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ABSTRACT. In this paper, we show how the approach of nonsmooth dynamical systems
can be used to develop a suitable method for the modelling of a rotary oil drilling system
with friction. We study different kinds of frictions and analyse the mathematical properties
of the involved dynamical systems. We show that using a general Stribeck model for the
frictional contact, we can formulate the rotary drilling system as a well-posed evolution
variational inequality. Several numerical simulations are also given to illustrate both the
model and the theoretical results.

1. Introduction.

The first systematic study of friction is due to Leonardo da Vinci (1452-1519) (see e.g.
[12]). The famous italian scientific discovered indeed that the friction force is proportional
to load, opposes the motion and is independent of the contact area. These fundamental
results have been rediscovered by Guillaume Amontons (1663-1705) and developped by
Charles-Augustin de Coulomb (1736-1806) ([4], [11]). The Coulomb friction force F is
a function of the load and direction of the sliding velocity v. Arthur Morin (1795-1880)
found that the friction at zero sliding speed (static friction) is larger than the Coulomb
friction (dynamic friction) [26]. Osborne Reynolds (1842-1912) introduced the concept
of viscous friction in relation to lubricated contact [34] and Richard Stribeck (1861-1950)
observed that friction force decreases with the increase of the sliding speed from the static
friction to the Coulomb friction [35]. All these fundamental discoveries on the friction
phenomena have since been the subject of much research by the engineering community
(see e.g. [3], [6], [7], [17], [21], [27], [28], [32]).

Most models of friction are nonsmooth in the sense that the function involved in the model
v 7→ F (v) is not continuous at v = 0. The pioneering works of Jean-Jacques Moreau
(1923-2014) and Panagiotis D. Panagiotopoulos (1950-1998) initiated the development of
a mathematical framework applicable to the study of nonsmooth mechanical problems in
using advanced tools from modern convex analysis and set-valued analysis (see e.g. [1], [2],
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[14], [15], [20], [23], [24], [25], [29], [30]). The approach of Moreau and Panagiotopoulos
can in particular be used to write a precise and rigorous mathematical model describing
the friction force and the stick-slip phenomena. This approach using set-valued functions
left aside the complicated transition processes between ”stick” and ”slip” but lead however
to rigorous mathematical models like differential inclusions, variational inequalities and
hemivariational inequalities. There is an abundant literature for the mathematical modelling
and analysis of friction problems in the context of contact mechanics. For a comprehensive
reference on this subject, we refer to the book by F. Shillor, M. Sofonea and J. Telega [33].

In this paper, we show how the approach of nonsmooth dynamical systems can be used
to develop a suitable method for the modelling of a rotary oil drilling system with friction.
The drilling technique is used in the oil industry. The mechanical system involves a rotating
bit to produce a bore-hole in the rock, a drill-string to rotate the bit and a rotary drive at
surface to rotate the drill-string. In this paper, we consider the model of M. Kidouche
and R. Riane [19] where the interaction between the bit and the rock is considered as an
combination of cutting of the rock and frictional contact. We show that in using a general
Stribeck model for the frictional contact, we can formulate the rotary drilling system as a
well-posed evolution variational inequality. We analyse the mathematical properties of the
variational inequality and give some numerical simulations to illustrate the theory.

2. Mathematical preliminaries. Let (H, 〈·, ·〉, ‖ · ‖) be a real Hilbert space. Here 〈·, ·〉
denotes the scalar product on H and ‖ · ‖ is the associated norm: (∀x ∈ H) : ‖x‖ =√
〈x, x〉. A set-valued map F : H ⇒ H is a multifunction that associates to any x ∈ H

a subset F(x) ⊂ H . Given a set-valued map F : H ⇒ H . The domain D(F) of F is
defined by : D(F) = {x ∈ H : F(x) 6= ∅}. The range R(F) of F is given by: R(F) =⋃
x∈H F(x). The graph G(F) of F is defined by : G(F) = {(x, y) ∈ H × H : y ∈
F(x)}. The inverse F−1 of F is given by the relation: y ∈ F(x) ⇐⇒ x ∈ F−1(y). One
says that F is monotone if and only if 〈x∗−y∗, x−y〉 ≥ 0, ∀(x, x∗) ∈ G(F), ∀(y, y∗) ∈
G(F). One says that F is maximal monotone if and only if it is monotone and its graph is
maximal in the sense of inclusion, i.e., G(F) is not properly contained in the graph of any
other monotone operator.

One extensively-used maximal monotone operator is the subdifferential of a proper con-
vex and lower semicontinuous function. Let Φ : H → R ∪ {+∞};x 7→ Φ(x) be a
proper convex and lower semicontinuous function. The effective domain of Φ is defined
by: dom(Φ) = {x ∈ H : Φ(x) < +∞}. We say that w ∈ H is a subgradient of Φ at
x ∈ H if Φ(v)− Φ(x) ≥ 〈w, v − x〉, ∀v ∈ H. The set of subgradients of Φ at x, denoted
by ∂Φ(x), is called the subdifferential of Φ at x:

∂Φ(x) = {w ∈ H : Φ(v)− Φ(x) ≥ 〈w, v − x〉, ∀v ∈ H}.

