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Abstract

A three-phase flow model with hybrid miscibility constraints is proposed:

three immiscible phases are considered (liquid water, liquid metal and gas)

but the gaseous phase is composed with two miscible components (steam

water and non-condensable gas). The modelling approach is based on the

building of an entropy inequality for the system of partial differential equa-

tions: once an interfacial velocity is given by the user, the model is uniquely

defined, up to some relaxation time scales, and source terms complying with

the second principle of thermodynamics can then be provided. The convec-

tive part of the system is hyperbolic when fulfilling a non-resonance condition

and classical properties are studied (Riemann invariants, symmetrization). A

key property is that the system possesses uniquely defined jump conditions.

Last, preservation of thermodynamically admissible states and pressure re-

laxation are investigated.
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Introduction

In the framework of nuclear safety demonstration for pressurized water

reactors, some accidental scenarii are studied (see IRSN website [1]). They

involve compressible flows undergoing fast transient situations with mass

transfer. Steam explosion (see [2]) falls into this category and its accurate

simulation is still a challenging problem [3]. It might occur when very hot

liquid metal particles interact with quiet liquid water. Liquid water heated

by metal suddendly changes into steam and a steam layer appears around

metal particles. Heat transfer is thus inhibited until this layer becomes un-

stable. A steam explosion may then arise, leading to pressure waves likely to

damage the surronding structures.

In addition to metal, liquid and steam water, other gases may be present:

indeed, ambiant air may be mixed with vapor when metal comes into the

free surface of water, or hydrogen might appear under accidental conditions

because of fuel oxydation. Then, the proportion of non-condensable gas

compared with water vapor in the gaseous layer around metal particles has a

strong influence on the probability of observing a steam explosion or not [4],

since non-condensable gas limits steam condensation [5]. Numerical studies

also bear out the effect of the inert gas quantity on condensation, like in [6].

Non-condensable gas is besides taken into account in the reference industrial

codes classically used to simulate a vapor explosion [7, 8].

Our aim in this work is to propose a meaningful model with suitable

mathematical properties for the previous applications, describing a flow with
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four components: liquid and steam water, liquid metal particles and non-

condensable gas. Moreover, our model needs to cope with mass transfer

between liquid and steam water, and to correctly manage shock waves. We

insist on the fact that only a modelling work will be presented here: perspec-

tives and references concerning the numerical simulation will be discussed in

conclusion.

A wide range of two-phase flow models has been proposed since decades.

Fewer references are available about three-phase flow models, see [9, 10, 11,

12, 13, 3, 14, 15, 16]. Among all these models, two classes can be distin-

guished: models based on the multifluid approach [17, 18, 19, 20, 9, 10, 11,

3, 14, 15, 16], where each component has its own velocity field, and models

based on the homogeneous approach [21, 22, 23, 24, 25, 26, 27, 12, 13, 28],

where the kinematic equilibrium is assumed between all constituents.

The choice between one approach or the other is a matter of interest and

can be discussed regarding characteristic time scales for the considered sys-

tem. Indeed, the targeted applications are rapid transients where the phases

are almost always out of equilibrium, so that the system dynamics is driven

by return towards equilibrium and convective effects. The mechanical, kine-

matic or thermal transfers between phases occur at different characteristic

time scales, so that lots of classical modelling approaches may suppose some

instantaneous partial equilibria, in terms of pressure, velocity or temperature:

such partial relaxations enable to build a hierarchy of models as depicted in

[29]. By noting τp the pressure relaxation time scale, τu the velocity relax-

ation time scale and τT the temperature relaxation time scale, the following
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ordering1 is often assumed, based on estimations obtained for instance in

[18]:

0 < τp, τu << τT .

τp and τu can be differently ordered depending on the considered model, as

recalled in the introduction of [31]. Note that evaluating each phasic velocity

is sometimes unavoidable, like for the vapor explosion (see [2, 7]) where the

velocity gaps are required to estimate interfacial transfers through the inter-

facial area. To numerically take into account the kinematic disequibrium, a

time step ∆t smaller than τu is required. A homogeneous model does not im-

pose this constraint on ∆t and is thus far cheaper on industrial meshes; but

thanks to the computing cost drop, the multifluid approach is today more

and more affordable and thus requires a relevant modelling.

Both approaches have their own strengths and their own difficulties. The

homogeneous models have a simpler convective structure than the multifluid

models (for instance, compare [13] with [10], two models describing the same

mixture with three immiscible phases). Nevertheless, a mixture equation

of state should be carefully built in the homogeneous models (see [12, 13]),

whereas the thermodynamical behavior is decoupled phase by phase in the

multifluid models. Numerically, building the mixture equation of state in a

homogeneous model can be somehow tricky when considering realistic equa-

tions of state, so that very robust numerical schemes are required as high-

lighted in [28]. Moreover, for some applications like for the vapor explosion

(see [2, 7]), evaluating each phasic velocity is sometimes unavoidable, because

1This hierarchy is not absolute and may depend on the considered physical situation
as explained in [30].
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the velocity gaps are required to estimate interfacial transfers through the

interfacial area. The velocity gaps are indeed the key ingredient enabling to

model the dislocation effects of the liquid metal droplets, that induce a high

heat transfer between metal and water which may lead to an explosion.

The present model is derived from the multifluid approach. It belongs

to a family of models developped since 2000 [19, 32, 10, 33, 9, 34, 15], built

among a similar strategy, by imposing the following minimal requirements:

• to be hyperbolic;

• to possess a physically relevant entropy inequality;

• to possess uniquely defined jump conditions.

Moreover, the preservation of the thermodynamical admissible domain should

be ensured and the symmetrizability is also expected (see [35, 14, 15]).

Thanks to the previous properties, problems with an analytical solution,

which may involve shock waves, can be built, and one may thus request that

two different numerical schemes should converge towards a unique solution

when refining the mesh. This is also a key feature to verify numerical codes

intented for safety study purposes. The initial model [19, 32] is a two-phase

flow model with two immiscible phases, similar to the original Baer-Nunziato

model [17]. Both barotropic model and model with energy have been stud-

ied. The counterpart of this model has been proposed in [10], with three

immiscible phases; its barotropic version [9] has been implemented in [3],

and the full model with energy equation in [36]. A hybrid two-phase flow

model with three components has been last developed in [15]: steam water
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and non-condensable gas are miscible whereas liquid and gaseous phase are

immiscible.

The present model aims to simultaneously tackle all the features of these

previous models: three immiscible phases are present (liquid water, liquid

metal and gas) like in [10] and the gaseous phase is composed with two mis-

cible components (steam water and non-condensable gas) like in [15].

The model is based on a system of conservation laws with additional

non-conservative terms involving an interfacial velocity vI . Our modelling

effort focuses on the correct definition of the non-conservative terms: we only

focus on models admitting a relevant entropy inequality and uniquely defined

jump conditions that degenerate towards the classical Euler framework when

considering single-phase flows.

