two rows) as the smoothness term regularizes flow fields within prominent objects.

Object Co-segmentation

We apply our model to the task of object co-segmentation on the TSS dataset [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]. To this end, we add a mask regression layer on top of each feature extractor in Fig. 2. It inputs source or target feature maps and predicts binary foreground masks. We train adaptation and mask regression layers from scratch with three loss terms in Eq. ( 4) and an additional mask regression loss (i.e., using L2 distances between predicted and ground-truth masks). Since our model predicts source and target masks independently, and uses synthetic pairs generated from a single image for training, mask regression layers output binary masks for all foreground objects at test time. To convert them into co-segmentation masks, we simply select the regions consistent with both predicted and 13), where we denote by M s and M t predicted masks for source and target images, respectively. Table 8 compares IoU scores of cosegmentation masks on the TSS dataset. We can see that our model outperforms other methods using hand-crafted features, suggesting that it is feasible to leverage our model for object co-segmentation.

Ablation Study and Effect of Training Data

We show an ablation analysis on different components and losses in our model. We measure a PCK score (α bbox = 0.1), which is a more strict metric compared to α img , and report the results of semantic correspondence on the test split of PF-PASCAL [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF]. We also study the effect of using different training datasets on performance.

Training Loss

We show the average PCK for three variants of our model in Table 9. The mask consistency term encourages establishing correspondences between prominent objects. Our model trained with this term only, however, may not yield spatially distinctive correspondences, resulting in the worst performance. The flow consistency term, which spreads flow fields over foreground regions, overcomes this problem, but it does not differentiate correspondences between background and objects. Accordingly, these two terms are complementary each other and exploiting both significantly boosts the performance of our model from 67.5/71.8 to 78.2. An additional smoothness term further boosts performance to 78.7.

Network Architecture

Table 10 compares the performance of networks with different components in terms of average PCK. The baseline models in the first three rows compute matching scores using multi-level features from conv4-23 and conv5-3 layers, and estimate correspondences with different argmax operators. They do not involve any training similar to [START_REF] Long | Do convnets learn correspondence?[END_REF] that uses off-the-shelf CNN features for semantic correspondence. We can see that applying the soft argmax directly to the baseline model degrades performance severely, since it is highly susceptible to multi-modal distributions.

The results in the next three rows are obtained with a single adaptation layer on top of conv4-23. This demonstrates that the adaptation layer extracts features more adequate for pixel-wise semantic correspondences, boosting performance of all baseline models significantly. In particular, we can see that the kernel soft argmax outperforms others by a large margin, since it enables training our model end to end including adaptation layers at a subpixel level and is less susceptible to multi-modal distributions. The last three rows suggest that exploiting deeper features is important, and using all components with the kernel soft argmax performs best in terms of the average PCK. We show in Fig. 14 alignment examples for the variants of our model in Table 10. This confirms once more the results in Table 10 that the adaptation layers and exploiting multi-level features boost the matching performance drastically, regardless of types of argmax operators, and the soft argmax is highly susceptible to multi-modal distributions, e.g., caused by ambiguous matches between a bottle and a glass in the source and target images, respectively.

Training with Bounding Boxes

We train our model using object bounding boxes themselves as binary masks. The generated masks are noisy, but are less expensive to annotate than ground-truth foreground masks. We use the same 2,791 images from the PASCAL VOC 2012 segmentation dataset [START_REF] Everingham | The PASCAL visual object classes (VOC) challenge[END_REF] for training, and obtain an average PCK (α bbox = 0.1) of 77.9 on the PF-PASCAL dataset [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF], which is comparable with the score of 78.7 using ground-truth masks. This suggests that using bounding boxes might be a less accurate but cheaper alternative.