The set-valued function: ∂Φ : H ⇒ H;x 7→ ∂Φ(x) is a maximal monotone operator.
The domain of ∂Φ is defined by D(∂Φ) = { x ∈ H : ∂Φ(x) 6= ∅}. It is clear that
D(∂Φ) ⊂ dom(Φ).

Remark 1. If Φ : Rn → R;x 7→ Φ(x) is a convex and Gateaux differentiable, then

(∀x ∈ Rn) : ∂Φ(x) = {∇Φ(x)}.

Remark 2. Let Φ : R→ R;x 7→ Φ(x) be a convex function. Then

(∀x ∈ R) : ∂Φ(x) = [Φ′−(x),Φ′+(x)]

where Φ′−(x) and Φ′+(x) denote the left and the right derivative of Φ at x, respectively.
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Example 2.1. For example, if Φ : R→ R;x 7→ Φ(x) = |x|, then

∂Φ(x) =

 −1 if x < 0,
[−1,+1] if x = 0,

+1 if x > 0.

If Φ : R→ R;x 7→ Φ(x) = max{0, x2 − 4}, then

∂Φ(x) =


2x if x < −2,

[−4, 0] if x = −2,
0 if x ∈]− 2,+2[,

[0,+4] if x = +2,
2x if x > +2.

Let us here recall the basic rules of subdifferential calculus. Let Φ : H → R∪{+∞};x 7→
Φ(x) be a proper convex and lower semicontinuous function and λ > 0. Then for every
x ∈ D(∂Φ) : ∂(λΦ)(x) = λ∂Φ(x). Let Φ1 : H → R∪{+∞};x 7→ Φ1(x) and Φ2 : H →
R ∪ {+∞};x 7→ Φ2(x) be two proper convex and lower semicontinuous functions. Then
for every x ∈ D(∂Φ1) ∩ D(∂Φ2), we have : ∂Φ1(x) + ∂Φ2(x) ⊂ ∂(Φ1 + Φ2)(x). Let
Φ1 : H → R∪ {+∞};x 7→ Φ1(x) be a proper convex and lower semicontinuous function
and Φ2 : H → R ∪ {+∞};x 7→ Φ2(x) a Gateaux differentiable function. Then for every
x ∈ D(∂Φ1), we have ∂Φ1(x) + ∂Φ2(x) = ∂Φ1(x) +∇Φ2(x).

Let us now recall an existence and uniqueness result, due to Kato [10, 18], for a general
nonlinear Cauchy problem involving a maximal monotone operator in a Hilbert space.

Theorem 2.1. Let (H, 〈·, ·〉, ‖ · ‖) be a real Hilbert space and let F : D(F) ⊂ H ⇒ H be
a maximal monotone operator. Let t0 ∈ R, α ∈ R and x0 ∈ D(F) be given and suppose
that f : [t0,+∞[→ H satisfies

f ∈ C0([t0,+∞[;H),
df

dt
∈ L1

loc([t0,+∞[;H).

Then there exists a unique x ∈ C0([t0,+∞[;H) satisfying

dx

dt
∈ L∞loc([t0,+∞[;H);

x is right-differentiable on [t0,+∞[;

x(t) ∈ D(F), t ≥ t0;

x(t0) = x0;

αx(t) + f(t) ∈ dx

dt
(t) + F(x(t)), a.e. t ≥ t0.

Let us here recall that an operator A : H → H is hemicontinuous if the functional t 7→
〈A(u+ tv), w〉 is continuous on [0, 1] for all u, v, w ∈ H .

Corollary 1. Let (H, 〈·, ·〉, ‖ ·‖) be a real Hilbert space and let Ψ : H → R∪{+∞};x 7→
Ψ(x) be a proper, convex and lower semicontinuous function. Let A : H → H be a
hemicontinuous operator such that for some α1 ≥ 0,A+α1I is monotone. Let F : H → H
be an operator such that

(∀x, y ∈ H) : ‖F (x)− F (y)‖ ≤ α2‖x− y‖,
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for some α2 > 0. Let t0 ∈ R and x0 ∈ D(∂Ψ) be given and suppose that f : [t0,+∞)→
H satisfies

f ∈ C0([t0,+∞);H),
df

dt
∈ L1

loc([t0,+∞[;H).

Then there exists a unique trajectory x ∈ C0([t0,+∞[;H) such that

dx

dt
∈ L∞loc([t0,+∞[;H); (1)

x is right-differentiable on [t0,+∞[; (2)

x(t) ∈ D(∂Ψ), t ≥ t0; (3)

x(t0) = x0; (4)

〈dx
dt

(t) +A(x(t)) + F (x(t))− f(t), y − x(t)〉

+ Ψ(y)−Ψ(x(t)) ≥ 0, ∀y ∈ H, a.e. t ≥ t0. (5)

Proof. Let us notice that the evolution variational inequality (5) can be rewritten as the
following differential inclusion:

dx

dt
(t) +A(x(t)) + F (x(t))− f(t) ∈ −∂Ψ(x(t)).