Section 1 is devoted to the building of an entropy inequality. From the

partial differential equations, a natural mixture entropy is derived: once vI

is given by the user, the model is uniquely defined, up to some relaxation

time scales. Several submodels can be studied by chosing a particular form

for vI . Following a classical approach, admissible source terms complying

with entropy growth within time can be found.

Section 2 focuses on the properties of the convective part of such models.

For any vI , hyperbolicity is ensured, unless resonance occurs. Then, two

submodels are considered for which unique jump conditions can be easily

exhibited: when vI is equal to us, one of the phasic velocities, or when vI

is defined as um, the average of the phasic velocities. Hence, we retrieve the

”classical” two-phase flow results (see [19]). For both cases, the convective
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structure is precisely described in terms of waves and Riemann invariants. It

is also shown that the quasi-linear system admits a symmetric form, ensuring

that the Cauchy problem based on this model has a unique local-in-time

smooth solution [37] (while excluding the resonance).

Last, in section 3, the case vI = us is more deeply studied, by giving

some useful properties that might help to prepare a future numerical imple-

mentation of the model. We shall see that the thermodynamically admissible

domain is preserved for simple equations of state. The natural pressure equi-

libria, satisfying the Dalton’s law, are not violated, and the relaxation system

ensures that initial pressure gaps will relax towards zero, so that pressure

equilibria will be recovered, provided that some meaningful restrictions on

initial pressure differences hold.

1. A four-field three-phase flow model

The considered flows are composed of four fields, representing the fol-

lowing components: liquid metal, liquid water, vapor and gas. For sake of

readibility, we define: K = {s, l, v, g}, and each field will be identified in the

following by a subscript k ∈ K: subscript s refers to liquid metal; subscript

l refers to liquid; subscript v refers to vapor and subscript g refers to gas.

First, a system of conservation laws describing the four fields is written,

based on Euler equations with additionnal terms modelling the interfacial

exchanges. A natural entropy equality is associated to this system.

Several submodels can then be studied, depending on the miscibility con-

straints. In our application, vapor and gas are miscible whereas liquid metal,

liquid water and gaseous mixture are immiscible.
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Closure laws for non conservative terms satisfying minimal entropy dissipa-

tion are proposed. Last, particular forms are proposed for the source terms:

as the model should comply with entropy growth for weak solutions, some

constraints can be exhibited.

1.1. General framework

1.1.1. Set of variables and notations

Let us consider a field k, k ∈ K. The following set of variables Yk is

considered:

Yk = (αk,mk,mkuk, αkEk)
t, (1)

where αk is the statistical fraction, mk is the partial mass (in kg.m−3), uk ∈

R3 is the velocity (in m.s−1) and Ek is the total energy (in J.m−3), i.e. the

sum of kinetic energy and internal energy.

Let us then precise some notations: Pk stands for pressure (in Pa); Tk

for temperature (in K); we note also ak = T−1
k ; εk for internal energy (in

J.kg−1.m−3); sk for entropy (in J.K−1.kg−1.m−3) and ck for sound velocity

(in m.s−1). Density ρk (in kg.m−3) is defined by mk = αkρk.

Remark 1 — Note that for all k ∈ K, αk ∈]0, 1[: monophasic cases or cases

with one or more missing phases are excluded. �

1.1.2. Equation of state

Thermodynamically, a field k is described with the following equation

of state for internal energy: εk(Pk, ρk). This choice is relevant regarding our

previous choice for Yk (1): with another thermodynamical entry-plane, other
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more natural definitions of Yk would have been preferred. Ek can now be

explicitely written:

Ek = ρkεk(Pk, ρk) +
1

2
ρku

2
k. (2)

The equation of state defines a physically admissible domain, i.e. a set

Ek = {(Pk, ρk) ∈ R×R+∗/εk(Pk, ρk) ≥ 0}. For all (Pk, ρk) ∈ Ek, ck, sk and

Tk are then defined thanks to εk with the following positivity constraints :

ρkc
2
k =

(
∂εk
∂Pk

∣∣∣∣
ρk

)−1(
Pk
ρk
− ρk

∂εk
∂ρk

∣∣∣∣
Pk

)
> 0, (3)

sk(Pk, ρk) so that c2
k

∂sk
∂Pk

∣∣∣∣
ρk

+
∂sk
∂ρk

∣∣∣∣
Pk

= 0, (4)

and

Tk =
∂εk
∂Pk

∣∣∣∣
ρk

×

(
∂sk
∂Pk

∣∣∣∣
ρk

)−1

> 0. (5)

A requirement for the model is to preserve within time the admissible domain

Ek and the positivity constraints (3) and (5): this property will be studied

in section 3.1.

1.1.3. Set of partial differential equations

In order to build the complete set of partial differential equations for the

whole closed system, balance equations for each variable of Yk, k ∈ K, are

written. It leads to the following system of equations for the state variable

Ỹ =
⋃
k∈KYk:

10





∂tαk + vI(Ỹ).∇αk = Φk(Ỹ)

∂tmk +∇.(mkuk) = Γk(Ỹ)

∂t(mkuk) +∇.(mkuk ⊗ uk) +∇(αkPk) +
∑
k′ 6=k

πkk′(Ỹ)∇αk′ = SQk(Ỹ)

∂t(αkEk) +∇.(αkuk(Ek + Pk))−
∑
k′ 6=k

πkk′(Ỹ)∂tαk′ = SEk(Ỹ)

(6)

Exchanges between the four fields inside the closed system are accounted for

by non conservative terms as well as source terms Φk(Ỹ), Γk(Ỹ), SQk(Ỹ)

and SEk(Ỹ). Non conservative terms involve an interfacial velocity vI(Ỹ)

and interfacial pressures
(
πkk′(Ỹ)

)
(k,k′)∈K2,k 6=k′

.

Remark 2 — For sake of simplicity, we consider that source terms as well

as interfacial closures depend only on Ỹ. More complex models could assume

for instance a dependance on both Ỹ and gradients of the components of Ỹ

(see [38, 39, 33] and remarks 4 in section 1.3.1 and 7 in section 2.1.2). �

As we consider a closed system, without external contributions, we as-

sume that mass, momentum and energy exchanges between fields should bal-

ance when the mean flow is considered. It implies the following constraints

on the closure terms:

∑
k∈K

Γk(Ỹ) = 0 ;
∑
k∈K

SQk(Ỹ) = 0 ;
∑
k∈K

SEk(Ỹ) = 0. (7)
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and: ∑
k∈K

∑
k′ 6=k

πkk′(Ỹ)∂ξαk′ = 0, ξ ∈ {t, x, y, z}. (8)

At this step, nothing more can be said about Φk. In the next subsection

1.2, vacuum occurence will be excluded and additionnal assumptions about

miscibility will be made.

1.1.4. Mixture entropy

The mixture entropy η is defined as:

η(Ỹ) =
∑
k∈K

mksk. (9)

This choice is very classical. It can be proven (see appendix A) that smooth

solutions of (6) verify the following entropy equality:

∂tη(Ỹ) +∇.fη(Ỹ) +Aη(Ỹ, (∇αk)k∈K) = RHSη(Ỹ), (10)

where the entropy flux reads:

fη(Ỹ) =
∑
k∈K

mkskuk, (11)

and

Aη(Ỹ, (∇αk)k∈K) =
∑
k∈K

T−1
k (vI −uk).

