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Abstract In this paper, we present diverse new metric properties that prox-
regular sets shared with convex ones. At the heart of our work lie the Legendre-
Fenchel transform and complements of balls. First, we show that a connected
prox-regular set is completely determined by the Legendre-Fenchel transform
of a suitable perturbation of its indicator function. Then, we prove that such
a function is also the right tool to extend, to the context of prox-regular sets,
the famous connection between the distance function and the support function
of a convex set. On the other hand, given a prox-regular set, we examine the
intersection of complements of open balls containing the set. We establish that
the distance of a point to a prox-regular set is the maximum of the distances
of the point from boundaries of all such complements separating the set and
the point. This is in the line of the known result expressing the distance from
a convex set in terms of separating hyperplanes. To the best of our knowledge,
these results are new in the literature and show that the class of prox-regular
sets have good properties known in convex analysis.
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1 Introduction

Context and motivations of the paper. The concept of prox-regularity
finds its roots in the fundamental work [17] by H. Federer under the name
positively reached sets. Federer by introducing the notion of curvature measure
unified the studies of volumes of enlargements of sets in differential and con-
vex geometry. This was a remarkable extension of Steiner polynomial formula,
known for convex sets or C2 submanifolds, to positively reached sets. The no-
tion of prox-regular sets was introduced in the literature under different names
over the years and through different but equivalent definitions. For example
A. Canino ([12]) called it p-convexity, the name O(2)-convex sets is due to A.
Shapiro ([32]), J.-P. Vial ([35]) in 1983 introduced and studied the concept
of weak convexity. Recently, F.H. Clarke, R.J. Stern and P.R. Wolenski ([15])
introduced the notion of proximally smooth sets, defined as closed sets S in
a Hilbert space X such that the distance function dS is continuously differ-
entiable on the open tube Tuber(S) := {x ∈ X : 0 < dS(x) < r}, for some
r > 0. The name prox-regularity was coined by R.A. Poliquin and R.T. Rock-
afellar ([29]) for functions, and prox-regular sets were studied by R.A. Poliquin,
R.T. Rockafellar and L. Thibault ([30]) as sets whose indicator functions are
prox-regular. It emerges from these various articles that the prox-regular and
convex sets share many important properties such as the metric properties of
Lipschitz continuity of the projection and the differentiability of the distance
function on an appropriate tube. If the prox-regularity and the convexity en-
joy for example these two fundamental properties, unfortunately there exist
others, like intersection and inverse image by a linear mapping, which are not
preserved for prox-regular sets. We refer the reader to [2] for counterexamples
and sufficient conditions for such properties and others. Despite the absence
of a good behavior of the prox-regularity with respect to set operations, we
will see in the present paper that prox-regular sets share diverse new metric
properties with convexity. This gives quite remarkable writings of the distance
function from a prox-regular set.
Contributions of the paper. Let S be a subset of a Hilbert space X en-
dowed with an inner product 〈·, ·〉 and its associated norm ‖ · ‖. The usual
support function σ(·, S) of S is defined by σ(x∗, S) := sup

x∈S
〈x∗, x〉. In Convex

Analysis, the concept of support functions for closed convex sets is known to
be one of the most fundamental notions. It is often used to translate geometric
Hahn-Banach separation theorems and in particular it characterizes a closed
convex set C through the following equivalence property: x ∈ C if and only
if 〈x?, x〉 ≤ σ(x?, C) for all x? ∈ X. Recalling that the Legendre-Fenchel con-
jugate f∗ : X → R ∪ {−∞,+∞} of a function f : X → R ∪ {−∞,+∞} is
given by f∗(x?) := sup

x∈X

(
〈x?, x〉 − f(x)

)
, it is clear and well-known that the

support function σ(·, S) of the set S is the Legendre-Fenchel conjugate of the
indicator function ψS of S defined by ψS(x) = 0 if x ∈ S and ψS(x) = +∞
if x ∈ X \ S. So, in Convex Analysis support functions are at the heart of
many results related to duality theory, normal cones, barrier cones etc. (see,
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e.g., [4]). For a closed set S of the Hilbert space X, E. Asplund ([5]) uses in
an original way the Legendre-Fenchel transform of the function ψS + 1

2‖ · ‖
2 to

characterize the convexity of S via the single-valuedness and the continuity of
the metric projection onto S. As we already mentioned in [1], Asplund’s paper
[5] seems to be the first one revealing the great interest of this function

x? 7→
(
ψS +

1

2
‖ · ‖2

)∗
(x?) = sup

x∈S

(
〈x?, x〉 − 1

2
‖x‖2

)
in the study of the behavior of closed sets of Hilbert spaces. This function
is strongly involved in approximation theory as highlighted by J.-B. Hiriart-
Urruty ([22,23]) who called it the Asplund function of S and employed the
notation ϕS . For other works using the function ϕS we refer, for example, to
[8,33] and the references therein.

When the closed set S of the Hilbert space X is r-prox-regular for some
r > 0 (see Definition 1), it will be shown that the variant function ϕS,r on X,
defined by

ϕS,r(x
?) :=

(
ψS +

1

2r
‖ · ‖2

)∗
(x?) = sup

x∈S

(
〈x?, x〉 − 1

2r
‖x‖2

)
, (1)

is the right tool to extend the following fundamental results known for convex
sets in convex analysis to the variational analysis of prox-regular sets:

(π1) A closed convex set is completely determined by its support function, in
the sense that for two closed convex sets C1, C2

C1 = C2 ⇔ σ(·, C1) = σ(·, C2);

(π2) The analytic formulation of the distance from a convex set C in terms of
its support function (see, e.g., [20, Theorem 6.23])

dC(x) = 〈x?, x〉 − σ(x?, C) for some x∗ ∈ S := {u ∈ X : ‖u‖ = 1};

(π3) The duality property for a closed convex set C

dC(x) = max
x?∈S

inf
y∈C
〈x?, x− y〉 = inf

y∈C
max
x?∈S
〈x?, x− y〉 ;

(π4) The formula for the distance from a closed convex set C in terms of sup-
porting hyperplanes: the distance dC(x) coincides with the maximum of
distances dH(x) taken over all hyperplanes H separating C and x 6∈ C,
and this maximum is attained for one and only one hyperplane.

The extensions of the above properties (π1)− (π4) to the prox-regular setting
are respectively developed in Theorem 4-Corollary 1, Theorem 6, Proposition
5 and Theorem 7.

Organization of the paper. After some preliminaries in Section 2, we
investigate in Section 3 the great role played by the function ϕS,r, defined in
(1), in the context of r-prox-regular sets. The last section of the present work
is devoted to the distance function associated to a prox-regular set.
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2 Notation and preliminaries

As usual, N denotes the set of integers starting from 1 and R := R∪{−∞,+∞}
is the extended real-line. Given an extended real r ∈ R, we will denote by r+

its positive part, that is, r+ := max{r, 0}.
Throughout the paper, X stands for a (real) Hilbert space not reduced to

the trivial space {0} endowed with the inner product 〈·, ·〉 and its associated
norm ‖·‖ :=

√
〈·, ·〉. The open (resp. closed) ball and the sphere of X centered

at x ∈ X with radius ρ > 0 are denoted by B(x, ρ) (resp. B[x, ρ]) and S(x, ρ).
In the particular case of the closed unit ball and the unit sphere of X, we use
the following notation

B := B[0X , 1] and S := S(0X , 1).

2.1 Distance function and associated sets

Now, consider any nonempty closed subset S of X. The distance function dS
from S is defined as

dS(x) :=: d(x, S) = inf
y∈S
‖x− y‖ for all x ∈ X.

Given any nonzero vector x? in the Hilbert space X and any α ∈ R, it is known
(see, e.g., [20]) that the distance function of x ∈ X from the affine hyperplane
H=(x?, α) := {x ∈ X : 〈x?, x〉 = α} =: {x? = α} (resp. from the closed affine
half-space H≤(x?, α) := {x ∈ X : 〈x?, x〉 ≤ α} =: {x? ≤ α}) is given by

d
(
x,H=(x?, α)

)
= ‖x?‖−1 |〈x?, x〉 − α| (2)

(resp.

d
(
x,H≤(x?, α)

)
= ‖x?‖−1

(〈x?, x〉 − α)+). (3)

The multimapping ProjS : X ⇒ X of nearest points in S is defined by

ProjS(x) :=: Proj(S, x) := {y ∈ S : ‖x− y‖ = dS(x)} for all x ∈ X.