We set F1 = A+ α1I and F2 = F + α2I . The operator F1 is single-valued, hemicontin-
uous and monotone (by assumptions of Corollary 1). Since F is α2-Lipschitz continuous,
then F2 = F +α2I is monotone and hemicontinuous. Therefore, F1 +F2 is single-valued,
monotone and hemicontinuous. Setting F = F1 + F2 + ∂Ψ, by a classical result (see for
instance [31], [36]), it is clear that the operator F is maximal monotone. Applying Theo-
rem 2.1 for F = F1 +F2 + ∂Ψ and α = α1 + α2, we get the existence and uniqueness of
a trajectory x ∈ C0([t0,+∞[;H) satisfying (1)-(5).

3. A general friction model. We consider the set-valued relation between friction force
F and sliding velocity v:

F ∈ F(v),

with

F(v) =

 ϕ−(v) if v < 0,
[−FS , FS ] if v = 0,

ϕ+(v) if v > 0,
(6)

where FS > 0, ϕ+ : [0,+∞[→ R;x 7→ ϕ+(x) is a function that is assumed to satisfy the
following conditions:

(H1) ϕ+ is differentiable on [0,+∞[,

(H2) ϕ+(0) = FS ,

(H3) (∃K > 0) (∀x ∈ [0; +∞[) : |ϕ′+(x)| ≤ K,
and ϕ− :]−∞, 0]→ R;x 7→ ϕ−(x) is defined by:

(∀x ∈ ]−∞, 0]) : ϕ−(x) = −ϕ+(−x).

In this model, the value of the friction force F is not specified for zero sliding velocity
(v = 0), it can take any value in the interval [−FS ,+FS ] where FS > 0 is the maximum
static friction force. The functions ϕ− and ϕ+ are used to define the dynamic friction force,
i.e. the friction force during the slip phase.
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It follows from these assumptions that ϕ− is differentiable on ]−∞, 0]. Indeed, we have:
(∀x ∈ ] −∞, 0]) : ϕ′−(x) = ϕ′+(−x). In particular: ϕ′−(0−) = ϕ′+(0+). We have also:
(∀x ∈ ]−∞, 0]) : |ϕ′−(x)| ≤ K and ϕ−(0) = −ϕ+(0) = −FS . Let us now set

ϕ(x) =

{
ϕ−(x) + FS if x < 0,
ϕ+(x)− FS if x ≥ 0.

(7)

The function ϕ is differentiable on ] − ∞, 0[∪]0,+∞[. It is also continue at 0 since:
ϕ(0−) = FS + ϕ−(0−) = FS − FS = 0 and ϕ(0+) = −FS + ϕ+(0+) = −FS +
FS = 0. The function ϕ is thus continuous on R and differentiable on R\{0}. Moreover
limx→0,x 6=0 ϕ

′(x) = L < +∞. This last result holds indeed with L = ϕ′−(0−) = ϕ′+(0+)
since limx→0− ϕ′(x) = limx→0− ϕ′−(x) = ϕ′−(0−) = ϕ′+(0+) = limx→0+ ϕ′+(x) =
limx→0+ ϕ′(x). It results that ϕ′(0) = L and the function ϕ is differentiable on R. We
have (∀x ∈ R) : |ϕ′(x)| ≤ K and the function ϕ is thus Lipschitz continuous on R, i.e.

(∀x, y ∈ R) : |ϕ(x)− ϕ(y)| ≤ K|x− y|. (8)

FIGURE 1. General friction model as in (6) and the function ϕ as in (7).

We have

F(v) =

 ϕ−(v) if v < 0,
[−FS , FS ] if v = 0,

ϕ+(v) if v > 0,
=

 ϕ(v)− FS if v < 0,
[−FS , FS ] if v = 0,
ϕ(v) + FS if v > 0,

= ϕ(v) +

 −FS if v < 0,
[−FS , FS ] if v = 0,

+FS if v > 0,
= ϕ(v) + ∂ΦS(v)
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where
ΦS(v) = FS |v|.

The general set-valued friction model can thus be written as the sum of a Lipschtiz contin-
uous function and the convex subdifferential of a proper, convex and lower semicontinuous
function (which is a maximal monotone set-valued map in R2).

Example 3.1 (Set-valued Coulomb Friction Model). The Coulomb model is a very simple
mathematical formulation of the frictional phenomena. It is widely used by engineers to
study systems with dry friction. Coulomb friction model is also called Amontons-Coulomb
friction model so as to refer to the work by Guillaume Amontons and Charles-Augustin de
Coulomb (see e.g. [5], [21]). The Coulomb model expresses that friction force F opposes
motion and that its magnitude is independent of the sliding velocity v. The model is

F (v) =

{
−FC if v < 0,
+FC if v > 0,

where FC is the Coulomb fricton force proportionnal to the normal load FN = mg in the
contact, i.e. FC = µFN with µ > 0. The coefficient µ is called the Coulomb friction
coefficient also called the dynamic friction coefficient. The constant g = 9.81 (m/s2) is
the acceleration of gravity. In this model, the value of the friction force is not specified
for zero sliding velocity (v = 0), it can take any value in the interval [−FC ,+FC ], i.e.
v = 0 =⇒ F ∈ [−FC ,+FC ]. We may thus write F ∈ F(v), where F is defined as in (6)
with FS = FC , (∀x ≤ 0) : ϕ−(x) = −FC and (∀x ≥ 0) : ϕ+(x) = +FC .