Training on PF-PASCAL

Semantic correspondence methods based on CNNs use different training sets. For example, the methods of [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] use the PASCAL VOC 2011 (11,540 images) and Tokyo Time Machine datasets (20,000 images). In [START_REF] Han | SCNet: Learning semantic correspondence[END_REF], [START_REF]End-to-end weakly-supervised semantic alignment[END_REF], [START_REF] Jeon | PARN: Pyramidal affine regression networks for dense semantic correspondence estimation[END_REF], [START_REF] Rocco | Neighbourhood consensus networks[END_REF], [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF], the training split of PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] (about 700 image pairs for 1,001 images) is used. Following these approaches, we train a network on the training split in the PF-PASCAL dataset. We exclude 302 images in this split that overlap with either target or source images in the test dataset. Note that current methods ignore this bias. For example, removing the bias reduces a PCK score for the WS-SA [START_REF]End-to-end weakly-supervised semantic alignment[END_REF] from 75.8 to 75.67 on the test split of PF-PASCAL. We use object Source.
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bounding boxes due to the lack of ground-truth foreground masks in the training split. We obtain the average PCK (α bbox = 0.1) of 77.8 on PF-PASCAL, which is comparable with the score of 78.7 for the model trained using 1,464 images on the PASCAL VOC 2012 segmentation dataset. This indicates that our model is robust to the size of training data.

Training on Larger Datasets

We use the training split of MS COCO 2014 [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF] to train our model on a larger dataset. Among 80 object categories, we select 16,624 images of 20 object classes of PASCAL VOC 2012 [START_REF] Everingham | The PASCAL visual object classes (VOC) challenge[END_REF] using segmentation masks, which is about 6 times the number used in Section 4.2 (2,791 images). We test our model on the PF-PASCAL dataset [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF], since MS COCO does not provide benchmarks for semantic correspondence. Despite using a larger number of training samples, the average PCK (α bbox = 0.1) decreases slightly from 78.7 to 77.1, mainly due to domain differences between MS COCO and PASCAL VOC datasets. This, however, demonstrates once more the generalization ability of our approach to samples outside the training domain.

CONCLUSION

We have presented a CNN model dubbed SFNet for learning an object-aware semantic flow end to end, with a novel kernel soft argmax layer that outputs differentiable matches at a subpixel level. We have proposed to use binary foreground masks that are widely available and can be obtained easily compared to pixel-level annotations to train a model for learning pixel-topixel correspondences. The ablation studies clearly demonstrate the effectiveness of each component and loss in our model. Finally, we have shown that the proposed method is robust to distracting details and focuses on establishing dense correspondences between prominent objects, outperforming the state of the art on standard benchmarks for the tasks of semantic correspondence, mask transfer, pose keypoint propagation and object co-segmentation in terms of accuracy and speed. In future work, we will explore a joint learning model for semantic correspondence and object co-segmentation that can assist each other.

Fig. 1 :

 1 Fig. 1: We use pairs of warped foreground masks obtained from a single image (left) as a supervisory signal to train our model. This allows us to establish object-aware semantic correspondences across images depicting different instances of the same object or scene category (right). No masks are required at test time. (Best viewed in color.)

Fig. 3 :

 3 Fig. 3: Visualization of soft and kernel soft argmax operations. A point in the source image and its ground-truth correspondence in the target image are shown as the square and the diamond, respectively. A matching point computed by either the soft or kernel soft argmax operators is shown as the cross. When multiple features are highly correlated, the soft argmax often gives incorrect matches. The kernel soft argmax avoids this problem while maintaining differentiability. (Best viewed in color.)

Fig. 4 :

 4 Fig. 4: Visualization of matching probabilities m p and shifts of a dominant mode during training. A point in the source and its ground-truth correspondence in the target are shown as the square and diamond, respectively. The modes selected by the discrete argmax are shown as the cross. We can see that the dominant mode shifts toward a correct match after the second iteration.

  Source image Target image(a) Many-to-one matching. Source image T a r g e t i m a g e (b) Consistent and inconsistent flows.

Fig. 6 :

 6 Fig. 6: Using the mask consistency term alone may cause a many-to-one matching problem: (a) multiple yellow points in the source image can be matched to the single blue one in the target image. The flow consistency term (b) penalizes inconsistent correspondences and (c) favors a one-to-one matching. We denote by green and red arrows consistent and inconsistent matches, respectively. (Best viewed in color.)