Whenever the latter set is reduced to a singleton for some x ∈ X, that is,
ProjS(x) = {y}, the vector y ∈ S will be denoted by projS(x) or PS(x). We
say that S is proximinal provided that ProjS(x) 6= ∅ for every x ∈ X. It is
known and not difficult to check that every nonempty weakly closed subset of
X is proximinal.

Given an extended real r ∈]0,+∞], we define the (open) r-tube of S as the
set Tuber(S) := Ur(S) \ S where Ur(S) is the (open) r-enlargement of S

Ur(S) := {x ∈ X : dS(x) < r}

and we also introduce the (closed) r-exterior of S and the set of points at exact
r-distance to S

Exter(S) := {x ∈ X : dS(x) ≥ r} and Dr(S) := {x ∈ X : dS(x) = r} .

If r = +∞, such sets become U∞(S) := X and Ext∞(S) = ∅ = D∞(S).
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2.2 Proximal normals

The proximal normal cone of a closed subset S ⊂ X at x ∈ S, denoted by
NP (S;x), is defined as

NP (S;x) := {v ∈ X : ∃r > 0, x ∈ ProjS(x+ rv)} .

It is not difficult to see that for every v ∈ X, the inclusion v ∈ NP (S;x) holds
if and only if there is a real r > 0 satisfying

〈v, x′ − x〉 ≤ 1

2r
‖x′ − x‖2 for all x′ ∈ S;

in such a case we will say that v is a proximal normal to S at x with con-
stant r > 0. If x /∈ S, we set by convention NP (S;x) := ∅. According to the
definition, we notice that, for any v ∈ X such that ProjS(v) 6= ∅, we have

v − w ∈ NP (S;w) for all w ∈ ProjS(v). (4)

It is worth pointing out that the above concept of normal cone is local, in the
sense that for any neighborhood V in X of x ∈ S

NP (S ∩ V ;x) = NP (S;x). (5)

If S is convex, it is known (and easily seen) that the proximal normal cone
NP (S;x) coincides with the normal cone in the sense of convex analysis, i.e.,

NP (S;x) = {v ∈ X : 〈v, y − x〉 ≤ 0,∀y ∈ S} .

Given a function f : U → R defined on a nonempty open subset U ⊂ X,
one says that a vector ζ ∈ X is a proximal subgradient of f at a point x ∈ U
with f(x) finite, provided that (ζ,−1) ∈ NP

(
epi f ; (x, f(x))

)
, where epi f is

the epigraph of f , that is the subset of H×R (endowed with its usual Hilbert
product structure) defined by epi f := {(u, r) ∈ U × R : u ∈ U, f(u) ≤ r}. It
is well-known (and not difficult to check) that the latter inclusion holds if and
only if there are a real σ ≥ 0 and a real η > 0 with B(x, η) ⊂ U such that

〈ζ, y − x〉 ≤ f(y)− f(x) + σ ‖y − x‖2 for all y ∈ B(x, η).

The set ∂P f(x) of all proximal subgradients of f at x is the proximal subd-
ifferential of f at x. In the same spirit as (5), whenever the set U and the
fonction f are convex, the proximal subdifferential ∂P f(x) coincide with the
subdifferential of convex analysis ∂f(x), that is,

∂P f(x) = {ζ ∈ X : 〈ζ, y − x〉 ≤ f(y)− f(x),∀y ∈ U} =: ∂f(x). (6)
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2.3 Prox-regularity

This succinct paragraph is devoted to the needed basic facts on prox-regularity
which is at the heart of the present paper. For more details on that topic, in
both theoretical and concrete approaches, we refer for instance to [30], the
survey [16] and the book [34] along with the references therein.

Definition 1 Let S be a nonempty closed subset of X and r ∈]0,+∞]. One
says that S is r-prox-regular whenever, for all x ∈ S, for all v ∈ NP (S;x) ∩ B
and for every real t ∈]0, r], one has x ∈ ProjS(x+ tv).

Given a closed subset S ⊂ X, x ∈ S and v ∈ NP (S;x) with ‖v‖ = 1, it is
routine to check that for every real t > 0 one has

x ∈ ProjS(x+ tv)⇔ S ∩B(x+ tv, t) = ∅.

In such a case, one says that the unit normal proximal vector v to S at x is
realized by the t-ball B(x+ tv, t).

The following theorem provides some useful characterizations and proper-
ties of uniform prox-regular sets for which we refer to [30,16,34].

Theorem 1 Let S be a nonempty closed subset of X and let r ∈]0,+∞]. The
following assertions are equivalent.
(a) The set S is r-prox-regular.
(b) For all x, x′ ∈ S, for all v ∈ NP (S;x), one has

〈v, x′ − x〉 ≤ 1

2r
‖v‖ ‖x− x′‖2 .

(c) On Ur(S) the mapping PS(·) is well-defined, and for every real s ∈]0, r[,
for all x, x′ ∈ Us(S),

‖PS(x)− PS(x′)‖ ≤ 1

1− (s/r)
‖x− x′‖ .

(d) For all x ∈ Tuber(S), the vector PS(x) is well defined and one has

PS(x) = PS
(
PS(x) + t

x− PS(x)

‖x− PS(x)‖
)

for all t ∈ [0, r[.

(e) The function d2
S(·) is differentiable on Ur(S) with a locally Lipschitz deriva-

tive and
∇d2

S(x) = 2(x− PS(x)) for all x ∈ Ur(S).

Remark 1 It should be noted that for an r-prox-regular subset of X with
r ∈]0,+∞[, we have

PS(x) ∈ ProjS
(
PS(x) + r

x− PS(x)

dS(x)

)
for all x ∈ Tuber(S).

�
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3 Legendre-Fenchel transform

As mentioned in the introduction, E. Asplund seems to be the first to depict,
for a (non necessarily convex) set S in a Hilbert space, the importance of the
Legendre-Fenchel conjugate of the function ψS + 1

2‖ · ‖
2, that is, the function

x? 7→ sup
y∈X

(
〈x?, y〉 − (ψS(y) +

1

2
‖y‖2)

)
= sup

y∈S

(
〈x?, y〉 − 1

2
‖y‖2

)
. (7)

This function is denoted by ϕS in [8], and Asplund called it the indefinite
integral of the metric projection of S, a term due to the inclusion

p ∈ ∂ϕS(x) whenever p ∈ ProjS(x) 6= ∅. (8)

Computing the biconjugate of ψS + 1
2‖ · ‖

2, that is, the (Legendre-Fenchel)
conjugate of ϕS and applying the theory of convex analysis, Asplund estab-
lished in [5] with a very elegant and short way the result in Theorem 2 on
Chebyshev set. Recall that a nonempty closed set S in X is a Chebyshev set
if any point in X admits one and only one nearest point in S.

Theorem 2 If the metric projection onto a Chebyshev set in a Hilbert space
is norm-to-weak continuous, then the set is convex.

A decade later, H. Berens ([8]) gave a full description of subgradients of
the convex function ϕS thanks to the theory of maximal monotone operators.
For any nonempty closed set S ⊂ X, Berens established that

∂ϕS(x) =
⋂
ε>0

co(ProjS,ε(x)) for all x ∈ X, (9)

where as usual ProjS,ε(x) := {s ∈ S : ‖x− s‖ < dS(x) + ε} 6= ∅. Taking into
account (8) or equivalently the inclusion

co(ProjS(x)) ⊂ ∂ϕS(x) for all x ∈ X

(keep in mind that ∂ϕS(·) has closed convex values), H. Berens asked the
following question: if dimX = +∞, is it possible to find a proximinal set
S ⊂ X and x ∈ X such that

co(ProjS(x)) 6= ∂ϕS(x)?

The answer is positive for any infinite dimensional Hilbert space and it was
given by G. Godini in [19].

The function ϕS(·) also appears under the name Asplund function in the
two surveys devoted to challenging open problems in approximation theory,
namely convexity of Chebyshev sets ([22]) and farthest points conjecture ([23]).
In [22], the function ϕS allows to show that d2

S is differentiable on Rn if and
only if S is convex. We also mention that in [23], Hiriart-Urruty developed
among other things a new technique to establish (9) only with tools coming
from convex analysis (see also the survey [33]).
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Given any set S ⊂ X and any extended real r > 0, it will be relevant
to introduce the following variant (which could be called Asplund function of
constant r) ϕS,r : X → R of the function ϕS defined by

ϕS,r(x
?) := sup

y∈S

(
〈x?, y〉 − ‖y‖

2

2r

)
for all x? ∈ X.