FIGURE 2. Coulomb friction model.

The graph of F is depicted in Fig. 2. We may reduce the Coulomb model to the mathemat-
ical formula: F ∈ ∂ΦC(v), where ΦC(v) = FC |v|. In using this model, one left aside the
complicated transition processes between ”slip” and ”stick”.

Example 3.2 (The linearized exponential model of Bo and Pavelescu [9]). Friction
acts like a spring when a small force is applied. This phenomena is called ”stiction”. A
model of stiction consists to express that the transition from stick to slip has to occur via
the maximum static friction force FS = µSFN that may be higher than the maximum
dynamic friction FC = µFN . Here µS > 0 denotes the friction coefficient in the slip phase
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and FS is called the stiction force. Most sliding contacts are lubricated and Stribeck [35]
observed that the friction force does not drop suddenly when velocity increases but follows
a continuous curve as depicted in Figure 3.

FIGURE 3. Stribeck friction model

The friction decreases with increased sliding speed until a mixed or full film situation is
reached. Then the friction can either be constant, increase, or decrease somewhat with
increased sliding speed due to viscous and thermal effects. The velocity at which the fric-
tion force is minimal is called the Stribeck velocity. A modern set-valued formulation of
the Stribeck friction is given by the linearized exponential model of Bo and Pavelescu [9]:
F ∈ F(v), with F defined as in (6) and where the functions ϕ− and ϕ+ are given by the
formula:

(∀x ≤ 0) : ϕ−(x) = kvx− FC − (FS − FC)e−
∣∣ x
vs

∣∣σ
(9)

and
(∀x ≥ 0) : ϕ+(x) = kvx+ FC + (FS − FC)e−

∣∣ x
vs

∣∣σ
(10)

where σ > 0 is an empirical exponent and vs > 0 is an empirical coefficient called the slid-
ing speed coefficient. Note that the model of Bo and Pavelescu has been originally stated
with kv = 0. The viscous friction term has been added by Armstrong-Hélouvry in [6]. Dif-
ferent values for σ have been used in the engineering literature [6]. Armstrong-Hélouvry
employs σ = 2. Čerkala and Jadlovská use σ = 1 in the study of a two-wheel robot dy-
namic with differential chassis. The parameter 0.00001 ≤ vs ≤ 0.1 (m/s) depends upon
the contact geometry and loading.

Let us first consider the case σ = 1. The function ϕ+ is differentiable on [0,+∞[ and we
have:

(∀x ∈ [0,+∞[) : ϕ′+(x) = kv −
1

vs
(FS − FC)e−

x
vs

Assumption (H1) is thus satisfied. We have also ϕ+(0) = FS and assumption (H2) is
satisfied. We note finally that

(∀x ∈ [0,+∞[) : |ϕ′+(x)| ≤ |kv|+ |
1

vs
(FS − FC)e−

x
vs |

= kv +
1

vs
(FS − FC)e−

x
vs ≤ kv +

FS − FC
vs

,

since e−
x
vs ≤ 1 for x ≥ 0, assumption (H3) is thus satisfied.
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Let us now suppose that σ > 1. The function ϕ+ is differentiable on [0,+∞[ and we have

(∀x ∈ [0,+∞[) : ϕ′+(x) = kv −
σ

vσs
(FS − FC)xσ−1e−( xvs )σ .

Assumption (H1) is thus satisfied. We have also ϕ+(0) = FS and assumption (H2) is
satisfied. We have

(∀x ∈ [0,+∞[) : |ϕ′+(x)| ≤ |kv|+
∣∣ σ
vσs

(FS − FC)xσ−1e−( xvs )σ
∣∣

= kv +
σ

vσs
(FS − FC)xσ−1e−( xvs )σ .

We have
lim

x→+∞
xσ−1e−( xvs )σ = 0.

It results that there existsH > 0 such that (∀x ≥ H) : xσ−1e−( xvs )σ ≤ 1. The function ϕ′+
is continuous on [0, H] and there exists thus a constant M > 0 such that (∀x ∈ [0, H]) :
|ϕ′+(x)| ≤M . Thus

(∀x ∈ [0,+∞[) : |ϕ′+(x)| ≤ max{M,kv +
σ

vσs
(FS − FC)}.

Assumption (H3) is thus satisfied.