Fig. 7 :

 7 Fig. 7: Using a symmetric loss: (a) considering the flow consistency loss w.r.t a source image only may cause a flow shrinkage problem; (b) we can overcome this problem by computing the loss w.r.t a target image as well and penalizing inconsistent matches; (c) this symmetric loss allows us to perform object-level matching. We use green and red arrows to show consistent and inconsistent matches, respectively. (Best viewed in color.)

Fig. 8 :

 8 Fig. 8: Average PCK scores (α bbox = 0.1) for (β, σ) pairs on the validation split of PF-PASCAL [39].

Fig. 9 :

 9 Fig. 9: Visual comparison of alignment results between source and target images on the PF-PASCAL dataset [39]. Keypoints in the source and target images are shown as diamonds and crosses, respectively, with a vector representing the matching error. All methods use ResNet-101 features. Compared to the state of the art, our method is more robust to local non-rigid deformations, scale changes between objects, and clutter. See text for details. (Best viewed in color.)

Fig. 11 :

 11 Fig. 11: Alignment and label transfer examples on the Caltech-101 dataset[START_REF] Fei-Fei | One-shot learning of object categories[END_REF]. The source and target masks are overlaid on the corresponding images. We transfer pixel labels of the source images to the target ones using established correspondences. We show label transfer results overlaid on target images. (Best viewed in color.)

  t ; F s ).

Fig. 14 :

 14 Fig. 14: Visual comparison of different network architectures and argmax operators. We show alignment examples for the variants of our model in Table10.

Feature extraction Training phase Test phase

  Overview of SFNet. SFNet takes an input pair of source and target images, and extracts local features using a siamese network. It then computes pairwise matching scores between features and establishes semantic flow for source and target images using the kernel soft argmax. At training time, corresponding foreground masks for the two images are used to compute mask consistency, flow consistency, and smoothness terms. See text for details.
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Adaptation layers aggregate the features nonlinearly from large receptive fields (e.g., the receptive field of size 9 × 9 on a feature map of size 20 × 20 × 1024), transforming them, guided by semantic correspondences and the corresponding loss terms in (4), to be highly discriminative w.r.t both appearance and spatial context. With the resulting two feature maps of size 20 × 20 × 1024 and 10

  .2 82.8 83.8 44.4 57.8 81.3 89.4 86.1 40.1 91.7 21.4 73.2 33.8 76.3 74.3 63.3 100.0 45.5 45.3 60.0 70.8 A (T) CNNGeo res101 [23] 82.4 80.9 85.9 47.2 57.8 83.1 92.8 86.9 43.8 91.7 28.1 76.4 70.2 76.6 68.9 65.7 80.0 50.1 46.3 60.6 71.9 A (T+P) WS-SA res101 [24] 83.7 88.0 83.4 58.3 68.8 90.3 92.3 83.7 47.4 91.7 28.1 76.3 77.0 76.0 71.4 76.2 80.0 59.5 62.3 63.9 75.8 F PF-LOM HOG [27] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5 F (P) NCN res101 [43] 86.8 86.7 86.7 55.6 82.8 88.6 93.8 87.1 54.3 87.5 43.2 82.0 64.1 79.2 71.1 71.0 60.0 54.2 75.0 82.8 78.9 F (C+P) HPF res101 [29] 86.5 88.9 81.6 75.0 81.3 89.7 93.7 87.6 62.2 87.5 52.6 87.5 74.2 83.5 73.5 66.2 60.0 66.2 68.5 66.7 80.4 F Ours res101 89.5 89.2 83.1 73.6 85.9 92.6 95.0 83.7 65.6 93.8 53.6 81.3 71.6 80.6 72.3 71.0 100.0 69.3 80.0 79.5 81.9

TABLE 3 :

 3 Per-class PCK (α bbox = 0.1) on SPair-71k[START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF]. All numbers but ours are taken from[START_REF] Min | Hyperpixel flow: Semantic correspondence with multi-layer neural features[END_REF].