We immediately observe that ϕS,r ≡ −∞ when S = ∅, hence there will be no
loss of generality to assume that S 6= ∅. Whenever r = +∞ (resp. r = 1), it is
of interest to note that the function ϕS,∞ (resp. ϕS,1) is nothing but the usual
support (resp. Asplund) function of S, that is,

ϕS,∞(x?) := sup
y∈S
〈x?, y〉 =: σ(x?, S) for all x? ∈ X

(resp.

ϕS,1(x?) := sup
y∈S

(
〈x?, y〉 − ‖y‖

2

2

)
=: ϕS(x?) for all x? ∈ X).

It is worth pointing out that ϕS,r is, as ϕS , the (classical) Legendre-Fenchel
conjugate of a function, namely

(ψS +
1

2r
‖·‖2)? = ϕS,r. (10)

The equality (10) (for which the important particular case r = 1 has been
stated in (7)) leaded us in [1] to set for a prescribed function f : X → R

f?,r(x?) :=
(
f +

1

2r
‖·‖2

)?
(x?) for all x? ∈ X.

Accordingly, we can rewrite (10) as

(ψS)?,r = ϕS,r,

so (7) becomes (ψS)?,1 = ϕS,1. From the very definition of ϕS,r we also see
that the inequality ϕS,r(x

?) ≤ α is equivalent to the inclusion S ⊂ Qx?,r,α,
where the set in the right-hand side is defined (see [1]) as

Qx?,r,α :=

{
x ∈ X : 〈x?, x〉 − ‖x‖

2

2r
≤ α

}
. (11)

It is worth pointing out that for every x? ∈ X \ {0} and every real α, the set
Qx?,∞,α is nothing but the (closed) half-space H≤(x?, α). Both above proper-
ties among others are stated in the following proposition.
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Proposition 1 Let S be a nonempty subset of X, r ∈]0,+∞] be an extended
real. The following hold.
(a) If r < +∞, one has

ϕcl S,r(x
?) = ϕS,r(x

?) =
r

2
‖x?‖2 − 1

2r
d2
S(rx?) for all x? ∈ X.

In particular ϕS,r is real-valued whenever r < +∞.
(b) One has ϕS,r(0) = − 1

2rd
2
S(0).

(c) For every real λ ≥ 0, one has

ϕS,r(λx
?) = λϕS,rλ(x?) for all x? ∈ X.

In particular, if r < +∞, then one has

rϕS,r(x
?) = ϕS,1(rx?) for all x? ∈ X. (12)

(d) The function ϕS,r(·) is the r-conjugate of ψS, i.e.,

ϕS,r(x
?) = (ψS)?,r(x?) = (ψS +

1

2r
‖·‖)?(x?) for all x? ∈ X.

(e) The function ϕS,r(·) is convex and locally Lipschitz continuous on X.
(f) For every x? ∈ X and every α ∈ R, one has

S ⊂ Qx?,r,α ⇔ ϕS,r(x
?) ≤ α.

Proof The assertion (a) follows from the computation valid for every x? ∈ X,

ϕS,r(x
?) =

r

2
(‖x?‖2 + sup

x∈S
−
∥∥∥x? − x

r

∥∥∥2

) =
r

2
‖x?‖2 − 1

2r
d2
S(rx?).

The assertions (b), (c) and (f) are direct consequences of the definition of
ϕS,r. Further, (d) has already been established above. To prove (e), it suffices
to observe on one hand that the local Lipschitz property directly derives from
(a) and on the other hand the convexity of ϕS,r follows from the convexity of
each fy : X → R with y ∈ S defined by

fy(x) := 〈x?, y〉 − ‖y‖
2

2r
for all x ∈ X.

The proof is complete. �

Assertion (f) in Proposition 1 can be seen as an extension of the classical
fact that the inequality σ(·, S) ≤ α characterizes the closed half-spaces which
contain S, that is, for every x? ∈ X with x? 6= 0 and every α ∈ R,

S ⊂ {〈x?, ·〉 ≤ α} = H≤(x?, α) =: Qx?,∞,α ⇔ ϕS,∞(x?) := σ(x?, S) ≤ α.

On the other hand, assertion (a) in Proposition 1 makes clear that we cannot
expect in general explicit formulas for the function ϕS,r for any type of subset
S ⊂ X since this requires to be able to compute the distance function dS(·).
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Example 1 Let x ∈ X and r > 0 be a real.
(i) For each real ρ > 0, we have

ϕρB,r(x) =

{
r‖x‖2

2 if x ∈ ρ
rB,

ρ ‖x‖ − ρ2

2r otherwise.

(ii) For each real ρ > 0 we have with S := X \B(0, ρ)

ϕS,r(x) =

{
ρ ‖x‖ − ρ2

2r if ‖x‖ ≤ ρ,
r
2‖x‖

2 otherwise.

(iii) Let u? ∈ X \ {0} and α ∈ R. According to (2) and (3) we have with
H := H≤(u?, α) and H := H=(u?, α)

ϕH,r(x) =
r

2
‖x‖2 − 1

2r ‖u?‖2
[(r 〈u?, x〉 − α)+]2.

and

ϕH,r(x) =
r

2
‖x‖2 − 1

2r ‖u?‖2
[(r 〈u?, x〉 − α)]2.

�

Now, we develop certain properties of the (sub)differential of the function
ϕS,r with S ⊂ X and r ∈]0,+∞]. Let us say that the set S is strongly ball-
compact provided that the intersection of S with every closed ball of X is
strongly compact. If S ⊂ X is nonempty, closed and strongly ball-compact, it
is known (see, e.g., [27, Proposition 2.2]) that

∂C(
1

2
d2
S)(x) = x− co(ProjS(x)) for all x ∈ X \ S, (13)

where ∂C denotes the Clarke subdifferential (see [14,31,28,26,34] and the ref-
erences therein). The next proposition provides various descriptions of the
subdifferential ∂ϕS,r(x

∗) for x∗ ∈ X. The description in the first assertion is
in terms of the following particular function associated to a vector x? ∈ X
qx?,r : X → R defined by

qx?,r(x) := 〈x?, x〉 − ‖x‖
2

2r
for all x ∈ X. (14)

This function already played a fundamental role in our previous paper [1]. The
function ϕS,r(·) can be rewritten as

ϕS,r(x
?) = sup qx?,r(S) for all x? ∈ X. (15)

Notice also that the set Qx?,r,α in (11) is just the α-sublevel of this function
qx?,r(·), that is, Qx?,r,α := {qx?,r ≤ α}, and clearly qx?,∞(·) coincides with the
linear functional 〈x?, ·〉.
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Proposition 2 Let S be a nonempty closed subset of X and r ∈]0,+∞[, and
let U be an open subset of X. The following hold:
(a) One always has

S ∩ ∂ϕS,r(x?) = {x ∈ S : ϕS,r(x
?) = qx?,r(x)} for all x? ∈ X, (16)

and the latter equality still holds for r = +∞.
(b) The function ϕS,r(·) is Fréchet differentiable on U if and only if d2

S is
Fréchet differentiable on U .
(c) Let ρ > 0 be an extended real. The set S is ρ-prox-regular if and only if
ϕS,r(·) is Fréchet differentiable on Uρ(S). In such a case, one has

∇ϕS,r(x) = ∇ϕS(rx) = {projS(rx)} for all x ∈ Uρ(S).

(d) One has

∂ϕS,r(x) =
⋂
ε>0

co
(
ProjS,ε(rx)

)
for all x ∈ X.

(e) If S is strongly ball-compact, then

∂ϕS,r(x) = co(ProjS(rx)) for all x ∈ X \ r−1S.

(f) If dimX = +∞, there exist a proximinal set S ⊂ X and x ∈ X such that

∂ϕS,r(x) 6= co(ProjS(rx)).

Proof (a) Fix any x? ∈ X. Let x ∈ S. Assume first that ϕS,r(x
?) = qx?,r(x).

Pick any x′ ∈ X. Thanks to the inclusion x ∈ S, we have

〈x′, x〉 ≤ sup
u∈S

(〈x′, u〉 − ‖u‖
2

2r
) +
‖x‖2

2r

which is obviously equivalent to

〈x, x′ − x?〉 ≤ sup
u∈S

(〈x′, u〉 − ‖u‖
2

2r
)− 〈x?, x〉+

‖x‖2

2r
.

