
HAL Id: hal-02432801
https://hal.science/hal-02432801v1

Submitted on 8 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surrogate Model Based on the POD Combined With
the RBF Interpolation of Nonlinear Magnetostatic FE

Model
T. Henneron, A. Pierquin, S. Clenet

To cite this version:
T. Henneron, A. Pierquin, S. Clenet. Surrogate Model Based on the POD Combined With the RBF
Interpolation of Nonlinear Magnetostatic FE Model. IEEE Transactions on Magnetics, 2020, 56 (1),
pp.1-4. �10.1109/tmag.2019.2949751�. �hal-02432801�

https://hal.science/hal-02432801v1
https://hal.archives-ouvertes.fr


1

Surrogate Model based on the POD combined with the RBF
Interpolation of Nonlinear Magnetostatic FE model

T. Henneron1, A. Pierquin1 and S. Clénet1
1Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP, F-59000 Lille, France

The Proper Orthogonal Decomposition (POD) is an interesting approach to compress into a reduced basis numerous solutions
obtained from a parametrized Finite Element (FE) model. In order to obtain a fast approximation of a FE solution, the POD can
be combined with an interpolation method based on Radial Basis Functions (RBF) to interpolate the coordinates of the solution
into the reduced basis. In this paper, this POD-RBF approach is applied to a nonlinear magnetostatic problem and is used with a
single phase transformer and a three-phase inductance.

Index Terms—Nonlinear magnetostatic problem, Model Order Reduction, Proper Orthogonal Decomposition, Radial Basis
Functions.

I. INTRODUCTION

THE FE method is commonly used to study low frequency
electromagnetic devices. This approach gives accurate

results but requires large computational times due to numerical
or physical features such as a high number of Degrees of
Freedom (DoF) in space and also a high number of time
steps or the nonlinear behavior of ferromagnetic materials for
example. In order to reduce the computational time especially
for parametrized model, model order reduction methods have
been proposed in the litterature. One of the most popular
approach is the POD approach. Based on the solutions of the
FE model for different values of parameters (called snapshots),
the POD enables to approximate the solution of the FE
model in a reduced basis [1]. Then, the initial FE system
is projected onto a reduced basis, decreasing the order of
the numerical model to be solved for new parameter values.
Another approach consists in constructing a metamodel to
interpolate directly the solution expressed into a reduced basis
for new parameter values. Different approaches can be used,
as for example, based on an optimization process [2] or
polynomial functions [3]. The RBF interpolation method can
be also applied in this context. In the litterature, the POD-
RBF approach has been developed for mechanical or thermal
problems [4][5] for example.
In this paper, we propose to use a POD-RBF approach in
order to build a fast model of the solution of a nonlinear
magnetostatic problem. First, the numerical model of nonlinear
magnetostatic problem is brieflty presented. Secondly, the
POD-RBF approach is developed. Finally, a single phase EI
transformer and a three-phase inductance are studied.

II. NONLINEAR MAGNETOSTATIC PROBLEM

Let’s consider a domain composed with Nst stranded induc-
tors, each supplied by a current ij and a nonlinear magnetic
subdomain. To solve the nonlinear magnetostatic problem,
the vector potential formulation is used. Then, the strong
formulation is

curl(ν(B)curlA) =

Nst∑
j=1

Njij (1)

with ν the magnetic reluctivity depending on the magnetic
flux density B, A the vector potential defined by B = curlA
and Nj the unit current density of the jth stranded inductor.
By applying the FE method, the equation system to solve for
ij ∈ Ij is

M(X)X =

Nst∑
j=1

Fjij (2)

with M(X) the curl-curl matrix, Fj the source vector as-
sociated with the jth inductor and X ∈ RNx the vector
of components of A. For 3D problems, the potential A is
discretized on the edge elements. For each inductor j, the
magnetic linkage flux can be expressed by Φj = FtjX.

III. SURROGATE MODEL BASED ON POD COMBINED WITH
RBF INTERPOLATION

From a set of solutions obtained from the evaluation of
the FE model (2), called snapshots, for different values of
current, a surrogate model is build in order to approximate the
solution for any current values. Then, the Proper Orthogonal
Decomposition method is combined with the Radial Basis
Function interpolation approach. In the following, two induc-
tors are considered to present the approach and the parameter
set (i1, i2) is denoted by i = (i1, i2). Then, we seek for an
approximation Xap(i) of X(i) under the form

Xap(i) =

M∑
l=1

ψlgl(i) (3)

with ψl ∈ RNx components of the reduced basis, so called
modes, gl(i) a scalar function and M the size of the reduced
basis, so called number of modes.

A. Reduction of the dimension by POD

From P snapshots Xj = X(ij), j = 1, ..., P , computed
for different values of i, the vectors ψl, l = 1, ...,M , are
deduced. The snapshots matrix is defined such as MX =
[X1,X2, ...,XP ]. The Singular Value Decomposition (SVD)
is applied to MX , such as MX = USVt with UNx×Nx



2

and VP×P orthogonal matrices and SNx×P the rectangular
diagonal matrix of the singular values ranked in a decreasing
order. This decomposition allows to obtain a reduced basis
Ψ = [ψl, ψ2, ..., ψM ] of size Nx ×M which corresponds to
the M first columns of U. The truncation of the first columns
can be determined by taking the M most significative singular
values of S. Then, the solution vector X can be approximated
by Xpod under the form

X ≈ Xpod = ΨG (4)

with G the vector of components of the solution into the
reduced basis.

