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Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless
manipulation, organization and mechanical properties testing. Yet, these tremendous perspectives
have so far been hindered by the absence of selectivity of existing acoustical tweezers' ® and/or their
limited resolution restricting their use to large particle manipulation only* ®. Here, we report precise
selective contactless manipulation and positioning of human cells in a standard microscopy environ-
ment, without altering their viability. The unprecedented selectivity and miniaturization is achieved
by combining holography with active materials and fabrication techniques derived from the semi-
conductor industry to synthesize specific wavefields (called focused acoustical vortices®?) designed to
produce stiff localized traps. We anticipate this work to be a starting point toward widespread appli-
cation of acoustical tweezers in fields as diverse as tissue engineering'®, cells mechano-transduction
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, neural network study'# or mobile microorganisms imaging'®*®, for which precise ma-

nipulation and/or controlled application of stresses is mandatory.

I. INTRODUCTION

Contactless tweezers based on optical'” '? and mag-
netic forces?°~22 have been developed in the last decades
and have led to tremendous progress in science recognized
by several Nobel prizes. Nevertheless, these technologies
have stringent limitations when operating on biological
matter. Optical tweezers rely on the optical radiation
pressure, a force proportional to the intensity of the wave-
field divided by the speed of light. The high value of the
latter severely limits the forces that can be applied and
imposes the use of high intensity fields. This can lead
to deleterious photothermal damages (due to absorption
induced heating) and/or photochemical damages (due to
excitation of reactive compounds like singlet oxygen)?32¢
adversely affecting cells integrity. Magnetic tweezers, on
the other hand, can only manipulate objects susceptible
to magnetic fields and thus require other particles to be
pre-tagged with magnetic compounds, a limiting factor
for many applications. For biological applications, acous-
tical tweezers are a prominent technology®273°. They
rely on the acoustical radiation force®3!, which is -as for
their optical counterpart- proportional to the intensity
of the wave divided by the wave speed. But, the dra-
matically lower speed of sound compared to light leads
to driving power several orders of magnitude smaller
than in optics to apply the same forces (or conversely,
forces several orders of magnitude larger at the same
driving power)®32. In addition, the innocuity of ul-
trasounds on cells and tissues below cavitation thresh-
old is largely documented®? 37 and demonstrated daily
by their widespread use in medical imaging®®. Indeed,
the frequencies typically used in ultrasound applications
(100kHz to 100 MHz) are far below electronic or molecu-
lar excitation resonances thus avoiding adverse effects on
cells integrity. Moreover, the weak attenuation of sound

in both water and tissues at these frequencies limits ab-
sorption induced thermal heating. Finally, almost any
type of particles (solid particles, biological tissues, drops)
can be trapped without pre-tagging®® and the low speed
of sound enables spatial resolution down to micrometric
scales even at these comparatively low frequencies.

Nevertheless, the promising capabilities offered by
acoustical tweezers have so far been hindered by the lack
of selectivity of existing devices and/or their restricted
operating frequency limiting their use to large particles
only. Yet, the ability to select, move and organize in-
dividual microscopic living organisms is of the utmost
importance in microbiology for fields at the forefront of
current research such as single cell analysis, cell-cell inter-
action study, or to promote the emergence of disruptive
research e.g. on spatially organized co-cultures. In this
paper, we unleash the potential of acoustical tweezers
by demonstrating individual biological cells manipulation
and organization in a standard microscopy environment
with miniaturized one-sided acoustical tweezers.