The latter inequality can be rewritten as

〈x, x′ − x?〉 ≤ ϕS,r(x′)− qx?,r(x) = ϕS,r(x
′)− ϕS,r(x?)

and this justifies the inclusion x ∈ S ∩ ∂ϕS,r(x?). Conversely, assume that
x ∈ S ∩ ∂ϕS,r(x?). From the definition of subdifferential of convex analysis
(see (6)) it is not difficult to observe that

ϕS,r(x
?) ≤ 〈x?, x〉 − 〈x, x′〉+ ϕS,r(x

′) for all x′ ∈ X.

According to Proposition 1, we then deduce

ϕS,r(x
?) ≤ 〈x?, x〉 − 〈x, x′〉+

r

2
‖x′‖2 − 1

2r
d2
S(rx′) for all x′ ∈ X.
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Applying the latter inequality with the vector x
r yields

ϕS,r(x
?) ≤ 〈x?, x〉 −

〈
x,
x

r

〉
+
r

2

∥∥∥∥xr
∥∥∥∥2

,

otherwise stated ϕS,r(x
?) ≤ 〈x?, x〉− ‖x‖

2

2r = qx?,r(x) ≤ ϕS,r(x?). The proof of
(a) is then complete.
(b) It is a direct consequence of Proposition 1(a).
(c) It suffices to put together (b) above, Theorem 1(e) and the equality (12)

ϕS,r = r−1(ϕS ◦ rIdX). (17)

(d) Combining Beren’s equality (9) with (17) gives the desired result.
(e) It follows from the two equalities (13) and (17) mentioned above.
(f) This can be obtained through the Godini’s construction ([19]) which pro-
vides a proximinal subset S ⊂ X and x ∈ X such that

∂ϕS(x) 6= co(ProjS(x)).

�

The right hand-side of (16) is strongly connected to the following concept
of support points.

Definition 2 ([1]) Let S be a closed subset of X and r ∈]0,+∞] be an ex-
tended real. One says that u? ∈ X is an r-quadratic support functional of S
whenever there exists x ∈ S such that

qu?,r(x) := 〈x?, x〉 − 1

2r
‖x‖2 = sup

x∈S
(〈u?, x〉 − 1

2r
‖x‖2) =: ϕS,r(u

?).

In such a case, u? is said to quadratically support S at x. One says that x ∈ S
is an r-quadratic support point of S whenever there exists u? ∈ X with u? 6= x

r
such that u? supports S at x.

Before going further, let us introduce a notation. To a nonempty closed
subset S of X, we associate the multimapping ΓS,r(·) : X \ S ⇒ X defined by

ΓS,r(x) := (
1

r
− 1

dS(x)
)ProjS(x) +

1

dS(x)
x for all x ∈ X \ S.

When ProjS(x) is reduced to a singleton for some x ∈ X \ S (i.e., projS(x) is
well defined), the set ΓS,r(x) is obviously a singleton. In such a case, the set
ΓS,r(x) will be identified to its unique element ( 1

r −
1

dS(x) )projS(x) + 1
dS(x)x.

If in addition the set S is r-prox-regular for some real r > 0, we derive from
Remark 1 the inclusions

PS(x) ∈ ProjS
(
rΓS,r(x)

)
for all x ∈ Tuber(S) (18)

and
Λr(S) := rΓS,r(Tuber(S)) ⊂ Dr(S). (19)

Now, we are in position to recall the following theorem from [1].
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Theorem 3 Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈
Tuber(S). Then, one has with x? := ΓS,r(x) = ( 1

r −
1

dS(x) )projS(x) + 1
dS(x)x

the following separation property for some α ∈ R

S ⊂

{
〈x?, ·〉 − ‖·‖

2

2r
< α

}
⊂ Qx?,r,α

and

qx?,r(x) := 〈x?, x〉 − ‖x‖
2

2r
> α ≥ sup qx?,r(S) =: ϕS,r(x

?).

Concerning the α-sublevel set Qx?,r,α of qx?,r (see (11) and (14)), we also
recall the following features from [1]. They show in particular that such sublevel
sets are in general nothing but complements of suitable open balls.

Proposition 3 Let x? ∈ X, α ∈ R and r ∈]0,+∞[. One has

Qx?,r,α =

{
X \B(rx?,

√
r2 ‖x?‖2 − 2rα) if r2 ‖x?‖2 − 2rα > 0,

X otherwise.

In particular, if ϕS,r(x
?) = α ∈ R for some closed subset S of X, one has

r2 ‖x?‖2 − 2rα = d2
S(rx?)

and

Qx?,r,α =

{
X \B(rx?, dS(rx?)) if rx? /∈ S,
X otherwise.

With ρ := r2‖x?‖2 − 2rα, one has

bdryQx?,r,α =

{
x ∈ X : 〈x?, x〉 − ‖x‖

2

2r
= α

}
= S(rx?,

√
ρ).

Further, for every x ∈ X \Qx?,r,α, one has

ProjQx?,r,α(x) =

{
S(rx?,

√
ρ) if x = rx?,{ √

ρ

‖x−rx?‖ (x− rx
?) + rx?

}
otherwise.

In particular, the set Qx?,r,α is proximinal and for every x ∈ X,

d(x,Qx?,r,α) = (
√
ρ− ‖x− rx?‖)+.

Coming back to the usual support function, it is worth recalling that a
classical application of Hahn-Banach theorem says that for two closed convex
sets C1, C2 ⊂ X, one has

σ(·, C1) ≤ σ(·, C2) ⇔ C1 ⊂ C2.
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Our goal is now to show that ϕS,r(·) is a suitable function to extend such
an equivalence to the r-prox-regular framework. First, it should be noted that
for two nonempty closed subsets S1, S2 of X and any real r > 0,

ϕS1,r(·) ≤ ϕS2,r(·)⇔ dS2(·) ≤ dS1(·)⇔ S1 ⊂ S2. (20)

Then, it turns out that the desired generalization reduces to the following
question: under prox-regularity assumptions on S1 and S2, is it possible to
weaken the inequality of the left hand-side of (20) in shrinking the set on
which it is required? The answer is essentially positive and is contained in the
next theorem. The following proposition which complements [10, Lemma 3.3]
and [9, Theorem 6.10] is needed. Given an r-prox-regular subset of X for some
real r > 0, recall that (see (19))

Λr(S) := rΓS,r(Tuber(S)) =

{
(1− r

dS(x)
)projS(x) +

r

dS(x)
x : x ∈ Tuber(S)

}
.

Proposition 4 Let S be a nonempty subset of a real normed space (E, ‖ · ‖E)
and let r ∈]0,+∞].
(a) One always has

clE(Ur(S)) = Enlr(S),

or equivalently

intE(ExterS) = {u ∈ E : dS(u) > r} .

If (E, ‖ · ‖E) is the Hilbert space (X, ‖ · ‖) and if S is r-prox-regular, then the
following assertions (b) and (c) hold.
(b) For every s ∈]0, r[, one has

clX(X \ EnlsS) = {u ∈ X : dS(u) ≥ s} = Exts(S) (21)

or equivalently

intX(EnlsS) = {u ∈ X : dS(u) < s} = Us(S).

(c) One always has

Λr(S) = {x ∈ Dr(S) : ProjS(x) 6= ∅} (22)

along with

Dr(S) = clX(Λr(S)) and clw(Dr(S)) = clw(Λr(S)).

Proof (a) We keep the notation dS (or d(·, S)) for the distance function relative
to the normed space (E, ‖ · ‖E). Fix any r ∈]0,+∞]. Assume that r < +∞,
otherwise there is nothing to prove. The inclusion clEUr(S) ⊂ Enlr(S) follows
from the continuity of dS(·). Let us establish the converse inclusion. Let u ∈
Enlr(S). We may suppose that dS(u) = r. Let an arbitrary real ε > 0. Pick
any sequence (zn)n∈N of S such that rn := ‖u− zn‖E → r. Choose any N ∈ N
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such that rN − r < ε and fix any t ∈ [0, 1] such that 1− r
rN

< t < ε
rN

. Observe
that ‖(1− t)u+ tzN − u‖E = trN < ε and

d((1− t)u+ tzN , S) ≤ ‖(1− t)u+ tzN − zN‖E ≤ (1− t)rN < r.