(∑
k′ 6=k

Πkk′(Ỹ)∇αk′ + Pk∇αk

)
, (12)
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and

RHSη(Ỹ) =
∑
k∈K

T−1
k

{
SEk +

∑
k′ 6=k

Πkk′(Ỹ)Φk′(Ỹ)− Γk(Ỹ)εk

−uk.(SQk −
Γk(Ỹ)

2
uk) + ρk

∂εk
∂ρk

(
ρkΦk(Ỹ)− Γk(Ỹ)

)}
+
∑
k∈K

{
skΓk(Ỹ) + ρk

∂sk
∂ρk

(Γk(Ỹ)− ρkΦk(Ỹ))

}
.

(13)

A model with minimal entropy dissipation is defined as a model based on

system (6) fulfilling:

Aη(Ỹ, (∇αk)k∈K) = 0. (14)

Only such models will be considered in the following.

1.2. Miscibility constraints

In [10], a model with three immiscible phases has been studied. Here, we

consider hybrid miscibility conditions, as represented in the figure 1:

• vapor and gas are miscible and form a gaseous phase;

• gaseous phase, liquid water and liquid metal are immiscible.

�
�
�
�

���
���
���

���
���
���

l v,g

s

Figure 1: Scheme of the miscibility constraints for the considered three-phase flow system.

It implies the following constraints:

αv = αg ; αs + αl + αv = 1. (15)
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Only two void fractions are independent; we keep αs and αl. The state

variable can be reduced:

Y =

(
(αs, αl)

⋃(⋃
k∈K

(mk,mkuk, αkEk)

))t

∈ R22. (16)

We need to impose (otherwise constraints (15) would be violated):

Φv(Y) = Φg(Y) ; Φs(Y) + Φl(Y) + Φv(Y) = 0. (17)

Thus, taking into account constraints (15) in (6), the system of partial dif-

ferential equations for Y reads:



∂tαs + vI(Y).∇αs = Φs(Y)

∂tαl + vI(Y).∇αl = Φl(Y)

∂tmk +∇.(mkuk) = Γk(Y)

∂t(mkuk) +∇.(mkuk ⊗ uk) +∇(αkPk) +Kks(Y)∇αs +Kkl(Y)∇αl = SQk(Y)

∂t(αkEk) +∇.(αkuk(Ek + Pk))−Kks(Y)∂tαs −Kkl(Y)∂tαl = SEk(Y)

(18)

where

Kls = Πls − Πlv − Πlg ; Kll = −Πlv − Πlg ;

Kvs = −Πvg + Πvs ; Kvl = Πvl − Πvg ;

Kgs = −Πgv + Πgs ; Kgl = Πgl − Πgv ;

Kss = −Πsv − Πsg ; Ksl = Πsl − Πsv − Πsg .

(19)
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1.3. Entropy inequality constraints

Using entropy equality (10), closures are proposed in this section:

• given vI(Y), a unique set (Kkk′(Y))k∈K,k′∈{s,l} complying with (8) is

determined by looking for solutions with minimal entropy dissipation

(14).

• source terms fulfilling the constraints (7) and (17) need to comply with

entropy growth for smooth solutions.

1.3.1. Closures for interfacial terms fulfilling the minimal entropy dissipation

Interfacial velocity is assumed to have the following form:

vI(Y) =
∑
k∈K

βkuk, (20)

where, because of Galilean invariance principle:

∑
k∈K

βk = 1. (21)

Since, intuitively, we expect that vI is some kind of average of the velocity

fields, an additionnal (but not mandatory) constraint is imposed:

∀k ∈ K, βk ≥ 0. (22)

Remark 3 — The exact form for (βk)k∈K is a key point in the modelling

procedure and will be detailed later on, in section 2.1.2. �
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Proposition 1 (Solution with minimal entropy dissipation)

For the interfacial velocity defined by (20), there exists a unique set of (Kkk′(Y))k∈K,k′∈{s,l}

fulfilling (8) and complying with minimal entropy dissipation (14). The so-

lution reads:

Kls = TβlTl(Ps − (Pv + Pg)) ; Kll = −Pl + TβlTl(Pl − (Pv + Pg));

Kvs = Pv + TβvTv(Ps − (Pv + Pg)) ; Kvl = Pv + TβvTv(Pl − (Pv + Pg));

Kgs = Pg + TβgTg(Ps − (Pv + Pg)) ; Kgl = Pg + TβgTg(Pl − (Pv + Pg));

Kss = −Ps + TβsTs(Ps − (Pv + Pg)) ; Ksl = TβsTs(Pl − (Pv + Pg))

where T =

(∑
k∈K

βkTk

)−1

. (23)

The proof as well as the final system satisfied by (Kkk′(Y))k∈K,k′∈{s,l} are

given in appendix B.

Remark 4 — We could consider more complex closures for Kkk′ . For in-

stance, we could replace formely the current Π0
kk′(Y) given by (19) and (23)

by:

Πkk′(Y,∇αl,∇αs) = Π0
kk′(Y) + Πkk′

1,l(Y)×∇αl + Πkk′
1,s(Y)×∇αs,

as proposed for instance in [38, 33]. In that case, we would have an additional

dissipative contribution in the entropy inequality, as soon as the additional

quadratic form has the appropriate sign. However, it would introduce addi-

tional terms for which we do not have (a priori) relevant closures to propose,
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see [33].

�

1.3.2. Admissible source terms

Particular forms are assumed for the source terms.

The mass transfer term Γk(Y) is defined as a sum of dyadic contributions:

Γk =
∑
k′ 6=k

Γkk′ . (24)

Note that the gas g is non-condensable, so that:

Γg = 0 and ∀k ∈ K, Γgk = Γkg = 0.