II. ACOUSTICAL TWEEZERS DESIGN

The first experimental evidence of large particles trap-
ping with acoustic waves dates back to the early 20th
century”. Nevertheless, the first demonstration of con-
trolled manipulation of micrometric particles and cells
with acoustic waves appeared only one century later with
the emergence of microfluidics and high frequency trans-
ducers based on interdigitated electrodes’2. In these re-
cent works, trapping relies on the 2D superposition of
orthogonal plane standing waves, an efficient solution for
the collective motion of particles, but one which precludes
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FIG. 1. Experimental setup. A. Illustration of the working principle of the tweezers designed for cells selective manipulation:
A spherically focused acoustical vortex is synthesized by spiraling active electrodes metallized at the surface of a piezoelectric
substrate and actuated with a function generator connected to an amplifier. The vortex propagates and focalizes inside a glued
glass substrate. Then it reaches a microfluidic chamber made of a glass slide and a PDMS cover containing cells embedded in
a growth medium. The microfluidic device is acoustically coupled with the transducer with a thin layer of silicone oil (25 ¢St).
A cell located at the center of the acoustical vortex is trapped. Its motion relative to other cells is enabled by the displacement
of the microfluidic chamber driven by a XY motorized stage (See Movie M1 for an animated explanation of the setup working
principle). B. Picture of typical transducers used in the present study (right) and illustration of the scale reduction compared
to previous lower frequency designs by Baudoin et al.® (left). C. Image of the actual experimental setup. D. Zoom in on the
spiral transducer and the electrical connections (in black). E. Illustration of the integration of the whole setup inside a standard
inverted microscope. Photo credit: B: J.-C. Gerbedoen, SATT NORD / C-D-E: R.A. Sahely, Univ. Lille.

any selectivity, i.e. the ability to select and move one
particle out of a population®. Indeed, the multiplicity of
nodes and anti-nodes leads to the existence of multiple
trapping sites?® which cannot be moved independently.
In addition, multiple transducers or reflectors positioned
around the manipulation area are mandatory for the syn-
thesis of standing waves, a condition difficult to fulfill in
many experimental configurations.

Selective trapping with single beam requires strong
spatial localization and hence tight focusing of the wave-
field. In optics, this ability has been achieved with fo-
cused progressive waves'”, a solution also investigated
in acoustics*'. But such wavefields are inadequate in
acoustics for most particles of practical interest, since
objects with positive contrast factors (such as rigid par-
ticles or cells) are attracted to pressure nodes®'*? and
would be expelled from the focal point of a focused
wave?3.  Acoustical vortices? provide an elegant solu-
tion to this problem?*. These focused helical progres-
sive waves spin around a central axis wherein the pres-
sure amplitude vanishes, surrounded by a ring of high
pressure intensity, which pushes particles toward the
central node. Two-dimensional trapping”*® and three-
dimensional levitation* and trapping® have been pre-
viously reported at the center of laterally and spheri-

cally focused vortices, respectively. However, all these
demonstrations were performed on relatively large par-
ticles (>300 pm in diameter) using complex arrays of
transducers, which are cumbersome, not compatible with
standard microscopes, and that cannot be easily minia-
turized to trap micrometric particles. Recently, Baudoin
et al® demonstrated the selective manipulation of 150
pm particles in a standard microscopy environment with
flat, easily integrable, miniaturized tweezers. To reach
this goal, they sputtered holographic electrodes at the
surface of an active piezoelectric substrate, designed to
synthesize a spherically focused acoustical vortex.

Nevertheless, transcending the limits of this technology
to achieve selective cells manipulation remained a major
scientific and technological challenge. Indeed, the system
should be scaled down (frequency up-scaling) by a fac-
tor of 10 (since cells have typical size of 10 pm), while
increasing dramatically the field intensity, owing to the
low acoustic contrast (density, compressibility) between
the cells and surrounding liquids*®*”. In addition, since
the concomitant system’s miniaturization and power in-
crease are known to adversely increase the sources of
dissipation, the tweezers had to be specifically designed
to prevent detrimental temperature increase and enable
damage free manipulation of cells:



First, spherically focused acoustical vortices (Fig. 1A)
were chosen to trap the particles. Indeed, the energy con-
centration resulting from the 3D focalization (Fig. 2F)
enables to reach high amplitudes at the focus from re-
mote low power transducers. These spherically focused
vortices were synthesized by materializing the hologram
of a 45 MHz vortex® with metallic electrodes at the sur-
face of an active piezoelectric substrat. The hologram
was discretized on two levels resulting in two intertwined
spiralling electrodes (Fig. 1D), patterned in a clean room
by standard photo-lithography techniques (see Methods
section A). The scale reduction compared to our previous
generation of acoustical tweezers® is illustrated in Fig.
1B. Second, the design of the electrodes was optimized
to reduce Joule heating (magnified by the scale reduc-
tion) inside the electrodes. To prevent this effect, (i) the
thickness of the metallic electrodes was increased by a
factor of 2 (400 nm of gold and 40nm of titanium); (ii)
the width of the electrical connections (Fig. 1D) supply-
ing the power to the spirals was significantly increased to
prevent any dissipation before the active region; and (iii)
two radial electrodes spanning half of the spirals were
added as a way to effectively bring power to the driving
electrode. Third, a 1.1 mm glass substrate (Fig. 1A,
1C) was glued to the electrodes and placed in between
the transducers and the microfluidic chamber wherein the
cells are manipulated. This glass substrate has a double
function: (i) it enables the focalization of the wave and
(ii) it thermally insulates the microfluidic device from
the electrodes thanks to the poor thermal conductivity
of glass.