Consequently, we have (1− t)u+ tzN ∈ B(u, ε)∩Ur(S) 6= ∅. This means that
u ∈ clEUr(S). The desired equality in (a) follows.
Assume now that (E, ‖ ·‖E) is the Hilbert space (X, ‖ ·‖) and that S is s-prox-
regular.
(b) First, note that we always have Us(S) ⊂ intX(Enls(S)), or equivalently

clX(X \ EnlsS) ⊂ X \ Us(S) = Exts(S).

Let us establish the converse inclusion. Fix any u ∈ X\Us(S). We may suppose
that dS(u) = s. Let (sn)n∈N be a sequence of ]s, r[ with sn → s. Since S is
r-prox-regular, the set ProjS(u) is reduced to a singleton (see Theorem 1(c)).
Let p ∈ X be such that ProjS(u) = {p}. Set for each n ∈ N,

un = p+ sn
u− p
‖u− p‖

.

According to the r-prox-regularity of S, to the inclusion u ∈ Ur(S) \ S and to
the definition of p, we have by Theorem 1

{p} = ProjS(u) = ProjS(un) for all n ∈ N.

We also see that dS(un) = sn > s, so un ∈ X \EnlsS for each n ∈ N. Further,
(un)n∈N converges to p+ s u−p

‖u−p‖ . Since s = dS(u) = ‖u− p‖, we have

p+ s
u− p
‖u− p‖

= u.

Consequently, we get u ∈ clX(X \ EnlsS).
(c) Set x? := ΓS,r(x) with x ∈ Tuber(S). First, observe that (18) and (19)
entail

projS(x) ∈ ProjS(rx?) and rx? ∈ Dr(S). (23)

From this we then note that the inclusion

Λr(S) ⊂ {u ∈ Dr(S) : ProjS(u) 6= ∅}

holds true. Let us establish the converse inclusion. Fix any u ∈ Dr(S) with
ProjS(u) 6= ∅. Choose any p ∈ ProjS(u) 6= ∅ and x ∈]p, u[. Let us start by
observing that

p = projS(x) and dS(u) = r = dS(x) + ‖x− u‖,
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so in particular x ∈ Tuber(S). With d := dS(x), it follows∥∥∥(1− r

d
)p+

r

d
x− u

∥∥∥2

=
∥∥∥(1− r

d
)(p− u) +

r

d
(x− u)

∥∥∥2

= (
r

d
− 1)2 ‖p− u‖2 +

r2

d2
‖x− u‖2

+ 2(1− r

d
)
r

d
〈p− u, x− u〉 .

On the other hand (keep in mind the inclusion x ∈]p, u[)

〈p− u, x− u〉 = ‖p− u‖ ‖x− u‖ = r(r − d).

Combining the two latter equalities together gives∥∥∥(1− r

d
)p+

r

d
x− u

∥∥∥2

=
2r2

d2
(r − d)2 − 2r2

d2
(r − d)2 = 0.

This entails that u = (1− r
d )p+ r

dx, hence u ∈ Λr(S) according to the inclusion
x ∈ Tuber(S) and to the equality p = projS(x). The first equality of (c) is
then established.

Let us show the second equality claimed by (c). Let x ∈ Dr(S). According
to (a) above, we can choose a sequence (xn)n≥1 in Tuber(S) such that xn →
x. For every integer n ≥ 1, set x?n := ΓS,r(xn). From the boundedness of
(projS(xn))n≥1 and the convergence 1

r −
1

dS(xn) → 0, we observe that x?n → x
r ,

or equivalently rx?n → x. On the other hand, from (23) we also see that
(rx?n)n≥1 is a sequence of Λr(S). It follows that Dr(S) ⊂ cl‖·‖(Λr(S)). The
converse inclusion follows from (22) proved above.

It remains to show the third equality in (c). Since cl‖·‖(Λr(S)) ⊂ clw(Λr(S)),
from the previous equality we deduce that Dr(S) ⊂ clw(Λr(S)). It results that
clw(Dr(S)) ⊂ clw(Λr(S)), which is in fact an equality thanks to (22). The
proof is complete. �

Remark 2 If s ∈ {0, r}, then (21) does not hold in general. Indeed, in the case
s = 0, (21) means intX(S) = ∅. Now, let us focus on the case s = r. Consider
the set S = {t ∈ R : |t| ≥ 1} which is r-prox-regular with r := 1. It is readily
seen that Enlr(S) = R and Ur(S) = R \ {0}, hence

∅ = clR(R \ Enlr(S)) 6= Extr(S) = {0} .

�

Now, we can state and prove the result on the consequence of the inequality
ϕS1,r(·) ≤ ϕS2,r(·) on suitable subsets of X. Recall first that for a nonempty
subset A of a topological space (T, τ), A is τ -connected if and only if for each
τ -closed subsets F,G of X satisfying A ⊂ F ∪G and A ∩ F ∩G = ∅, one has

A ∩ F = ∅ or A ∩G = ∅. (24)
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Theorem 4 Let S1, S2 be two r-prox-regular subsets of X with r ∈]0,+∞].
Then, one has

S1 ⊂ S2 ∪ Exter(S2)

under anyone of the following conditions:
(a) ϕS1,r(x

?) ≤ ϕS2,r(x
?) for every x? ∈ ΓS2,r(Tuber(S2));

(b) r < +∞ and ϕS1
(x?) ≤ ϕS2

(x?) for every x? ∈ Λr(S2);
(c) r < +∞ and ϕS1(x?) ≤ ϕS2(x?) for every x? ∈ Dr(S2).
If in addition S1 is connected (which is always the case if diamS1 < 2r), then
one has {

S1 ⊂ S2 if S1 ∩ S2 6= ∅,
S1 ⊂ Exter(S2) otherwise

whenever one of the conditions (a)− (c) holds.

Proof We may assume that r < +∞. We observe through the equality valid
for any subset S ⊂ X

rϕS,r(x
?) = ϕS(rx?) for all x? ∈ X

that (a)⇔ (b). On the other hand, through the equalityDr(S2) = cl‖·‖(Λr(S2))
due to Proposition 4(c) and through the continuity of ϕS2(·), we also see that
the assertion (b) is equivalent to (c). As a consequence, it suffices to establish
the desired result under the assumption (a). Assume that ϕS1,r(·) ≤ ϕS2,r(·)
on ΓS2,r(Tuber(S2)). By contradiction, suppose that there is a ∈ S1 with
a /∈ S2 ∪ Exter(S2), i.e., a ∈ Ur(S2) \ S2 = Tuber(S2). According to Theorem
3, there are x? ∈ ΓS2,r(Tuber(S2)) and a real α such that

S2 ⊂

{
〈x?, ·〉 − ‖·‖

2

2r
≤ α

}
and 〈x?, a〉 − ‖a‖

2

2r
> α.

Hence, we have for all x ∈ S2,

〈x?, x〉 − ‖x‖
2

2r
≤ α < 〈x?, a〉 − ‖a‖

2

2r
≤ ϕS1,r(x

?),

and this entails ϕS2,r(x
?) < ϕS1,r(x

?) which is the desired contradiction.
If in addition S1 is connected, it suffices to note that F := S2 and G :=
Exter(S2) are closed subsets of X satisfying

S1 ⊂ F ∪G and S1 ∩ F ∩G = ∅

and to use the equivalence (24) recalled above. �

Corollary 1 Let S1, S2 be two r-prox-regular connected subsets of X for some
r ∈]0,+∞] with S1 ∩ S2 6= ∅. Then, one has

S1 = S2 ⇔ ϕS1,r(x
?) = ϕS2,r(x

?) for all x? ∈
2⋃
i=1

ΓSi,r(Tuber(Si)).

If r < +∞, then one has

S1 = S2 ⇔ ϕS1
(x?) = ϕS2

(x?) for all x? ∈ Dr(S1) ∪Dr(S2).
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Given a nonempty closed convex subset C of X, it is well-known that

C =
⋂
x?∈X

{x ∈ X : 〈x?, x〉 ≤ σ(x?, C)} ,

that is, C is the intersection of the closed half-spaces which contain it. It is
worth pointing out that the latter equality can be written as

C =
⋂

x?∈ΓC,∞(Tube∞(C))

{x ∈ X : 〈x?, x〉 ≤ σ(x?, C)} , (25)

where ΓC,∞(Tube∞(C)) =
{
u−projC(u)

dC(u) : u ∈ X \ C
}

. Then, it is quite natural

to investigate if (25) could be extended to the context of an r-prox-regular set
S with the help of the function ϕS,r and the set ΓS,r(Tuber(S)).