Example 3.3 (The model of Hess and Soom [16]). The function ϕ− and ϕ+ are given by
the formula:

(∀x ≤ 0) : ϕ−(x) = Fvx− FC −
(FS − FC)

1 + ( xvs )2

and

(∀x ≥ 0) : ϕ+(x) = Fvx+ FC +
(FS − FC)

1 + ( xvs )2
,

where Fv ≥ 0 is a viscous friction coefficient and vs > 0 is a characteristic velocity of the
Stribeck curve. The function ϕ+ is differentiable on [0,+∞[. We have

(∀x ∈ [0,+∞[) : ϕ′+(x) = Fv −
2(FS − FC)x

v2
s(1 + ( xvs )2)2

.

Assumption (H1) is thus satisfied. We have also ϕ+(0) = FS and assumption (H2) is
satisfied. We note finally that

(∀x ∈ [0,+∞[) : |ϕ′+(x)| ≤ |Fv|+ |
2(FS − FC)x

v2
s(1 + ( xvs )2)2

| = Fv +
2(FS − FC)x

v2
s(1 + ( xvs )2)2

.

We have
lim

x→+∞

x

(1 + ( xvs )2)2
= 0.

It results that there existsH > 0 such that (∀x ≥ H) :
x

(1 + ( xvs )2)2
≤ 1. The function ϕ′+

is continuous on [0, H] and there exists thus a constant M > 0 such that (∀x ∈ [0, H]) :
|ϕ′+(x)| ≤M . Thus

(∀x ∈ [0,+∞[) : |ϕ′+(x)| ≤ max{M,Fv +
2(FS − FC)

v2
s

}.

Assumption (H3) is thus satisfied.
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Example 3.4 (Stiction model). A basic model of stiction is given by (see Figure 4): F ∈
F(v), with

F(v) =

 −FC if v < 0,
[−FS , FS ] if v = 0,

+FC if v > 0.

We note that in the case FS > FC , the set-valued function F (in Figure 4) does not

FIGURE 4. Stiction model

possess good mathematical properties. It can in particular not be formulated as the sum
of a Lipschitz continuous function and the convex subdifferential of proper, convex and
lower semicontinuous function. Moreover, a transition from stick to slip which is not me-
chanically consistent is possible ([8], [20]). It is however convenient to use the model of
Example 3.2 with kv = 0, σ = 1 and a small value for vs to get a suitable model.

FIGURE 5. Consistent stiction model as in (6) with ϕ+(x) = FC + (FS − FC)e−
x
vs .
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FIGURE 6. Oil drilling rig illustration - 1. Mud tank, 2. Shale shak-
ers, 3. Suction line (mud pump), 4. Mud pump, 5. Motor or power
source, 6. Vibrating hose, 7. Draw-works (winch), 8. Standpipe 9.
Kelly hose, 10. Goose-neck, 11. Traveling block, 12. Drill line, 13.
Crown block 14. Derrick - Author: Tosaka - Attribution 3.0 Unported
(CC BY 3.0) - https://creativecommons.org/licenses/by/3.0/deed.en
(https://commons.wikimedia.org/wiki/File:Oil Rig NT.PNG).

4. Mathematical analysis of a rotary drilling system. Let us consider the model of a
rotary drilling system (see Figure 7) consisting of a motor, drill pipe represented by a
torsional spring and drill collar represented by a rigid body (see [19]). Let us denote by
ϕ1 (resp. ϕ2) the angular displacement of the rotor (resp. rigid body), ω1 = ϕ̇1 (resp.
ω2 = ϕ̇2) the angular velocity of the motor (resp. rigid body), J1 > 0 (resp. J2 > 0)
the moment of inertia of the motor (resp. rigid body), d1 > 0 (resp. d2 > 0) the viscous
damping coefficient of the motor (resp. load) and k > 0 the torsional stiffness coefficient
of the shaft. The applied torque is denoted by T1. The torque inherent in the drill-collar
is denoted by T2. It is a combination of the cutting of the rock process and the frictional
contact. We write

T2 = TCUT + TF

where TCUT is the cutting torque resulting from the cutting process and TF is the frictional
torque resulting from the frictional contact. The cutting torque is given by

TCUT =
1

2
δR2

BE

where E > 0 is the amount of energy required to cut a unit volume of rock, RB > 0 is
the drill bit radius and δ > 0 is the depth of cut. For the frictional contact torque, we use a
Stribeck law as described by Bo and Pavelescu [9]:

TF ∈ F(ω2),
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where

F(ω2) =

 ϕ−(ω2) if ω2 < 0,
[−TS , TS ] if ω2 = 0,
ϕ+(ω2) if ω2 > 0,

with
(∀x ≤ 0) : ϕ−(x) = −TC − (TS − TC)e−|

x
ωs
|σ (11)

and
(∀x ≥ 0) : ϕ+(x) = +TC + (TS − TC)e−|

x
ωs
|σ (12)

where TS > 0 is the static friction torque, TC ∈ [0, TS ] is the dynamic friction torque and
σ ≥ 1, ωs > 0 are empirical coefficients. We have

TC =
1

2
µCRBW, TS =

1

2
µSRBW (13)

where µC > 0 is the dynamic friction coefficient, µS > 0 is the static dynamic friction and
W > 0 is the Weight-On-Bit. We set

Ξ(x) =

{
ϕ−(x) + TS if x < 0,
ϕ+(x)− TS if x ≥ 0.