The final device hence consists of (see Movie M1 in SI,
Fig. 1A, 1C, 1E): (i) spiralling holographic transducers
generating an acoustical vortex which propagates and fo-
cuses inside a glass substrate ; (ii) a microfluidic PDMS
chamber supported by a glass slide containing cells and
placed on top of the substrate, wherein the acoustical
vortex creates a trap and (iii) a motorized stage that en-
ables the XY displacement of the microfluidic chamber
with respect to the trap. The whole transparent setup is
integrated in an inverted microscope as depicted in Fig.
1E.

III. CHARACTERIZATION OF THE
ACOUSTICAL TRAP

The principle of high frequency acoustical vortices syn-
thesis with these active holograms was assessed through
the comparison of numerical predictions obtained from
an angular spectrum code and experimental measure-
ments of the acoustic field normal displacement at the
surface of the glass slide (XY plane) with a Polytech
UHF-120 laser Doppler vibrometer (Fig. 2, A-D). Both
the intensity and phase are faithful to the simulations and
demonstrate the ability to generate high frequency acous-

tic vortices. As expected, the wavefield exhibits a cen-
tral node (corresponding to the phase central singularity)
surrounded by a ring of high intensity which constitutes
the acoustical trap. The magnitude of the acoustic field
(displacement) depends on the driving electrical power
and was measured to vary typically between 0.1 nm and
1 nm, at the electrical power used in the manipulation
experiments. This corresponds to acoustic powers lying
between 20 W and 2 mW (see Methods section H). The
concentration of the acoustic energy through focalization
in the propagation plane (XZ) can be seen in Fig. 2E.

An estimation of the lateral force field exerted on a cell
of 10 um radius with density 1100 kg m~3 and compress-
ibility 4 x 10719 Pa~! was computed at each point in
the manipulation plane of the microfluidic chamber (XY
plane, Fig. 2F) with the theoretical formula derived by
Sapozhnikov & Bayley*®. This calculation gives an esti-
mation of the force of the order of 100 pN (see Methods
section D for the exact values depending on cells acoustic
properties?647) for an acoustic vibration of 1nm, corre-
sponding to the upper bound reported for manipulation
of objects with optical tweezers.

Finally, the temperature increase due to Joule heating
in the electrodes as well as the total temperature increase
due to both Joule heating and acoustic wave absorption
was measured using an infrared camera to assess poten-
tial impact on biological material (See Methods section
I). The temperature increase measured after 2 min of
manipulation is not significant at the lowest power (dis-
placement amplitude 0.1 nm) while it reaches 4.5 °C at
the top of the glass slide and 5.6 °C at the highest power
inside a drop of glycerol placed on top of the glass slide
and acting as a perfectly absorbing liquid. These mea-
surements indicate that the first source of heat is Joule
heating in the electrodes which could be solved by active
cooling of the transducer. They also suggest that even
at the largest power used in the present experiments, the
moderate temperature increase remains compatible with
cells manipulation, as assessed in the next section.