The momentum contribution is decomposed into a drag term and a mass

transfer term:

SQk =
∑
k′ 6=k

Dkk′ +
∑
k′ 6=k

Γkk′vkk′ . (25)

Last, pure thermal transfer, drag effets and mass transfer are taken into

account in the total energy source term:

SEk =
∑
k′ 6=k

Ψkk′ +
∑
k′ 6=k

vkk′Dkk′ +
∑
k′ 6=k

Γkk′Hkk′ . (26)

For sake of readibility, the dependance on Y has been omitted for the previous

introduced terms Γkk′ , Dkk′ , ψkk′ , vkk′ and Hkk′ . A consequence of (7) is that
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the following dyadic transfers cancel each other:

Γkk′ + Γk′k = 0 ; Dkk′ + Dk′k = 0 ; Ψkk′ + Ψk′k = 0. (27)

Indeed, for instance, Γkk′ represents the mass transfer from phase k towards

phase k’: this mass transfer is exactly equal to the mass transfer obtained

by phase k’ from phase k (which can be seen as the opposite of the mass

transfer taken from phase k’ and given to phase k). Now, considering the

second term in SEK :

∑
k′ 6=k

vkk′Dkk′ =
∑
k′>k

(vkk′Dkk′ + vk′kDk′k) =
∑
k′>k

(vkk′ − vk′k)Dkk′ = 0,

The previous term is indeed equal to zero because each dyadic bound is

independent. This leads to vkk′−vk′k = 0. Similar equations can be written

for the third term in SEK , so that we finally get:

vkk′ = vk′k ; Hkk′ = Hk′k. (28)

The source terms have to comply with the entropy growth within time

for weak solutions:

∂tη(Y) +∇.fη(Y) +Aη(Y,∇αk) ≥ 0. (29)

It implies some constraints on the right-hand-side term RHSη(Y) of entropy

equality (10). RHSη(Y) (13) can be rewritten by isolating each independent
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effect in four different contributions:

RHSη = RHSΦ
η +RHSΨ

η +RHSDη +RHSΓ
η . (30)

In order to satisfy the second principle, each contribution needs to be positive

on its own.

• Contribution RHSΦ
η :

RHSΦ
η =

∑
k

(
−ρ2

k

∂sk
∂ρk

Φk + ak
∑
k′

Πkk′Φk′ + ρ2
k

∂εk
∂ρk

Φk

)
=

∑
k

ak

(∑
k′

Πkk′Φk′ + PkΦk

)
,

(31)

where ak = T−1
k . Using miscibility constraints (17), we get:

RHSΦ
η = Φl { al(Pl +Kll) + av(−Pv +Kvl)

+ ag(−Pg +Kgl) + asKsl }

+ Φs { alKls + av(−Pv +Kvs)

+ ag(−Pg +Kgs) + as(Ps +Kss) } .

(32)

It becomes by injecting the general solution for the (Kkk′)k,k′∈K :

RHSΦ
η =

D

(∏
k

ak

)
{Φl(Pl − (Pv + Pg)) + Φs(Ps − (Pv + Pg))} .

(33)

Recalling that D = (alavagβs + alavasβg + alagasβv + avagasβl)
−1 and
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ak = T−1
k > 0, the final entropy constraint on the Φk prefactors reads :

Φl(Pl − (Pv + Pg)) + Φs(Ps − (Pv + Pg)) ≥ 0. (34)

Finally, an admissible model for Φl and Φs is the following :Φl

Φs

 = D

Pl − (Pv + Pg)

Ps − (Pv + Pg)

 , (35)

where D is a symmetric positive semi-definite matrix:

D =

d11 d12

d12 d22

 , d11 > 0, d22 > 0, d12 =
√
d11d22 sin(θ), θ ∈ R.

• Contribution RHSΨ
η :

Since:

RHSΨ
η =

∑
k

ak(
∑
k′ 6=k

Ψkk′), (36)

a simple constraint on (Ψkk′)k,k′∈K is obtained:

∀(k, k′) ∈ K2, k 6= k′, (ak − ak′)Ψkk′ ≥ 0. (37)

• Contribution RHSDη :

It reads:

RHSDη =
∑
k

ak
∑
k′ 6=k

(vkk′Dkk′ − uk

∑
k′ 6=k

Dkk′). (38)

20



We assume the following particular form for vkk′ to comply with the

Galilean invariance principle:

vkk′ = βkk′uk + (1− βkk′)uk′ ,

with βkk′ ∈ [0, 1] and βkk′ + βk′k = 1,
(39)

with βkk′ + βk′k = 1 because, due to equation (27), vkk′ = vk′k. Then,

we get the following constraint on (Dkk′)k,k′∈K:

∀(k, k′) ∈ K2, k 6= k′,

[ak(1− βkk′) + ak′(1− βk′k)](uk′ − uk)Dkk′ ≥ 0.
(40)

• Contribution RHSΓ
η :

The chemical potential µk (J.kg−1) is defined by: µk = εk − Tksk + Pk
ρk

.

RHSΓ
η can be written as:

RHSΓ
η = −

∑
k

∑
k′ 6=k

akµkΓkk′

+
∑
k

ak
∑
k′ 6=k

(Hkk′ +
u2k
2
− ukvkk′)Γkk′ .

(41)

Previous expression (41) suggests a simple choice for Hkk′ and vkk′ (in

accordance with (39)):

Hkk′ =
ukuk′

2
; vkk′ =

1

2
(uk + uk′). (42)
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With this assumption, a simple constraint on Γkk′ can be written:

∀(k, k′) ∈ K2, k 6= k′, (akµk − ak′µk′)Γkk′ ≥ 0. (43)

Source terms complying with the second principle of thermodynamics

can now be explicitely introduced, like for instance in [31]. They involve

relaxation time scales, that need to be defined by the user; some propositions

can be found for instance see [40] for τu and also [41, 28] for τΓ and τT , and

more recently [42, 43, 44] for τp relaxation time scales (considering different

averaging processes).

2. Properties of the convective part of the model

Some interesting properties of the model built in section 1 are now high-

lighted. For sake of simplicity, only the 1D-case will be considered in the

sequel. It is not restrictive since the system (18) is invariant by rotation:

thanks to a projection on the normal direction, a one-dimensional system

can always be written, while neglecting variations in the transversal direc-

tions.

2.1. Structure of the convective system

The following state vector is considered :

W = (αl, αs, ρl, ul, Pl, ρv, uv, Pv, ρg, ug, Pg, ρs, us, Ps)
t. (44)
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The homogeneous system of equations associated with (18) can be rewritten

for smooth solutions in the quasi-linear form :

∂tW + B(W)∂xW = 0 (45)

with B a block matrix:

B =



CI 03×2 03×2 03×2 03×2

Cl Bl 03×3 03×3 03×3

Cv 03×3 Bv 03×3 03×3

Cg 03×3 03×3 Bg 03×3

Cs 03×3 03×3 03×3 Bs


(46)

where, with the notation ck =
(vI − uk)

mk

∂εk
∂Pk

∣∣∣∣−1

ρk

and ∂ρkεk =
∂εk
∂ρk

∣∣∣∣
Pk

:

CI =

vI 0

0 vI

 ; Cl =


− ρl
αl

(vI − ul) 0

Pl+Kll
ml

Kls
ml

cl(ρ
2
l ∂ρlεl +Kll) clKls

 ; (47)

Cs =


0 − ρs

αs
(vI − us)

Ksl
ms

Ps+Kss
ms

csKsl cs(ρ
2
s∂ρsεs +Kss)

 ; (48)

∀k ∈ {v, g}, Ck =


ρk
αk

(vI − uk) ρk
αk

(vI − uk)
−Pk+Kkl

mk

−Pk+Kks
mk

ck(−ρ2
k∂ρkεk +Kkl) ck(−ρ2

k∂ρkεk +Kks)

 ; (49)
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∀k ∈ K,Bk =


uk ρk 0

0 uk τk

0 ρkc
2
k uk

 . (50)