(14)

Then
F(ω2) = Ξ(ω2) + ∂ΠF (ω2), (15)

where for all ω2 ∈ R:

ΠF (ω2) = TS |ω2| and ∂ΠF (ω2) =

 −TS if ω2 < 0,
[−TS ,+TS ] if ω2 = 0,

+TS if ω2 > 0.

FIGURE 7. Rotary drilling system.
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4.1. Mechanical system. Newton’s second law, when applied to rotational motion ex-
presses that the torque equals the product of the moment of inertia and the angular acceler-
ation. The rotor (resp. the rigid body) produces through the shaft a stiffness resistance to
the rotary movement that is given by −k(ϕ1 − ϕ2) (resp. −k(ϕ2 − ϕ1)). The rotor (resp.
the rigid body) produces also a viscous friction to the rotary motion that is given by−d1ω1

(res. −d2ω2). The equations of motion for our problem are thus:

J1ω̇1 = −k(ϕ1 − ϕ2)− d1ω1 + T1

and
J2ω̇2 = k(ϕ1 − ϕ2)− d2ω2 − T2.

Or equivalently,
J1ϕ̈1 + kϕ1 − kϕ2 + d1ϕ̇1 − T1 = 0

and
J2ϕ̈2 − kϕ1 + kϕ2 + d2ϕ̇2 = −T2

with
T2 ∈ TCUT + Ξ(ϕ̇2) + ∂ΠF (ϕ̇2).

Consequently, [
ϕ̈1

ϕ̈2

]
+

[
d1
J1

0

0 d2
J2

] [
ϕ̇1

ϕ̇2

]
+

[ k
J1

− k
J1

− k
J2

k
J2

] [
ϕ1

ϕ2

]
+

+

[
−T1

J1
TCUT

J2
+ 1

J2
Ξ(ϕ̇2)

]
∈ −

[
0

1
J2
∂ΠF (ϕ̇2)

]
. (16)

Let us now set
X1 = ϕ1, X2 = ϕ2, X3 = ϕ̇1, X4 = ϕ̇2.

The inclusion in (16) is therefore equivalent to the following first order dynamic
Ẋ︷ ︸︸ ︷
Ẋ1

Ẋ2

Ẋ3

Ẋ4

+

A︷ ︸︸ ︷
0 0 −1 0
0 0 0 −1
k
J1

− k
J1

d1
J1

0

− k
J2

k
J2

0 d2
J2


X︷ ︸︸ ︷
X1

X2

X3

X4

+

+

F (X)︷ ︸︸ ︷
0
0
−T1

J1
TCUT

J2
+ 1

J2
Ξ(X4)

 ∈ −
∂Ψ(X)︷ ︸︸ ︷

0
0
0

1
J2
∂ΠF (X4)

, (17)

where

(∀X = (X1, X2, X3, X4) ∈ R4) : Ψ(X) =
1

J2
ΠF (X4) =

TS
J2
|X4|. (18)

We note that the function Ψ is convex and continuous on R4. Consequently, the model can
be formulated as the following first-order differential inclusion:

Ẋ(t) +AX(t) + F (X(t)) ∈ −∂Ψ(X(t)), t ∈ [t0,+∞[ (19)

with the initial condition X(t0) = X0 ∈ R4. The matrix A is given in (17). The function
F : R4 → R4, X = (X1, X2, X3, X4) 7→ F (X) is defined by

(∀X = (X1, X2, X3, X4) ∈ R4) : F (X) = (0, 0,−T1

J1
,
TCUT

J2
+

1

J2
Ξ(X4)), (20)
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and the function Ψ : R4 → R, X = (X1, X2, X3, X4) 7→ Ψ(X) is given by (18). We
recall that the function Ξ is defined in (14).

4.2. Electromechanical system. The torque T1 is the torque TM delivered by the motor
to the system multiplied by the gearbox ratio N : T1 = NTM . Let us now denote by
L > 0, R > 0, i > 0 and V > 0 the motor inductance, motor resistance, motor current and
motor input voltage, respectively. We have

V = L
di

dt
+Ri+ Vcem,

where Vcem is the counter-electromotive force. The counter-electromotive force, and the
motor torque, are linearly related to the motor speed and the motor current by the following
relations:

TM = KM i and Vcem = NKMω1,

where KM > 0 is the motor constant. Let us set K = NKM . We have T1 = Ki and
Vcem = Kω1 = Kϕ̇1. Let us now set X5 = i. We have T1 = KX5 and

Ẋ5 +
K

L
X3 +

R

L
X5 −

V

L
= 0.