IV. CELLS MANIPULATION, POSITIONING
AND VIABILITY

Cell manipulation is demonstrated in a microfluidic de-
vice integrated in a standard inverted microscope (Fig.
1E) to illustrate the fact that our approach can be easily
transposed to standard microbiology experiments. The
device is composed of a thin glass slide treated to prevent
cell adhesion and a PDMS chamber of controlled height
(38 pum). The cells are loaded by placing a drop of the
cell suspension (10-20 pL) on the glass surface using a
micro-pipette and carefully lowering the chamber on top
of the drop. The position of the vortex core is spotted
with four triangular marks deposited at the surface of
the glass substrate. Using a XY positioning system it is
thereafter possible to align the tweezers center to any cell
present in the chamber. Upon activation of the AC driv-
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FIG. 2. Acoustic field and radiation forces. A-D. Numerical predictions (A and B) and experimental measurements (C and
D) with a UHF-120 Polytec laser Doppler vibrometer of the normalized modulus (A and C) and phase (C and D) of the
acoustic normal displacement at the surface of the glass slide (XY plane). In the experiments presented in this paper, the
amplitude of the vibrations (displacement) lies typically between 0.1 nm and 1 nm depending on the electrical power applied to
the transducers. E. Simulated evolution of the amplitude of the acoustic field in the propagation plane (XZ). This simulation
illustrates the concentration of the acoustic energy through focalization. F. Normalized magnitude and distribution of acoustic
forces. Left: the white arrows show the convergence of the force field toward the center of the beam but also that the first ring
is repulsive for particles located outside the trap. Right: Magnitude of the lateral force along the green dashed line plotted
on the left figure. When the force is negative, the particle is pushed toward the center of the acoustic vortex, while when
it is positive it is pushed outward. Zero values correspond to static equilibrium positions. The magnitude of the maximum

trapping force computed with the code varies between 30 pN and 650 pN (see Methods section D) for vibration amplitude of 1

nm (acoustic power of 2 mW) depending on the exact cells acoustic properties

ing signal, a cell situated inside the vortex core is nearly
instantaneously trapped.

The first demonstration of the selective nature of our
tweezers is showcased by our ability to pick up a single
cell (breast cancer cell MDA-MB-231, 7£1 pm in radius)
amongst a collection of cells and move it along a slalom
course where other free to move cells act as poles (see Fig.
3A and Movie M2). Then a second cell initially serving as
a slalom marker, is moved to prove that it was free (Movie
M2). The precise displacement can be performed in any
direction as demonstrated by the square motion of a cell
around another (Fig. 3B, Movie M3). Displacement can
be performed even in the presence of other cells without
any risk of ”coalescence” as the first ring acts as a barrier.
As can be seen in Fig. 2C, the radius of the first repulsive
ring is typically 40 pym. The second ring of much weaker
intensity can also slightly affect free cells at large power.

One of the key ability enabled by acoustical tweezers is
the capture, positioning and release of cells at precise lo-
cations. As an illustration, a total of 10 individual MDA
cells were therefore positioned to spell the letter ”A” and
"T” of ” Acoustical Tweezers” (Fig. 3C). The total ma-
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nipulation time to achieve these results was kept under
10 min (less than 2 min per cell). All the operations rep-
resented in Fig. 3 were performed with acoustic vibration
displacements < 0.5nm. Finally, we performed some ex-
periments to test the displacement speed obtained with
our tweezers. We obtained a linear speed of 0.4 mm
s~ for vibration amplitude of about 0.6 nm (correspond-
ing to an acoustic power of 800 uW). As a comparison,
this speed corresponds to the upper bound reported by
Keloth et al.*® with optical tweezers, obtained here with
a power 35 times weaker and no photoxocity. Further-
more, unlike with optical tweezers, it is still possible to
increase this speed with acoustical tweezers by increasing
the actuation power and improving the thermal manage-
ment of the device, as most of the dissipated power comes
from the transducer and not from the direct absorption
by the medium.

As described in the introduction, one of the main gains
which can be expected from transitioning from optical to
acoustical tweezers is the absence of deleterious effects of
the latter when manipulating live cells. The short-term
and long-term viability was investigated using a fluores-
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FIG. 3. A. Stack of images illustrating the selective manipulation of a human breast cancer cell (MDA-MB-231) of radius 7 £1
pm between other cells. The blue dotted line and green continuous line show respectively the future and past path followed
by the cell. (See also Movie M2) B. Image illustrating the square relative motion of a trapped cell ”1” of 7 1 um (located
in the center of the picture) around another cell ”2” obtained by superimposing the images of the two cells in the frame of
reference of the trapped cell (see also Movie M3). In this frame of reference, the successive positions of cell ”2” form a square.
For the sake of clarity other cells appearing in the field of view have been removed. C. Manipulation of 10 MDA cells (average

radius 9 pym to form the letters " A” and ”T” of ” Acoustical Tweezers”.

under-focused to improve contrast of the cells.