For the closure (20) vI =
∑
k∈K

βkuk, matrices Ck, k ∈ K can be rewritten

taking into account (23) and introducing the following notations:

∆uk = vI − uk ∀k ∈ K; (51)

∆Pk = Pk − (Pv + Pg), k ∈ {l, s}; (52)

Cl =


− ρl
αl

∆ul 0

TβlTl
ml

∆Pl
TβlTl
ml

∆Ps
∆ul
ml

[
(∂Plεl)

−1TβlTl∆Pl − ρ2
l cl

2
]

∆ul
ml

[
(∂Plεl)

−1TβlTl∆Ps
]
 ; (53)

Cs =


0 − ρs

αs
∆us

TβsTs
ms

∆Pl
TβsTs
ms

∆Ps

∆us
ms

[
(∂Psεs)

−1TβsTs∆Pl
]

∆us
ms

[
(∂Psεs)

−1TβsTs∆Ps − ρ2
scs

2
]
 ;

(54)

∀k ∈ {v, g}, Ck =


ρk
αk

∆uk
ρk
αk

∆uk
TβkTk
mk

∆Pl
TβkTk
mk

∆Ps
∆uk
mk

[
(∂Pkεk)

−1TβkTk∆Pl + ρ2
kck

2
]

∆uk
mk

[
(∂Pkεk)

−1TβkTk∆Ps + ρ2
kck

2
]
 .

(55)
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2.1.1. Hyperbolicity

Proposition 2 (Hyperbolicity)

The system (45) is hyperbolic with the following eigenvalues:

λ1,2 = vI ;

λ3 = ul ; λ4 = uv ; λ5 = ug ; λ6 = us ;

λ7 = ul + cl ; λ8 = uv + cv ; λ9 = ug + cg ; λ10 = us + cs;

λ11 = ul − cl ; λ12 = uv − cv ; λ13 = ug − cg ; λ14 = us − cs.

(56)

Associated right eigenvectors span the whole space R14, except if resonance

occurs, that is to say:

∆u2
l − c2

l = (vI − ul)2 − c2
l = 0 or ∆u2

v − c2
v = (vI − uv)2 − c2

v = 0 or

∆u2
g − c2

g = (vI − ug)2 − c2
g = 0 or ∆u2

s − c2
s = (vI − us)2 − c2

s = 0. (57)

The proof consists in exhibiting the eigenvectors. They are given in appendix

C.

2.1.2. Structure of waves

The definition of a Riemann invariant is recalled: considering an eigen-

value λ admitting n eigenvectors (rk)k, a Riemann invariant Iλ associated to

λ is a scalar quantity verifying:

∀k ∈ [|1, n|],∇WIλ(W).rk(W) = 0.
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A very important requirement for our model is to correctly manage the non-

conservative terms thanks to uniquely defined jump relations. Indeed, it

guarantees that two different consistent and stable numerical schemes will

converge towards the same solution by refining the mesh. However, this

property will not hold if 1,2-fields associated with vI are genuinely non linear.

To avoid this problem, (βk)k∈K can be chosen so that 1,2-fields associated

with vI are linearly degenerate (see [19] for two-phase flow models).

Only two particular choices for (βk)k∈K will be considered:

• βs = 1 and βl = βv = βg = 0 so that:

vI = us; (58)

• βk = mk
M
∀k ∈ K with M =

∑
k∈K

mk, so that

vI = um =
∑
k∈K

mk

M
uk. (59)

Remark 5 — These choices for vI are not the only ones: for example, for

the two-phase flow case, a wider family of suitable models (e.g. that ensure

linear degeneracy) has been exhibited in [45] (see also [46]). �

Remark 6 — The property of linear degeneracy for the coupling wave is

fully independent from the chosen closures for the (Πkk′)k,k′∈K. With the

latter choices for vI , even if the mixture entropy is defined in a different way

than (9) (which also implies a different expression for Πkk′), the property of
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linear degeneracy for the coupling wave still holds, as well as the hyperbolicity

for the convective system (see appendix C). �

We emphasize that, in the sequel, the set of (Πkk′) complies with (23).

The following three propositions can then be straightforwardly proved after

rather long but simple computations.

Proposition 3 (Nature of the coupling wave)

If vI = us or if vI = um, fields associated with λ1 = λ2 = vI are linearly

degenerate.

• If vI = um: um is an eigenvalue of multiplicity 2; there are 12 Riemann

invariants:

I1
vI=um(W) = um ;

I2
vI=um(W) = ss − sl ; I3

vI=um(W) = ss − sv ; I4
vI=um(W) = ss − sg ;

I5
vI=um(W) = ml(um − ul) ; I6

vI=um(W) = mv(um − uv) ;

I7
vI=um(W) = mg(um − ug) ;

I8
vI=um(W) = εl + Pl

ρl
+ 1

2
(um − ul)2 ;

I9
vI=um(W) = εv + Pv

ρv
+ 1

2
(um − uv)2 ;

I10
vI=um(W) = εg + Pg

ρg
+ 1

2
(um − ug)2 ;

I11
vI=um(W) = εs + Ps

ρs
+ 1

2
(um − us)2 ;

I12
vI=um(W) =

∑
k∈K
{αkPk +mk(um − uk)2} ,

(60)

verifying for all k ∈ [|1, 12|]:

∇WIkvI=um .r1(W) = ∇WIkvI=um .r2(W) = 0.
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• If vI = us: us = λ1 = λ2 = λ6 is an eigenvalue of multiplicity 3; there

are then 11 Riemann invariants:

I1
vI=us(W) = us ;

I2
vI=us(W) = sl ; I3

vI=us(W) = sv ; I4
vI=us(W) = sg ;

I5
vI=us(W) = ml(us − ul) ; I6

vI=us(W) = mv(us − uv) ;

I7
vI=us(W) = mg(us − ug) ;

I8
vI=us(W) = εl + Pl

ρl
+ 1

2
(us − ul)2 ;

I9
vI=us(W) = εv + Pv

ρv
+ 1

2
(us − uv)2 ;

I10
vI=us(W) = εg + Pg

ρg
+ 1

2
(us − ug)2 ;

I11
vI=us(W) =

∑
k∈K
{αkPk +mk(us − uk)2} ,

(61)

verifying for all k ∈ [|1, 11|]:

∇WIkvI=us .r1(W) = ∇WIkvI=us .r2(W) = ∇WIkvI=us .r6(W) = 0.

Proposition 4 (uj ± cj-waves)

Fields associated with eigenvalues λ7 = ul + cl, λ8 = uv + cv, λ9 = ug + cg

and λ10 = us+cs as well as fields associated with λ11 = ul−cl, λ12 = uv−cv,

λ13 = ug − cg and λ14 = us − cs are genuinely non linear and admit 13

Riemann invariants (by noting k ∈ [|1, 13|]):

∇WIkul+cl .r7(W) = ∇WIkuv+cv .r8(W) = ∇WIkug+cg .r9(W) = ∇WIkus+cs .r10(W) = 0
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and

∇WIkul−cl .r11(W) = ∇WIkuv−cv .r12(W) = ∇WIkug−cg .r13(W) = ∇WIkus−cs .r14(W) = 0.