For a comprehensive reference about the electromechanical systems and their simulations,
we refer for example to [22]. We obtain the system:

Ẋ︷ ︸︸ ︷
Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

+

A∗︷ ︸︸ ︷
0 0 −1 0 0
0 0 0 −1 0
k
J1

− k
J1

d1
J1

0 −K
J1

− k
J2

k
J2

0 d2
J2

0

0 0 K
L 0 R

L



X︷ ︸︸ ︷
X1

X2

X3

X4

X5

−
g(t)︷ ︸︸ ︷
0
0
0

−TCUT

J2
V (t)
L

+

+

G(X)︷ ︸︸ ︷
0
0
0

1
J2

Ξ(X4)

0

 ∈ −
∂Υ(X)︷ ︸︸ ︷

0
0
0

1
J2
∂ΠF (X4)

0

, (21)

where

(∀X = (X1, X2, X3, X4, X5) ∈ R5) : Υ(X) =
1

J2
ΠF (X4) =

TS
J2
|X4|. (22)

The model can thus be formulated as the following first-order differential inclusion:

Ẋ(t) +A∗X(t) +G(X(t))− g(t) ∈ −∂Υ(X(t)), t ≥ t0, (23)

with the initial condition X(t0) = X0 ∈ R5.The matrix A∗ and the function t 7→ g(t)
are given in (21). The function G : R5 → R5, X = (X1, X2, X3, X4, X5) 7→ G(X) is
defined by

(∀X = (X1, X2, X3, X4, X5) ∈ R5) : G(X) = (0, 0, 0,
1

J2
Ξ(X4), 0) (24)

and the function Υ : R5 → R, X = (X1, X2, X3, X4, X5) 7→ Υ(X) is given by (22).
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4.3. Mathematical analysis. In this section, we will show that problems (19) and (23)
have a unique solution for every initial data. The following theorem is in this sense. Let us
first consider the mechanical problem in (19).

Theorem 4.1. Let t0 ∈ R. For every initial condition X0 ∈ R4, there exists a unique
trajectory X ∈ C0([t0,+∞[;R4) such that

dX

dt
∈ L∞loc([t0,+∞[;R4);

X is right-differentiable on [t0,+∞[;

X(t0) = X0;

Ẋ(t) +AX(t) + F (X(t)) ∈ −∂Ψ(X(t)), a.e. t ∈ [t0,+∞[,

with A, Ψ and F defined respectively in (17), (18) and (20).

Proof. Let us check that all assumptions of Corollary 1 are satisfied. Since A is Lips-
chitz continuous, thenA+α1I is monotone with α1 = ‖A‖. Let us check that the function
F defined in (20) is Lipschitz continuous. Since the functions ϕ− and ϕ+ defined respec-
tively in (11) and (12) are of the form of ϕ− and ϕ+ defined respectively in (9) and (10)
(with kV = 0), we deduce from (8) that the function Ξ defined in (14) is Lipschitz contin-
uous with constant KJ2 > 0. The conclusion follows from Corollary 1.

Let us now consider the electromechanical problem in (23).

Theorem 4.2. Let t0 ∈ R be given. Suppose that the function V : [t0,+∞[→ R (motor
input voltage in (21)) satisfies

V ∈ C0([t0,+∞);R),
dV

dt
∈ L1

loc([t0,+∞[;R).

Then for every initial condition X0 ∈ R5, there exists a unique trajectory
X ∈ C0([t0,+∞[;R5) such that

dX

dt
∈ L∞loc([t0,+∞[;R5);

X is right-differentiable on [t0,+∞[;

X(t0) = X0;

Ẋ(t) +A∗X(t) +G(X(t))− g(t) ∈ −∂Υ(X(t)), a.e. t ∈ [t0,+∞[

Proof. It is clear that all the data A∗, g, Υ and G defined in (21), (22), (24) satisfy all
assumptions of Corollary 1.

5. Numerical simulations. In this section, we perform some numerical simulations for
the models (19) and (23) using Matlab. The set of numerical values was taken from [19]
and is listed in the following tables.

Remark 3. To solve numerically the differential inclusions (19) and (23), we used a con-
vergent multistep Euler method with a minimum norm selection strategy (we refer to the
survey by Dontchev and Lempio [13] for more details about the convergence results). We
could use here also an implicit Euler method since the proximal operator associated to the
convex functions given in (18) and (22) could be computed exactly (in a closed form). For
example if Ψ(x) = γ|x|, γ > 0 and x ∈ R, then the classical soft thresholding operator



NONSMOOTH APPROACH FOR DRILLING SYSTEMS 15

J1 999.35 (kg.m2)
J2 127.27 (kg.m2)
d1 51.38 (N.m.s/rad)
d2 39.79 (N.m.s)
k 481.29 (N.m/rad)
R 0.01 (Ω)
L 0.005 (H)
KM 6 (N.m/A)
N 7.20
K = NKM 43.20 (N.m/A)
E 130 (MJ/m3)
δ 0.64× 10−3 (m/rad)
RB 0.10 m
µC 0.4
µS 0.6

TABLE 1. Parameters.

σ 1
ωs 10−3 (rad/s)

TABLE 2. Empirical coefficients.

V (t) =

 125 if t ∈ [0, 25[,
5t if t ∈ [25, 30[,

150 if t ∈ [30,+∞[.

TABLE 3. Motor voltage. Augmentation of DC motor voltage from 125
(V) to 150 (V) at t = 30 (s) (see Figure 8).