cent viability assay as well as post exposure cell obser-
vation. A first set of experiments was thus conducted to
address the short-term viability of MDA cells. The cells
were captured for 2 min in the vortex at maximum power
(amplitude 0.9 nm) to mimic a standard positioning se-
quence and observed for any sign of damage during ma-
nipulation and for 30 min afterwards. During manipula-
tion, no increase of fluorescence was observed suggesting
that the sound field does not induce membrane permeabi-
lization which often correlates with viability decrease®.
After the tweezers were switched off, the cell did not dis-
play any increase of fluorescence and remained at an in-
tensity well under the dead cells found nearby (5x to 10x
lower, see SI). This strongly supports that short-term
damages produced by the acoustical tweezers is minimal.
It is however known that damages experienced by a cell
can lead to its death for hours afterwards®'. To assess
the long-term impact of cell manipulation using acous-
tical tweezers, we performed a viability assay overnight.
The MDA cells were seeded at 60 (%) confluence ratio
in two glass devices with no surface treatment and left
to re-adhere for 5h. Nine cells located at different po-
sitions in the two different microfluidic chambers were
exposed to the tweezers of acoustic vortex at maximum
power for 2 min each. An observation of the cells was
performed after 19h (half the population doubling rate
of MDA cells®?) to compare their viability with a control
region of the device (see Fig. 4A). No extra mortality was
observed in the illuminated region (dead/live cell ratio of

Note that in these pictures the focus is voluntarily left

3%) compared to the statistics performed on the overall
device (dead/live cell ratio of 5%). This likely indicates
that the dead cells are depositing randomly and that the
tweezers do not provoke extra mortality. We also studied
in detail the fate of the nine illuminated individual cells
(see Fig. 4B-E). All the cells exposed to the acoustic field
(the green circle indicates the extension of the first ring
of the vortex) and their immediate neighbours were alive
and showed no difference compared to the nearby cells.

V. CONCLUSION AND OUTLOOKS

In this work, cell harmless selective manipulation has
been demonstrated through the capture and precise
positioning of individual cells amongst a collection in
a standard microscopy environment. Both short-term
and long-term viability of manipulated cells have been
evaluated, showing no impact on cells integrity. This
opens widespread perspectives for biological applications
wherein precise organization of cells or microorganisms is
a requisite. Furthermore, the radiation force which can
be applied and the speed at which cells can be moved
are at the state of the art currently known for optical
tweezers, while requiring two orders of magnitude less
wave power and with no deleterious effect such as pho-
totoxicity. Engineering optimization of these tweezers
to limit Joule heating will hence enable the application
of stresses several orders of magnitude larger than with
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FIG. 4. A. Overview of the central part of the microfluidic device in which the viability experiments were performed. The cells
are stained using a viability kit and imaged at 360 nm and 535 nm excitation (460 nm and 617 nm emission). The cell nucleus
are represented in blue, while the dead cells appear in red. The whole field of view contains 4581 cells (226 dead - 5%) while
the region where manipulation took place contains 166 cells (5 dead - 3%). B-E Details of the 5 cells exposed to the acoustical
tweezers for 2 min (4 others were exposed on another similar device). The green circle represents the first ring of the trap.

optical tweezers without altering cells viability, a promis-
ing path for acoustic spectroscopy?®, cell adhesion®® or
cell mechano-transduction''™!? investigation. In addi-
tion, new abilities could be progressively added to these
tweezers: The focused vortex structure used for selective
particle trapping in this paper is also known to exhibit
3D trapping capabilities®*4. This function was not in-
vestigated here owing to the confined nature of the mi-
crochamber but could closely follow this work. Synchro-
nized vortices could also be used to assemble multiple
particles as recently suggested by Gong & Baudoin®.
This would enable to investigate tissue engineering and

envision 3D cell printing. Finally, the most thrilling
and challenging perspective to this work might be the
future development of Spatial Ultrasound Modulators
(analogues to Spatial Light Modulator in optics), de-
signed to manipulate and assemble many objects simul-
taneously. While such revolution is on the way for large
particles manipulation in air®® 57, it would constitute a
major breakthrough at the microscopic scale in liquids
wherein the actuation frequencies are 3 orders of mag-
nitude larger. The present work hence constitutes the
cornerstone towards widespread applications of acousti-
cal tweezers for biological applications.
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