Let us start with the following lemma which will play a great role in some
places in the rest of the paper.

Lemma 1 Let x? ∈ X, α ∈ R, r ∈]0,+∞[. Assume that S ⊂ Qx?,r,α and
x /∈ Qx?,r,α. Then, one has β := ϕS,r(x

?) ≤ α and

S ⊂ Qx?,r,β and x /∈ Qx?,r,β .

Further, one has

d(x,Qx?,r,α) ≤ d(x,Qx?,r,β) ≤ d(x, S).

Proof Set Q := Qx?,r,α and Q′ := Qx?,r,β . From the definition of β and Qx?,r,β
one sees that S ⊂ Q′, then d(x,Q′) ≤ d(x, S). Further, note that from the
inclusion S ⊂ Q, we must have β ≤ α, then Q′ ⊂ Q which in turn ensures
that d(x,Q) ≤ d(x,Q′) and x 6∈ Q′ since x 6∈ Q. �

Given a nonempty closed subset of X and any real r > 0, we have with
Qr := {Qx?,r,α : x? ∈ X,α ∈ R}

S =
⋂

S⊂Q∈Qr

Q =
⋂
x?∈X

Qx?,r,ϕS,r(x?) =
⋂

rx? /∈S

X \B(rx?, dS(rx?)) =: I.

Indeed, it directly follows from Lemma 1 and Proposition 3 that the three
intersections involved above are equals. This along with the obvious inclusion
S ⊂

⋂
S⊂Q∈Qr Q justify that we only need to establish that I ⊂ S. By con-

tradiction, if there is x ∈ I such that x /∈ S, we must have x /∈ B(u, dS(u))
for every u ∈ X \ S, in particular x /∈ B(x, dS(x)) and this cannot hold true.

Taking into account what precedes and (25) leads to consider the intersec-
tion ⋂
x?∈ΓS,r(Tuber(S))

{x ∈ X : qx?,r(x) ≤ ϕS,r(x∗)} =
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x∗).
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Theorem 5 Let S be an r-prox-regular set of X for some real r > 0. Then,
one has

S ∪ Exte2r(S) =
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?),

or equivalently

Tube2r(S) =
⋃

x?∈Λr(S)

B(x?, r).

In particular, with Ωr(S) := Λr(S) ∪ {x ∈ X : dS(x) ≥ 2r}, one has the
following equality

X \ S =
⋃

x?∈Ωr(S)

B(x?, r). (26)

Proof First, note that the equivalence claimed comes from the fact that by
Proposition 3 and (19)

X \
⋃

x?∈Λr(S)

B(x?, r) =
⋂

x?∈ΓS,r(Tuber(S))

X \B(rx?, dS(rx?))

=
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?). (27)

Fix any x0 ∈
⋃
x?∈Λr(S)B(x?, r). There is u ∈ Tuber(S) with ‖u? − x0‖ < r,

where u? := rΓS,r(u). Since

‖u? − projS(u)‖ =

∥∥∥∥r(1

r
− 1

dS(u)

)
projS(u) +

r

dS(u)
u− projS(u)

∥∥∥∥ = r

we have

dS(x0) ≤ ‖x0 − projS(u)‖ ≤ ‖x0 − u∗‖+ ‖u∗ − projS(u)‖ < 2r.

Thus, we get ⋃
x?∈Λr(S)

B(x?, r) ⊂ Tube2r(S). (28)

Now, fix any x ∈ X \ (S ∪ Exter(S)) = Tuber(S). From Theorem 3, we know
that there exist u? ∈ ΓS,r(Tuber(S)) and α ∈ R such that S ⊂ Qu?,r,α and
x /∈ Qu?,r,α. According to Lemma 1, we have S ⊂ Qu?,r,β and x /∈ Qu?,r,β ,

where β := sup
y∈S

(〈u?, y〉 − ‖u
?‖2

2r ) = ϕS,r(u
?) ≤ α < +∞. Hence, we get

x /∈
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?),

and this says that ⋂
x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?) ⊂ S ∪ Exter(S). (29)
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Taking complements in (28) and (27), and then using(29), we arrive to

Tuber(S) ⊂
⋃

x?∈Λr(S)

B(x?, r) ⊂ Tube2r(S).

Now, let x ∈ Tube2r(S) \ Tuber(S). According to [9, Lemma 6.3], we have

d := d(x,Dr(S)) = d(x, S)− r < 2r − r = r.

Fix any real ε > 0 such that d + ε < r. There is u ∈ Dr(S) such that
d ≤ ‖x − u‖ < d + ε/2. Thanks to the equality Dr(S) = cl‖·‖(Λr(S)) in
Proposition 4(c), there is x? ∈ Λr(S) such that ‖x? − u‖ < ε/2. It follows that

‖x− x?‖ ≤ ‖x− u‖+ ‖x? − u‖ < d+ ε < r,

i.e., x ∈ B(x?, r). This justifies the equality

Tube2r(S) =
⋃

x?∈Λr(S)

B(x?, r),

or equivalently

S ∪ Exte2r(S) =
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?).

The proof is complete. �

Remark 3 We derive from the latter result that the set
⋂

x?∈ΓS,r(Tuber(S))

Qx?,r,ϕS,r(x?)

fails to be connected if Exte2r(S) 6= ∅. �

4 Distance function from a prox-regular set

Our aim in the present section is to provide several new links between dS(·)
and ϕS,r(·) for an r-prox-regular set. Doing so, we will extend in particular
two among the most basic results of convex analysis.

The first one (which is sometimes called analytic formulation of distance
from a convex set, see, e.g., [20, Theorem 6.23]) asserts that for any nonempty
closed convex subset C of X and for any x ∈ X \C, there is one and only one
x? ∈ S

(
namely, x? = ΓC,∞(x) = dC(x)−1

(
x− PC(x)

))
such that

dC(x) = 〈x?, x〉 − σ(x?, C). (30)

The extension to the prox-regular setting is stated as follows.

Theorem 6 Let S be an r-prox-regular subset of X for some r ∈]0,+∞]
and let x ∈ Tuber(S). Then, there exists one and only one x? ∈ X with∥∥x? − r−1x

∥∥ = 1− r−1dS(x) (namely, x? := ΓS,r(x)) such that

dS(x)
(
1− (2r)−1dS(x)

)
= qx?,r(x)− ϕS,r(x?).

In particular, one has ϕS,r(x
?) < qx?,r(x).
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Proof Existence. Set p := projS(x) and d := dS(x). Since x − p ∈ NP (S; p)
(see (4)) we have (thanks to Theorem 1)

〈x− p, y − p〉 ≤ (2r)−1d ‖y − p‖2 for all y ∈ S,

which gives d2 = infy∈S
(
〈x− p, x− y〉+ (2r)−1d‖y − p‖2

)
, or equivalently

d = inf
y∈S

(
〈d−1(x− p), x− y〉+ (2r)−1‖y − p‖2

)
.

From the latter equality we also see that

d− (2r)−1d2 = inf
y∈S

(
〈d−1(x− p), x− y〉+ (2r)−1

(
‖y − p‖2 − ‖x− p‖2

))
.

Put g(y) := 〈d−1(x − p), x − y〉 + (2r)−1
(
‖y − p‖2 − ‖x − p‖2

)
for all y ∈ S

and x∗ := d−1(x− p) + r−1p. Note that

g(y) = 〈x∗, x〉 − (2r)−1‖x‖2 − 〈x∗, y〉+ (2r)−1‖y‖2 for all y ∈ S.

The desired equality d(1− (2r)−1d) = qx∗,r(x)− ϕS,r(x∗) then follows.
Uniqueness. Let x?1, x

?
2 ∈ X such that for each i ∈ {1, 2}∥∥x?i − r−1x

∥∥ = 1− r−1d and d
(
1− (2r)−1d

)
= qi(x)− ϕS,r(x?i ),

with qi := qx?i ,r. Set x? := 2−1(x?1 + x?2) and observe that∥∥x? − r−1x
∥∥ ≤ 2−1

∥∥x?1 − r−1x
∥∥+ 2−1

∥∥x?2 − r−1x
∥∥ = 1− r−1d. (31)

Thanks to the definition of x∗ we notice that

qx?,r(x) = 2−1[〈x?1 + x?2, x〉 −
1

r
‖x‖2] = 2−1[〈x?1, x〉 −

1

2r
‖x‖2 + 〈x?2, x〉 −

1

2r
‖x‖2]

= 2−1[q1(x) + q2(x)],

which in turn ensures (see (15)) that

ϕS,r(x
?) = sup

u∈S
qx?,r(u) = 2−1 sup

u∈S
[q1(u) + q2(u)].