B. RBF interpolation approach

The RBF interpolation approach is used for the determina-
tion of scalar functions gl(i) for l = 1, ...,M . From the SVD
of MX , we can deduce the matrix expressed in the reduced ba-
sis such as MG = [G1,G2, ...,GP ] = S(1:M,1:M)V

t
(1:P,1:M).

Then, each line of MG corresponds to the discrete values of
gl(ij) = Gjl for j = 1, ..., P . In fact, gl(ij) represents the lth

coordinate of the approximation of Xj in the reduced basis.
From these values, the RBF interpolation is performed in order
to determine each function gl(i) under the following form

gl(i) =

P∑
j=1

αljφj(i) (5)

with φj = φ(||i − ij ||) a radial function depending on the
Euclidian distance between i and ij and αlj its associated
coefficient. The coefficients αlj are calculated to interpolate
the P vectors Gk

Gkl = gl(ik) =

P∑
j=1

αljφk(||ik − ij ||) (6)

for k = 1, .., P.

Then, we can define an equation system for the computation
of the coefficients αlj , j = 1, ..., P , such as

Yl = BAl (7)
with Yl = [G1l, ..., GPl]

t,Al = [αl1, ..., αlP ]t

and B =

 φ1(i1) · · · φ1(iP )
...

. . .
...

φP (i1) · · · φP (iP )

 .
The number of equation system (7) to solve depends on the
number of modes M (i.e. the size of the reduced basis).
The error of interpolation depends on the choice for the
radial function. Table I presents different examples of function
where a is a parameter fixed by the user, called ”shape
parameter”. Finally, for any coordinate inew, we can compute
an approximation Xap(inew) of the FE solution by (3).

C. Greedy algorithm

In order to optimize the size of the reduced basis Ψ and
the number of snapshots used for the interpolation, a greedy
algorithm can be applied. In this case, Q snapshots of the FE

TABLE I
EXAMPLES OF RBF FUNCTION

Name φ(x)

Gaussian (G) e−(x/a)2

Multiquadric (MQ)
√

1 + (x/a)2

Inverse multiquadric (IMQ)
√

1
1+(x/a)2

Thin plate spline x2log(x)

model (2) are computed, the aim of the greedy algorithm is to
select the most significant P vectors X among the Q snapshots
to build the POD-RBF model in order to reduce the memory
requirements, i.e. the number of coefficents αlj and the size
of the reduced basis. We denote pk a coordinate among ij for
j = 1, ..., Q, the vector of coordinates selected by the greedy
algorithm is p = [p1, ...,pP ] and εf is a criterion fixed by the
user to stop the iterative algorithm.

Algorithm 1 Greedy algorithm
Input: MX = [X(i1),X(i2), ...,X(iQ)], p1

Output: M , P , Ψ and αlj
- P = 0
while εX > εf do

- P = P + 1
if P > 1 then

- select the coordinate corresponding to the maximum
of the error such as pP = argmax(e)

end if
- p← [p,pP ]
- MS ← [MS ,X(pP )]
- from MS , update Ψ and the coefficients αlj
- compute the vector e of the norm of relative errors such
as e = [ek]Qk=1 with ek =

||X(ik)−Xap(ik)||2
||X(ik)||2

- compute the average of the errors εX = 1
Q

∑Q
k=1 ek.

end while

The average error of the magnetic linkage flux for the jth

inductor can be also defined such as

εΦj
=

1

Q

Q∑
k=1

eΦj,k
with eΦj,k

=
|Φj(ik)− Φap,j(ik)|

|Φ(ik)|
. (8)

IV. APPLICATION

Two examples of application are studied. The first one is a
single phase transformer and the second one is a three-phase
inductance.

A. Single phase transformer

Due to the symmetries, only one eighth of the single phase
EI transformer is modeled. Figure (1) presents the mesh of
the magnetic core and of the windings (a) and the nonlinear
B(H) magnetic curve (b). The 3D mesh is composed of 67177
tetrahedron elements, the number of DoF is Nx = 76663. The
FE model (2) is solved Q = 225 times with 15 equidistributed
values Ni1 for i1 ∈ [0 : 1]A and Ni2 for i2 ∈ [−2 : 0]A.
In these conditions, the computational time is 135min (all
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(a) Mesh (b) Non-linear curve

Fig. 1. Single phase EI transformer.

computations have been achieved with an Intel Xeon Processor
E5-2690 v3, 3.5GHz, 256Go RAM).