They read, for j ∈ K:

I1
uj±cj

(W) = sj ; I2
uj±cj

(W) = uj ∓
∫ ρj

0

cj(r, sj)

r
dr ;

I3
uj±cj

(W) = αl ; I4
uj±cj

(W) = αs ;

∀k ∈ K \ {j} : I5,6,7
uj±cj

(W) = ρk ; I8,9,10
uj±cj

(W) = uk ;

I11,12,13
uj±cj

(W) = Pk.

(62)

Proposition 5 (uj-waves)

If vI = um(resp. if vI = us): fields associated with eigenvalues λ3 = ul, λ4 =

uv, λ5 = ug, λ6 = us (resp. λ3 = ul, λ4 = uv, λ5 = ug) are linearly

degenerated. They admit 13 Riemann invariants Iuj , j ∈ K (resp. j ∈

K \ {s}):

∀k ∈ K \ {j} : I1
uj

(W) = uj ; I2
uj

(W) = Pj ; I3
uj

(W) = αl ; I4
uj

(W) = αs ;

(resp. ∀k ∈ K \ {s, j} :) I5,6,7
uj

(W) = ρk ; I8,9,10
uj

(W) = uk ;

I11,12,13
uj

(W) = Pk.

(63)
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Remark 7 — Other choices for vI(W,∇αl,∇αs) have been proposed for

instance in [38]. They read:

vI(W,∇αl,∇αs) = v0
I (W) + aI

1,l(W)×∇αl + aI
1,s(W)×∇αs.

for which we may choose for instance the velocity v0
I from equation (20).

Structure of the governing equations for αl and αs will be modified and of

course, proposition 1 should be modified. One should be careful that the

choice of v0
I (W) should lead to uniquely defined jump conditions.

2.1.3. Jump conditions field by field

An isolated discontinuity travelling at speed σ separating two states L

(left) and R (right) is considered. The operator [.] refers to the jump of a

quantity accross the σ-discontinuity, so that [g] = gR − gL.

Proposition 6 (Jump conditions)

Accross an isolated discontinuity travelling at speed σ, the following jump

conditions hold for each genuinely nonlinear p-field, p ∈ [|7, 14|]:

[αk] = 0;

[mk(uk − σ)] = 0;

[mk(uk − σ) + αkPk] = 0;

[αkEk(uk − σ) + αkPkuk] = 0;

[ρk′ ] = 0 ; [uk′ ] = 0 ; [pk′ ] = 0 ∀k′ ∈ K \ {k}.

(64)
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Note that the p-Riemann invariants and the jump conditions coincide for

the linearly degenerate p-fields, p ∈ [|1, 6|]. Except for the coupling wave

associated with λ1,2 = vI , the jump conditions are those of a single-phase

Euler system.

Since the mixture entropy η is defined by η =
∑
i∈K

misi and recalling the

general jump condition for η:

(I) : −σ[η] + [fη] > 0,

the mixture entropy η will also be modified through a σ = uk±ck shock-wave

because of the contribution of the phase k. Indeed, since for any quantity

ϕk′ , [ϕk′ ] = 0 ∀k′ 6= k, (I) reads through a σ = uk ± ck shock-wave:

(I) : −σ[mksk] + [mkskuk] > 0.

As sk increases through a uk ± ck shock-wave, η will also increase.

2.1.4. Connecting solutions through the coupling wave

Analytical solutions are very useful to build some verification test cases for

the model. Let us consider a one-dimensional Riemann problem for system

(45): the solution is a self similar function composed of intermediate states

separated by the p-waves (p ∈ [|1, 14|]) of the system. If it is a very tricky task
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to solve such Riemann problems in a general way (hence giving arbitrary left

and right initial states), an easier way of building analytical solutions however

exists from a given left state by prescribing the wave structure of the system

(from left to right). Indeed, since the sequencing and the nature of waves is

known, each intermediate state can be built step by step. More precisely, for

a given left state in R14 just before any single p-wave, p ∈ [|3, 14|], we can

straightforwardly deduce from Riemann invariants (or jump conditions) the

right state, while enforcing one scalar quantity on the right side.

As far as the coupling 1,2-wave is concerned, for a given left state WL in

R14 and for a given (αRs > 0, αRl > 0, ρRs > 0) with 1 > αRs +αRl , the approach

is the following in the case vI = us.

Step 1: Compute (Xl, Xv, Xg) = (ρRl , ρ
R
v , ρ

R
g ).

Indeed, by introducing the enthalpy hk(ρk, sk) = ε(ρk, sk) + Pk(ρk,sk)
ρk

:

I8
us(W) = I8

us(W
L) = hl(ρ

L
l , s

L
l ) + 1

2
(uLs − uLl )2

= I8
us(W

R) = hl(ρ
R
l , s

R
l ) + 1

2
(uRs − uRl )2.

Since:

sLl = sRl = I2
us(W

L) ; uRl (WL, Xl) = uLs −
I5
us(W

L)

αRl Xl

,

an equation enabling to get Xl as a function of WL and αRl is obtained:

I8
us(W

L) = hl(Xl, I
2
us(W

L)) + 1
2

(
I5
us(W

L)

αRl Xl

)2

.

Similarly, we get Xv and Xg, by solving:
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I9
us(W

L) = hv(Xv, I
3
us(W

L)) + 1
2

(
I6
us(W

L)

(1− αRl − αRs )Xv

)2

and

I10
us (W

L) = hg(Xg, I
4
us(W

L)) + 1
2

(
I7
us(W

L)

(1− αRl − αRs )Xg

)2

.

Step 2: Once (Xl, Xv, Xg) = (ρRl , ρ
R
v , ρ

R
g ) are known, we deduce (PR

l , P
R
v , P

R
g )

such that:

I2
us(W

L) = sl(P
R
l , Xl) ; I3

us(W
L) = sv(P

R
v , Xv) ; I4

us(W
L) = sg(P

R
g , Xg)

and also (uRl , u
R
v , u

R
g ) using:

uRl (WL, Xl) = uLs −
I5
us(W

L)

αRl Xl

,

uRv (WL, Xv) = uLs −
I6
us(W

L)

(1− αRl − αRs )Xv

,

uRg (WL, Xg) = uLs −
I7
us(W

L)

(1− αRl − αRs )Xg

.

Step 3: The remaining unknown PR
s comes from:

I11
us (W

L)−
∑

k∈K\{s}

(αkPk +mk(us − uk)2)R = αRs P
R
s .

Step 4: One should carefully check whether the right state is admissible or not.
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Remark 8 — In the case vI = um, the connection through the coupling

wave λ1,2 is far more complex because Riemann invariants I2
um(W) = ss−sl,

I3
um(W) = ss − sv and I4

um(W) = ss − sg couple all the phases. �

2.2. Symmetrization

Even if our model can not be written in a conservative form, some theo-

retical results hold when symmetrizability is proved : indeed, Kato’s theorem

[37] on quasi-linear symmetric systems induces that, far from resonance, there

exists a unique local-in-time smooth solution to the Cauchy problem.