It results that

qx?,r(x)− ϕS,r(x?) = 2−1[q1(x) + q2(x)− sup
u∈S

(q1(u) + q2(u))]

≥ 2−1[q1(x) + q2(x)− sup
u∈S

q1(u)− sup
u∈S

q2(u)]

= 2−1
(
q1(x)− ϕS,r(x?1) + q2(x)− ϕS,r(x?2)

)
= d
(
1− (2r)−1d

)
> 0, (32)

where the latter equality is due to the choice of x?1 and x?2. From the inequality
qx?,r(x) > ϕS,r(x

?), it is readily seen that x /∈ Qx?,r,ϕS,r(x?). According to
Proposition 3, we see that ζ := d2(x,Qx?,r,ϕS,r(x?)) = (

√
ρ−‖x− rx?‖)2, with
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ρ := r2 ‖x?‖2 − 2rϕS,r(x
?). Elementary computations along with the equality

ρ = d2
S(rx?) (see Proposition 1(a)) yield

ζ = 2
(
r2 ‖x?‖2 − rϕS,r(x?) + 2−1 ‖x‖2 − r 〈x?, x〉 − rdS(rx?)

∥∥x? − r−1x
∥∥ )

= 2
(
r 〈x?, x〉 − ‖x‖2 /2− rϕS,r(x?) + r2 ‖x?‖2 − 2r 〈x?, x〉+ ‖x‖2 − rdS(rx?)

∥∥x? − r−1x
∥∥ )

= 2r
(
qx?,r(x)− ϕS,r(x?)

)
+ 2 ‖rx? − x‖2 − 2rdS(rx?)

∥∥x? − r−1x
∥∥ .

Consequently, we obtain

qx?,r(x)− ϕS,r(x?) = (2r)−1ζ +
∥∥x? − r−1x

∥∥ (dS(rx?)− r
∥∥x? − r−1x

∥∥ ).
Putting together the latter inequality, the inclusion S ⊂ Qx?,r,ϕS,r(x?), the
inequality dS(rx?) ≤ d+ ‖rx? − x‖ and (31) and (32), we arrive to

qx?,r(x)− ϕS,r(x?) ≤ (2r)−1d2 +
∥∥x? − r−1x

∥∥ d
≤ (2r)−1d2 +

(
1− r−1d

)
d

= d
(
1− (2r)−1d

)
≤ qx?,r(x)− ϕS,r(x?).

Then, it follows that
∥∥x? − r−1x

∥∥ = 1 − r−1d =: α, in particular the three
points x?1, x

?
2, x

? lie on the sphere r−1x + αSX with x? = (x?1 + x?2)/2. The
strict convexity of this sphere of the Hilbert space X ensures that x?1 = x?2,
which justifies the uniqueness property. �

Given a (nonempty closed) convex set C, a direct computation gives for
every y ∈ C and every u? ∈ X with ‖u?‖ = 1,

〈u?, x〉 − σ(u?, C) = inf
y∈C
〈u?, x− y〉 ≤ dC(x).

Hence, taking into account (30), we have

dC(x) = max
‖x?‖=1

(〈x?, x〉 − σ(x?, C)) = max
‖x?‖=1

inf
y∈C
〈x?, x− y〉 .

Let us point out that we can reverse maximum/supremum and infimum in the
latter formula (see, e.g., [20, Remarks 7.2,p.126]), i.e.,

dC(x) = max
x?∈S

inf
y∈C
〈x?, x− y〉 = inf

y∈C
max
x?∈S
〈x?, x− y〉 .

The next result provides a similar feature for prox-regular sets.

Proposition 5 Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈
Tuber(S) and L :=

{
x? ∈ X :

∥∥x? − r−1x
∥∥ = 1− r−1dS(x)

}
. Then, one has

dS(x)
(
1− dS(x)

2r

)
= max
x?∈L

inf
y∈S

(
qx?,r(x)− qx?,r(y)

)
= inf
y∈S

max
x?∈L

(
qx?,r(x)− qx?,r(y)

)
.
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Proof Let us focus on the first equality. Fix any v? ∈ L and observe that

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈v?, x− y〉
)

= inf
y∈S

(〈
v? − x

r
, x− y

〉
+
‖x− y‖2

2r

)
≤ inf
y∈S

(∥∥∥v? − x

r

∥∥∥ ‖x− y‖+
‖x− y‖2

2r

)
= κ, (33)

with κ := infy∈S

(
(1 − dS(x)

r ) ‖x− y‖ + ‖x−y‖2
2r

)
. By contradiction, suppose

that κ > (1− dS(x)
r )dS(x)+

d2S(x)
2r =: θ. Let ε ∈]θ, κ[. Pick any sequence (yn)n∈N

of S with ‖x− yn‖ → dS(x) and note that for every n ∈ N,

(1− dS(x)

r
) ‖x− yn‖+

‖x− yn‖2

2r
≥ κ > ε > θ.

Passing to the limit then gives (1 − dS(x)
r )dS(x) + 1

2rd
2
S(x) ≥ ε > θ and this

cannot hold true. Hence, we have

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈v?, x− y〉
)
≤ κ ≤ θ = dS(x)(1− dS(x)

2r
),

where the first inequality is due to (33). Taking the supremum yields

dS(x)
(
1− dS(x)

2r

)
≥ sup
x?∈L

inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈x?, x− y〉
)
.

On other hand, using Theorem 6, there is u? ∈ L such that

dS(x)(1− dS(x)

2r
) = qu?,r(x)− sup qu?,r(S)

= inf
y∈S

(‖y‖2 − ‖x‖2
2r

+ 〈u?, x− y〉
)
.

It remains to combine what precedes with the latter inequality to get the first
equality in the proposition. Now, let us establish the second equality of the
proposition. Setting ρ := 1− r−1dS(x) and writing

sup
x?∈L

‖y‖2 − ‖x‖2

2r
+ 〈x?, x− y〉 =

‖y‖2 − ‖x‖2

2r
+
〈x
r
, x− y

〉
+ sup
‖z?‖=ρ

〈z?, x− y〉

=
‖x− y‖2

2r
+ ρ max

‖z?‖=1
〈z?, x− y〉

=
‖x− y‖2

2r
+ ρ ‖x− y‖ ,
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we see that

sup
x?∈L

‖y‖2 − ‖x‖2

2r
+ 〈x?, x− y〉 = max

x?∈L

‖y‖2 − ‖x‖2

2r
+ 〈x?, x− y〉

=
‖x− y‖2

2r
+ ρ ‖x− y‖ .

Consequently, we arrive to

inf
y∈S

max
x?∈L

‖y‖2 − ‖x‖2

2r
+ 〈x?, x− y〉 = inf

y∈S

‖x− y‖2

2r
+ ρ ‖x− y‖ = κ,

which completes the proof. �

Remark 4 A function f : C → R∪{+∞} on a convex subset C of X is recalled
to be σ-semiconvex (on C) for some σ ∈ R+ := [0,+∞[ if (see, e.g., [34])

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) +
σ

2
t(1− t) ‖x− y‖2 ,

for all x, y ∈ C and for all t ∈]0, 1[. Recall also (see, e.g., [6,27,34]) that the
closed set S in X is r-prox-regular for some real r > 0 if and only if the
function dS(·) is (r − s)−1-semiconvex on any convex subset C ⊂ Us(S) with
s < r, or equivalently dS + ψC is (r − s)−1-semiconvex on X. Assuming the
r-prox-regularity of the set S and using the above semiconvexity property, it
is derived in [1] from properties of the Legendre-Fenchel r-conjugate that, for
any nonempty closed convex C ⊂ Us(S)

(dS + ψC)(x) = sup
x?∈X

(
qx?,r−s(x)− (dS + ψC)?,r−s(x?)