In order to evaluate the influence of the parameters of the
RBF interpolation method, we propose to study the evolution
of the error εX versus the number P of solutions selected
by the greedy algorithm for different type of radial functions
and for different values of the shape parameter. Figure (2)
presents the errors for three different radial functions (G, MQ
and IMQ see Table I) with a shape parameter a = 0.1. The best
convergence is obtained with the multiquadric (MQ) functions.
However when P becomes large, the gaps between the errors
obtained with the three RBF decrease. Figures (3) and (4)
present the errors for the IMQ and MQ functions with different
values of the shape parameter a. With the IMQ functions, the
convergence is influenced by the shape parameter when P is
small. For P = 150, the different errors are similar. For the
MQ functions, no significant difference can be observed on
the convergence of the error for the different values a. For the
IMQ or G functions, greater a is important, most influential
is the approximated solution by snapshots.

Fig. 2. Errors versus the number P of solutions selected by the greedy
algorithm (a = 0.1).

Figures (5) and (6) present the magnetic flux density ob-
tained from the POD-RBF model and the difference of B
obtained from the FE model and the POD-RBF approximation
for different values of currents not used to compute snaphots.
Then, we consider (i1 = 0.95A, i2 = 0A) for the first case
and (i1 = 0.4A, i2 = −0.9A) for the second case, the MQ
functions are used for the interpolation with a = 0.1 and
P = 150. For both cases, the magnitudes of the error are very
small compared with those of the magnetic flux density. The

Fig. 3. Errors versus the number P of selected solutions with IMQ functions
and for different values of the shape parameter a.

Fig. 4. Errors versus the number P of selected solutions with MQ functions
and for different values of the shape parameter a.

maximum of the error is located on the internal corners of the
magnetic core where saturation effect is the most prominent.

Fig. 5. Magnetic flux density (T ) and error on B for (i1 = 0.95A, i2 = 0A).

Fig. 6. Magnetic flux density (T ) and error on B for (i1 = 0.4A, i2 =
−0.9A).

The POD-RBF model gives a compressed form of data from
the Q solutions X of the FE model. The number of terms
extracted from the solutions of the FE model is 76663× 225.
For P = 150, the POD-RBF model requires 76663×45 terms
to be stored for the reduced basis Ψ and, for the interpolation,
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150 × 45 coefficients αlj and 150 × 2 for the coordinates i
of the 150 solutions. Then, the compression factor calculated
by 1− terms of POD-RBF model

terms from FE model is 80% for an error of about 0.8%
and a computational time equal to 7min for the determination
of the POD-RBF model. If a coarse surrogate model with an
acceptable error about 5% is sufficient for a study. Then, the
compression factor is 91% and the computational time is about
1min.

B. Three-phase inductance
Due to the symmetries, one quarter of the three-phase induc-

tance is modeled. Figure (7) presents the mesh of the magnetic
core and of the windings. The 3D mesh is composed of 66382
tetrahedron elements, the number of DoF is Nx = 75584.
The nonlinear curve of the magnetic core presented on Fig.
(1-b) is considered. The FE model (2) is solved 2197 times
with 13 equidistributed values for Ni1 , Ni2 and Ni3 with the
same current interval I = [−6 : 6]A for all currents. In these
conditions, the computational time is of 57.7h.

Fig. 7. Mesh of the three-phase inductance.

Figure (8) presents the evolution of the error on the solution
and on magnetic linkage fluxes versus the number P of
selected solutions when the MQ functions are used for the
interpolation with a = 0.25. With P = 500, the error εX is
close to 1% and the errors εφ1

, εφ2
and εφ3

are about 4%.
Then, the computational time is 5h. The POD-RBF model
requires 75584× 130 terms to be stored for the reduced basis
Ψ, 500× 130 coefficients αlj and 500× 3 for the coordinates
i of the 500 solutions for the interpolation, which corresponds
to a compression factor of 94%.

Fig. 8. Errors versus the number P of selected solutions.

Figures (9) and (10) present the magnetic flux density
obtained from the POD-RBF approximation and the difference

of B obtained from the FE and POD-RBF models for different
values of currents not used for the snaphots. For the first
case, we consider (i1 = 5.5A, i2 = −2.75A, i3 = −2.75A)
which corresponds to a balanced current supply. For the second
case, we consider (i1 = 0A, i2 = 5.75A, i3 = 0A) in order
to simulate a single phase EI inductance. For both case, the
magnitudes of the error are fully acceptable according to fact
that this error is at most of same order of the one introduced
by the uncertainties we have on the dimensions and on the
behavior law of the materials. The maximum of the error is
located on the internal corners of the magnetic core as for the
first application example.

Fig. 9. Magnetic flux density (T ) and error on B for (i1 = 5.5A, i2 =
−2.75A, i3 = −2.75A).

Fig. 10. Magnetic flux density (T ) and error on B for (i1 = 0A, i2 =
5.75A, i3 = 0A).

V. CONCLUSION

A surrogate model based on the POD combined with the
RBF interpolation approach of a nonlinear magnetostatic FE
model has been developed. From the examples of application,
this approach enables to obtain an approximation of the FE
solution with reasonable computional times and a good accu-
racy. In this context, the POD-RBF model could be coupled
with electrical equations in order to simulate a non linear
magnetostatic device in its environment.
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