Proposition 7 (Symmetrization)

We restrict to smooth solutions of (45). Then, system (45) is symmetrizable:

there exists g a C1-diffeomorphism from R14 to R14, g : W 7→ W̃ with:

∂tW̃ + C(W̃)∂xW̃ = 0,

so that there exists S(W̃) a symmetric positive definite matrix satisfying:

S(W̃)∂tW̃ + C̃(W̃)∂xW̃ = 0 ; C̃(W̃) = S(W̃)C(W̃) and C̃ = C̃t.

A general proof by construction, similar to [14, 15] and based on cumbersome

computations, is given in appendix D. Here, we propose a simpler proof,

motivated by [47], but only valid in the one-dimensional case.

Resonance excluded, system (45) is hyperbolic, and thus, diagonalizable.
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By noting L the matrix concatening the left eigenvectors, there exists D a

diagonal matrix so that B = L−1DL and ∂tW + L−1DL∂xW = 0. Then,

the symmetric positive definite matrix S = LtL suits: SB = LtDL is indeed

symmetric and S∂tW + SB∂xW = 0.

Note that in general this proof can not be extended in the multidimensional

case, because, if ∂tW + Bx∂xW + By∂yW = 0, the left eigenvectors of Bx

and By are usually different for real systems coming from fluid mechanics.

3. A few remarks about the model

In this section, only the case vI = us is considered.

Model (45) reads then, when restricting to regular solutions:

∂tαl + us∂xαl = Φl

∂tαs + us∂xαs = Φs

∂tρl + ul∂xρl + ρl∂xul −
ρl(us − ul)

αl
∂xαl = Sρl

∂tρs + us∂xρs + ρs∂xus = Sρs

(k = v, g) ∂tρk + uk∂xρk + ρk∂xuk +
ρk(us − uk)

αk
(∂xαl + ∂xαs) = Sρk

(k ∈ K \ {s}) ∂tuk + uk∂xuk + τk∂xPk = Suk

∂tus + us∂xus + τs∂xPs +
1

ms

(∆Pl∂xαl + ∆Ps∂xαs) = Sus

∂tPl + ul∂xPl + ρlc
2
l ∂xul −

ρlc
2
l (us − ul)
αl

∂xαl = SPl

∂tPs + us∂xPs + ρsc
2
s∂xus = SPs

(k = v, g) ∂tPk + uk∂xPk + ρkc
2
k∂xuk +

ρkc
2
k(us − uk)
αk

(∂xαl + ∂xαs) = SPk

(65)

Subsection 1.3.2 highlighted that the source terms should satisfy constraints
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depending on relative phasic gaps, i.e.:

∆u =


∆ul = us − ul
∆uv = us − uv
∆ug = us − ug

 (see (51));

∆P =

∆Pl = Pl − (Pv + Pg)

∆Ps = Ps − (Pv + Pg)

 (see (52));

∆a =


as − al
as − av
as − ag

 ; ∆aµ =


asµs − alµl
asµs − avµv
asµs − agµg

 .

These dependances are the following:Φl

Φs

 = D∆P , with D symmetric positive definite matrix (see (35));

Sρk = Sρk(∆P ,∆aµ); Suk = Suk(∆P ,∆u,∆aµ);

SPk = SPk(∆P ,∆u,∆a,∆aµ) ∀k ∈ K.

We recall that the previous terms are deduced from the closures satisfying

constraints (35), (37), (39), (40), (43) written in section 1.3.2.

3.1. Preservation of the thermodynamically admissible domain

Let us recall the definition of the thermodynamically admissible domain:

Ek = {(Pk, ρk) ∈ R× R+∗ / εk(Pk, ρk) ≥ 0}.
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We wish to check whether Ek, k ∈ K, is preserved by the convective part of

our model (without source terms) for a given equation of state. We consider

for instance the stiffened gas equation of state for each phase k ∈ K:

Pk + γkΠk = (γk − 1)ρkεk, γk > 1, Πk ≥ 0. (66)

For this equation of state (66), Ek reads:

Ek = {(Pk, ρk) ∈ R× R+∗/Pk > −Πk}.

Let us define Pk = mkεk−Πkαk. Note that Pk ≥ 0 is equivalent to (Pk, ρk) ∈

Ek. Thus, we aim to study the sign of Pk for each phase k ∈ K by writting

an equation on Pk from εk (see (84) in appendix A) with vI = us.

For k ∈ K:

∂tPk + uk∂xPk + Pk (γk∂xuk + (γk − 1)(uk − us)∂x(ln(αk)) = 0. (67)

Equation (67) can be rewritten as:

∀k ∈ K, ∂tPk + uk∂Pk + γkPk∂xvk = 0,

by defining:

∂xvk = ∂xuk +
(γk − 1)

γk
(uk − us)∂x(ln(αk)).

Using a classical lemma proved in [48], the following proposition holds:
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Proposition 8 (Preservation of Ek for a smooth solution)

Considering T > 0 and a 1-D spatial domain Ω ⊂ R, under the following

assumptions:

• uk ∈ L∞([0, T ]× Ω),

• ∂xuk + (γk − 1)(uk − us)∂x(ln(αk)) ∈ L∞([0, T ]× Ω) for k ∈ K,

since initial conditions ensure an admissible thermodynamical state for all

phases, i.e.:

• Pk(t = 0, x) ≥ 0 ∀k ∈ K;

• Pk(t > 0, x ∈ Γ−k (t)) ≥ 0 ∀k ∈ K,

with Γ−k (t) = {x ∈ ∂Ω/ (uk.n)(t, x) < 0},

then, Ωk is preserved within time for all phases for a regular solution,

i.e.:

Pk(0 ≤ t ≤ T, x) ≥ 0 ∀k ∈ K.

Remark 9 — Recalling that vI = us, for solutions with discontinuities, it

can be proved, following an approach very similar to [10], that the solution

of a one-dimensional Riemann problem with stiffened gas equation of state

for all phases will remain physically relevant, since the connection of states

through the waves of the system ensures that 0 ≤ αk, 0 ≤ mk and 0 ≤ Pk.�
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3.2. Preservation of pressure equilibria

An important requirement for the model is the preservation of pressure

equilibria. Then, when taking the following uniform state as initial conditions

in (65) without mass source terms:

uk = 0 ∀k ∈ K;

Pl = Ps = P0;

Pv = P̃0 ; Pg = P0 − P̃0;

Tk = T0 ∀k ∈ K,

(68)

since ∂xuk = ∂xPk = 0 and uk = 0 for all k ∈ K, pressure equilibria are

indeed maintained within time, regardless of ∂xαl and ∂xαs at time t = 0.

3.3. Effects of the pressure relaxation

Without mass, momentum and energy transfer and without convection

terms (i.e. ”∂x = 0”), the system should naturally relax towards pressure

equilibria Pl = Pv + Pg = Ps.