0 5 10 15 20 25 30 35 40 45 50
time t(sec)

100

110

120

130

140

150

160

170

180

V(
t)

FIGURE 8. Graph of the function V (t) in Table 3.



16 SAMIR ADLY AND DANIEL GOELEVEN

W 15000 (kg)
TC = 1

2µCRBW 300 (kg.m)
TS = 1

2µSRBW 450 (kg.m)
TCUT = 1

2δR
2
BE 4.16 10−4 (MJ/rad)

TABLE 4. Weight-On-Bit and corresponding friction torques.

X1(0) = ϕ1(0) −10 (rad)
X2(0) = ϕ2(0) 0 (rad)
X3(0) = ϕ̇1(0) −10 (rad/s)
X4(0) = ϕ̇2(0) 20 (rad/s)

X1(0) = ϕ1(0) 0 (rad)
X2(0) = ϕ2(0) 0 (rad)
X3(0) = ϕ̇1(0) 0 (rad/s)
X4(0) = ϕ̇2(0) 0 (rad/s)
X5(0) = i(0) 0 (A)

TABLE 5. Initial conditions for problems (19) and (23).

0 10 20 30 40 50
time t(sec)

-60

-50

-40

-30

-20

-10

X1
(t)

X1

0 10 20 30 40 50
time t(sec)

-60

-50

-40

-30

-20

-10

0
X2

(t)
X2

0 10 20 30 40 50
time t(sec)

-10

-8

-6

-4

-2

0

2

X3
(t) X3

0 10 20 30 40 50
time t(sec)

-40

-30

-20

-10

0

10

20

X4
(t)

X4

FIGURE 9. Numerical solution of the evolution variational inequality
(19) with the initial conditions given in Table 5.

proxλΨ = (I + λ∂Ψ)−1, which is used in the FISTA method for sparse convex optimiza-
tion, is given by

proxλΨ(x) = sign(x)(|x| − λγ)+ =


x− λγ if x ≥ λγ;

0 if − λγ ≤ x ≤ λγ;

x+ λγ if x ≤ −λγ.
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0 5 10 15 20 25 30 35 40 45 50
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1000

1500

X
5(
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FIGURE 10. Numerical solution of the evolution variational inequality
(23) with the initial conditions given in Table 5.

For the multidimensional case given by Ψ(x) = γ‖x‖1 = γ
∑n
i=1 |xi|, x ∈ Rn, the

proximal mapping of Ψ can be computed componentwise by applying the one-dimensional
soft thresholding operator to each component.

Comment on the numerical simulations. The stick-slip oscillations phenomena is a real
drawback in many mechanical systems and particularly in the rotary drilling system. It is
considered as a real obstacle which decreases the drilling efficiency and may increase the
cost of the drilling operation. According to [19], in order to reduce the stick-slip vibrations
on the ground in practice, the driller operators try to control some parameters involved in
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the model such as: the motor voltage function defined in Table 3, the weight on the bit W
defined in (13), the speed at the surface and the viscosity of the drilling fluid.

For the evolution variational inequality (19), we observe in Figure 9 that the oscillation
are damped and that the angular velocity of the rigid body ω2 = ϕ̇2 = X4 goes to zero as
the time t increases. For of the electromechanical system (23) with the initial conditions
given in Table 5, with the augmentation of the DC motor voltage from 125 Volts to 150
Volts at t = 30s, we observe also that the oscillations are also damped (see Figure 10).
It would be interesting to validate this model by decreasing the weight on the bit W from
15 tonnes to W = 8 tonnes at some fixed t (as suggested in [19]). This means that the
functions TS and TC would depend on time t in the models (19) and (23).

6. Concluding Remarks. Motivated by the modelling of a mechanical rotary oil drilling
system, we gave a general panorama of different types of friction that can be fit in a general
set-valued framework. This includes the classical set-valued Coulomb friction model, the
linearized exponential model of Bo and Pavelescu [9] (the Stribeck friction model),
the model of Hess and Soom [16] and the stiction model. Using tools from convex and
set-valued analysis, the rotary drilling system is formulated as a nonsmooth second-order
dynamic in finite dimensional spaces. The mechanical and the electromechanical models
can be rewritten as two evolution variational inequalities where existence and uniqueness
results are given. Many open questions need further investigations such as for example the
Lyapunov stability and the invariance properties of the associated stationary solutions of the
dynamics (19) and (23). Due to the fact that the stiffness matrix given in (16) is singular
and to the fact that the function Ξ in (14) is not monotone, the approaches developed in [1]
and [2] can not be directly applicable. It would be interesting to investigate the stability
analysis as well as all the numerical strategies to reduce the stick-slip oscillations of the
nonsmooth dynamics (19) and (23). This is out of the scope of the current manuscript and
will be the subject of a new research project.
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[5] Anderson S., Söderberg A., Björklund S., Friction models for sliding dry, boundary and mixed lubricated

contacts, Tribology International 40, 580-587, 2007.
[6] Armstrong-Hélouvry B. , Control of machine with friction, The Kluwer international series in engineering

and computer science. Robotlcs, Springer Science+Business Media New York, 1991.
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167A, (1968), 954-957.
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