		Methods	aero bike bird boat bottle bus car cat chair cow dog horse moto person plant sheep train tv	all
		(T) CNNGeores101 [23] 21.3 15.1 34.6 12.8 31.2 26.3 24.0 30.6 11.6 24.3 20.4 12.2 19.7 15.6 14.3 9.6 28.5 28.8 18.1
	Transferred models	(T) A2Netres101 [25] (T+P) WS-SAres101 [24] 23.4 17.0 41.6 14.6 37.6 28.1 26.6 32.6 12.6 27.9 23.0 13.6 21.3 22.2 17.9 10.9 31.5 34.8 21.1 20.8 17.1 37.4 13.9 33.6 29.4 26.5 34.9 12.0 26.5 22.5 13.3 21.3 20.0 16.9 11.5 28.9 31.6 20.1 (P) NCNres101 [43] 24.0 16.0 45.0 13.7 35.7 25.9 19.0 50.4 14.3 32.6 27.4 19.2 21.7 20.3 20.4 13.6 33.6 40.4 26.4
		(M) Oursres101	27.3 17.2 47.2 14.7 36.7 21.4 16.5 56.4 13.6 32.9 25.4 17.4 19.9 19.5 15.9 15.9 33.2 35.1 26.0
		(T) CNNGeores101 [23] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
	SPair-71k	(T) A2Netres101 [25]	22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3
	trained models	(T+P) WS-SAres101 [24] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9 (P) NCNres101 [43] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1 (C+P) HPFres101 [29] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2
		(M) Oursres101	26.9 17.2 45.5 14.7 38.0 22.2 16.4 55.3 13.5 33.4 27.5 17.7 20.8 21.1 16.6 15.6 32.3 35.9 26.3

TABLE 5 :

 5 

	Type	Methods	Time (ms)
	A	(T) CNNGeo res101 [23]	34.2
	A	(T+P) WS-SA res101 [24]	34.4
	A	(T) A2Net res101 [25]	61.2
	F	(P) NCN res101 [43]	284.2
	F	(C+P) HPF res101 [29]	48.9
	F	(M) Ours res101	24.9

Runtime comparison per image pair on the test split of the PF-PASCAL dataset

[START_REF] Han | SCNet: Learning semantic correspondence[END_REF]

,

[START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] 

in milliseconds.

TABLE 8 :

 8 Quantitative comparison of object co-segmentation on TSS[START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] in terms of IoU. All numbers except ours are taken from[START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF]. M s W( M t ; F s ) in case of predicting a cosegmentation mask for the source image (see Fig.

	Methods	FG3D. JODS PASC. Avg.
	SIFT Flow SIFT [3]	0.42	0.24	0.41	0.36
	DSP SIFT [7]	0.29	0.22	0.34	0.28
	DFF DAISY [13]	0.33	0.21	0.21	0.25
	Faktor and Irani HOG [67] 0.69	0.54	0.50	0.58
	Joulin et al. SIFT [68]	0.46	0.32	0.40	0.39
	TSS HOG [8]	0.76	0.50	0.65	0.63
	Ours res101	0.88	0.78	0.76	0.81
	warped masks, i.e.,				

TABLE 9 :

 9 Average PCK comparison of different loss functions.

	Mask consistency consistency Flow	Smoothness	PCK (α bbox = 0.1)
			67.5
			71.8
			78.2
			78.7

TABLE 10 :

 10 Average PCK comparison of variants of our model. We denote by "D", "S", and "KS" discrete, soft, and kernel soft argmax operators, respectively.

	Adaptation Multi-level	Argmax	PCK
	layer	feature	Train	Test	(α bbox = 0.1)
			-	D	45.8
			-	S	8.8
			-	KS	28.4
			S	D	72.5
			S	S	71.7
			KS	KS	75.0
			S	D	76.8
			S	S	76.2
			KS	KS	78.7
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