)
for all x ∈ X,

which can be rewritten as

dS(x) = sup
x?∈X

inf
y∈C

(
〈x?, x− y〉+ 1

2(r − s)
(‖y‖2−‖x‖2)+dS(y)

)
for allx ∈ C.

�

The second crucial result coming from convex analysis that we will extend
can be seen as a geometrical counterpart of (30). Indeed, given a nonempty
closed convex subset C of X and x ∈ X \C, it is known (see, e.g., [20, Theorem
6.25]) that the distance d(x,C) of x from C coincides with the maximum
of d(x,H) taken over all hyperplanes H which separate C and x, and this
maximum is attained for one and only one such hyperplane.

Theorem 7 Let S be an r-prox-regular subset of X for some r ∈]0,+∞[, and
x ∈ Tuber(S). Then, one has

d(x, S) = max {d(x,Qy?,r,α) : (y?, α) ∈ X × R, S ⊂ Qy?,r,α, x /∈ Qy?,r,α} .



New metric properties for prox-regular sets. 25

The maximum is attained at (x?, ϕS,r(x
?)) with x? := ΓS,r(x) and

projS(x) = projQx?,r,ϕS,r(x?)
(x).

Further, for all y? ∈ X with
∥∥y? − r−1x

∥∥ = 1− r−1dS(x) and all α ∈ R, one
has the following implication

d(x, S) = d(x,Qy?,r,α),
S ⊂ Qy?,r,α, x /∈ Qy?,r,α

}
⇒ (y?, α) = (x?, ϕS,r(x

?)).

Proof Set x? := ΓS,r(x), d := dS(x), p := projS(x) and β := ϕS,r(x
?). We

have already established (see Lemma 1)

sup {d(x,Qy?,r,α) : (y?, α) ∈ X × R, S ⊂ Qy?,r,α, x /∈ Qy?,r,α} ≤ d.

By Theorem 3, there is t ∈ R such that S ⊂ Qx?,r,t and x 6∈ Qx?,r,t. Thanks
to Lemma 1, we have S ⊂ Qx?,r,β and x /∈ Qx?,r,β . On the other hand, from

Theorem 6, we get β = ϕS,r(x
?) = 〈x?, x〉− ‖x‖

2

2r −d
(
1−(2r)−1d

)
. It is routine

to check that r2‖x?‖2 = ‖rx? − x‖2 + ‖x‖2 + 2 〈rx? − x, x〉 and

−2rβ = −2r 〈x?, x〉+ 2rd
(
1− (2r)−1d

)
+ ‖x‖2 .

Putting the two latter equalities together yields

r2 ‖x?‖2 − 2rβ = ‖rx? − x‖2 + 2rd(1− (2r)−1d). (34)

It is also readily seen that rx? − x =
(
1− rd−1

)
(p− x), so

‖rx? − x‖2 +2rd
(
1−(2r)−1d

)
=
(
1−rd−1

)2
d2 +2rd

(
1−(2r)−1d

)
= r2. (35)

Using Proposition 3 and the equality (34), we obtain

d(x,Qx?,r,β) =

√
‖rx? − x‖2 + 2rd

(
1− (2r)−1d

)
− ‖rx? − x‖ .

Putting this, (35) and the inclusion x ∈ Tuber(S) together we arrive to

d(x,Qx?,r,β) = r −
∣∣1− d−1r

∣∣ d = d.

Now, fix any y? ∈ X with
∥∥y? − x

r

∥∥ = 1 − r−1d and t ∈ R. Assume that
d(x, S) = d(x,Qy?,r,t) along with x /∈ Qy?,r,t and S ⊂ Qy?,r,t. By virtue of
Lemma 1, we have

θ := ϕS,r(y
?) ≤ t and x /∈ Qy?,r,θ (36)

and d(x, S) = d(x,Qy?,r,t) ≤ d(x,Qy?,r,θ) ≤ d(x, S). Via Proposition 3, we get

d(x,Qy?,r,θ) =
√
ρ− ‖x− ry?‖ with ρ := r2 ‖y?‖2 − 2rθ.

According to Proposition 3 again, we know that ρ = d2(ry?, S), so

d = d(x,Qy?,r,θ) = d(ry?, S)− ‖x− ry?‖
≤ d+ ‖x− ry?‖ − ‖x− ry?‖ = d.
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Consequently, we have d(ry?, S) = d+ ‖x− ry?‖, or equivalently

ρ = r2 ‖y?‖2 − 2rθ = (d+ ‖x− ry?‖)2.

Expanding the right-hand side of the latter equality and coming back to the
definition of θ yield

−2rϕS,r(y
?) = d2 + 2d ‖x− ry?‖+ ‖x‖2 − 2r 〈y?, x〉 ,

which can be rewritten as qy?,r(x) − ϕS,r(y
?) = (2r)−1d(d + 2 ‖x− ry?‖).

Putting the latter equality and the equality
∥∥y? − r−1x

∥∥ = 1− r−1d together

ensure that qy?,r(x) − ϕS,r(y
?) = d

(
1 − (2r)−1d

)
. The uniqueness property

provided by Theorem 6 then guarantees that x? = y?. It remains to show that
t = ϕS,r(y

?), or equivalently (see 36) t ≥ ϕS,r(y?). If t < ϕS,r(y
?), we have

d = d(x,Qy?,r,t) = d(x,Qx?,r,t) =

√
r ‖x?‖2 − 2rt− ‖x− rx?‖

>

√
r ‖x?‖2 − 2rϕS,r(x?)− ‖x− rx?‖

= d(x,Qx?,r,ϕS,r(x?)) = d

which is a contradiction. The proof is complete.

Acknowledgement. The second author has received funding from the
European Union’s Horizon 2020 Research and Innovation Programme under
the Marie Sklodowska-Curie Grant Agreement No 823731 CONMECH.

References

1. S. Adly, F. Nacry, L. Thibault, Prox-regular sets and Legendre-Fenchel transform: sep-
aration properties, available soon on arXiv.org

2. S. Adly, F. Nacry, L. Thibault, Preservation of Prox-Regularity of Sets with Applications
to Constrained Optimization, SIAM J. Optim. 26 (2016), 448-473.

3. S. Adly, F. Nacry, L. Thibault, Prox-regularity approach to generalized equations and
image projection, ESAIM: COCV, 24, 677-708, 2018.

4. J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics
(New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984.

5. E. Asplund, C̆ebys̆ev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235-240.
6. M.V. Balashov, Weak convexity of the distance function, J. Convex Anal, 20 (2013),

93-106.
7. M.V. Balashov, G.E. Ivanov, Weakly convex and proximally smooth sets in Banach

spaces, Izv. Math. 73 (2009), 455-499.
8. H. Berens, Best approximation in Hilbert space, in Approximation Theory III (Proc.

Conf., Univ. Texas, Austin, Tex., 1980) (E. W. Cheney, ed.), Academic Press, New York
(1980), 1-20.

9. F. Bernard, L. Thibault, N. Zlateva Characterizations of prox-regular sets in uniformly
convex Banach spaces, J. Convex Anal. 13 (2006), 525-559.

10. M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert
space, Journal of Nonlinear and Convex Analysis, 6, 359-374 (2005).

11. J.M. Borwein, J.D. Vanderwerff, Convex Functions: constructions, characterizations
and counterexamples, Encyclopedia of Mathematics and its Applications, 109. Cambridge
University Press, Cambridge, 2010.



New metric properties for prox-regular sets. 27

12. A. Canino, On p-convex sets and geodesics, J. Differential Equations 75 (1988), 118-157.
13. F.H. Clarke, R.J. Stern, P.R. Wolenski, Proximal smoothness and the lower-C2 property,

J. Convex Anal (1995), 117-144.
14. F.H. Clarke, Optimization and Nonsmooth Analysis, Second Edition, Classics in Applied

Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1990.

15. F. H. Clarke, R. J Stern and P. R. Wolenski, Proximal smoothness and the lower-C2
property, J. Convex Analysis, 2 (1995), 117-144.

16. G. Colombo, L. Thibault, Prox-regular sets and applications, Handbook of nonconvex
analysis and applications 99-182 (2010), Int. Press, Somerville, MA.

17. H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
18. V. Klee, Convexity of Chebyshev sets, Math. Annalen 142, 292-304 (1961).
19. G. Godini, On a problem of H. Berens, Math. Annalen 263, 279-281 (1983).
20. F.R. Deutsch, Best Approximations in Inner Product Spaces, CMS Books in Mathe-
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