Still assuming now that vI = us, and recalling the admissible form for Φl

and Φs (35), model (18) without convection and without mass, momentum
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and energy source terms reads:

∂t

αl
αs

 = D

∆Pl

∆Ps


∂t(mk) = 0

∂t(mkuk) = 0

∂t(αlEl) + Pl∂tαl = 0

(k = v, g) ∂t(αkEk)− Pk(∂tαs + ∂tαl) = 0

∂t(αsEs)−∆Pl∂tαl + (Pv + Pg)∂tαs = 0,

(69)

where D is a symmetric positive definite matrix. From equations on αkEk,

equations on phasic pressures can be written (see appendix A), by noting

Ak =
ρkc

2
k

αk
:

 ∂tPk + Ak∂tαk = 0 (k = l, v, g),

∂tPs − (αsρs∂Psεs)
−1∆Pl∂tαl + {As − (αsρs∂Psεs)

−1∆Ps} ∂tαs = 0.
(70)

Then, equations on ∆Pl = Pl−(Pv+Pg) and ∆Ps = Ps−(Pv+Pg), expressing

the deviation from pressure equilibria, are obtained:

∂t

∆Pl

∆Ps

+AD

∆Pl

∆Ps

 = 0, (71)

with:

A(∆Pl,∆Ps) =

 Alvg Avg

Avg −Bs∆Pl Avgs −Bs∆Ps

 , (72)
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where Avg = Av+Ag, Alvg = Al+Avg , Avgs = Avg+As andBs = (ms∂Psεs)
−1.

∆Pl and ∆Ps are coupled, so that we are not able to analytically solve the

previous system. An approximated resolution is proposed, by considering a

frozen convection matrix A∗D∗, obtained by freezing ∆Pl and ∆Ps. It leads

to the following simplified system:

∂t

∆Pl

∆Ps

+A∗D∗
∆Pl

∆Ps

 = 0, (73)

with A∗ the following matrix, independent from ∆Pl and ∆Ps at time t:

A∗ =

 A∗lvg A∗vg

A∗vg −B∗s∆P ∗l A∗vgs −B∗s∆P ∗s

 (74)

and

D∗ =

d∗11 d∗12

d∗12 d∗22

 , d∗11 > 0, d∗22 > 0, d∗12 =
√
d∗11d

∗
22 sin(θ), θ ∈ R. (75)

Then, studying the spectrum of A∗D∗ gives pressure relaxation conditions.

From now, .∗ on the matrix coefficients will be omitted in the computations

for a sake of readibility and the two eigenvalues of A∗D∗ are noted λ±.

We assume from now that the equation of state for phase ”s” is such that:

∂Psεs > 0. One can now exhibit conditions ensuring relaxation, depending

on the type of eigenvalues:

• if λ± ∈ R, there are two conditions:

λ+ + λ− = tr(A∗D∗) > 0 (76)
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and

λ+λ− = det(A∗D∗) ≥ 0. (77)

• otherwise, only condition (74) is required; condition (75) is automat-

ically fulfilled since λ+λ− = |λ±|2 = det(A∗D∗); moreover, condition

(74) is sufficient in order to ensure the return towards pressure equilib-

ria; however, oscillations may occur in some areas of the domain since

Im(λ±) 6= 0.

Since det(D) > 0, (75) requires that det(A∗) ≥ 0. Hence, the following two

quantities must be positive:

tr(A∗D) = d11Alvg + 2d12Avg + d22Avgs

− Bs

{
d12∆P ∗l + d22∆P ∗s

}
= d11Al + d22As + Avg(d11 + d22 + 2d12)︸ ︷︷ ︸

>0

− Bs

{
d12∆P ∗l + d22∆P ∗s

}
,

(74)

det(A∗) = AlvgAvgs − A2
vg

+ Bs

{
Avg∆P

∗
l − Alvg∆P ∗s

}
= AlAs + AlsAvg

+ Bs

{
Avg∆P

∗
l − Alvg∆P ∗s

}
.

(75)

Now, we introduce |∆P | = max(|∆Pl|, |∆Ps|) and only the worst case will

be considered for each condition to obtain a sufficient constraint on |∆P |:

• for (74), the worst case occurs when d12∆Pl > 0 and ∆Ps > 0 and we
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get:

|∆P | < d11Al + d22As + Avg(d11 + d22 + 2d12)

Bs(|d12|+ d22)
= S1︸︷︷︸

>0

. (76)

• for (75), the worst case occurs when ∆Pl < 0 and ∆Ps > 0 and we get:

|∆P | < AlAs + AlsAvg
Bs(Avg + Alvg)

= S2︸︷︷︸
>0

; (77)

The previous observations are summarized in the following proposition:

Proposition 9 (Threshold effect for pressure relaxation)

Since the equation of state of phase ”s” is such ∂Psεs > 0, the relaxation sys-

tem relaxes towards equilibrium when initial pressure gaps are small enough.

A threshold effect is thus observed: pressure relaxation is ensured as soon as

|∆P | = max(|∆Pl|, |∆Ps|) is bounded as follows, depending on the type of

λ±, the eigenvalues of the system (73):

• |∆P | < min(S1,S2) if λ± ∈ R;

• |∆P | < S1 otherwise.

Remark 10 — Orders of magnitude for S1 and S2 are now evaluated for

data close to primary nuclear reactor conditions by considering stiffened gas

equations of state for all components. This coarse assumption is still rea-

sonable for liquid water and liquid metal at high pressures. Moreover, we
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assume that d12 = 0. In this case, (76) becomes:

|∆P | < d11Al + d22As + Avg(d11 + d22)

Bsd22

= S1.

In particular, since Al, Avg and dkk are all positive:

S1 ≥ AsB
−1
s .

Furthermore:

S2 ≥
AsAlvg
2BsAlvg

=
1

2
AsB

−1
s .

For a stiffened gas, B−1
s =

αs
γs − 1

i.e. AsB
−1
s =

ρsc
2
s

γs − 1
. Uranium dioxyd is

taken as metal field s so that ρs ' 10900 kg.m−3 and cs ' 1800 m.s−1.

Moreover, γs − 1 ' 1. Finally:

min(S1,S2) ≥ 1

2
AsB

−1
s ' 105 bar.

It means that the maximal phasic pressure gap |∆P | needs to be smaller

than a huge value of pressure. Then, both constraints (76) and (77) are thus

not limiting for our targeted applications. �

Remark 11 — Let us recall that the present model belongs to a model

family. A pressure relaxation process has already been exhibited for models

with two or three fields. We sum up in table 1 remarkable behaviors that

have been observed in previous works. For barotropic models (without energy

equation), pressure relaxation is ensured unconditionaly, whereas for models
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Nb
phases

Fields Model type Threshold
effect ?

Oscillations
?

Ref

2 liquid +© vapor Barotropic No No [49], see
(78) in
item (i)

2 liquid +© vapor With Energy Yes No [36] (ap-
pendix

A2)

2 liquid +© (vapor+gas) With Energy Yes No [15], see
(79) in

item (ii)

3 liquid +© vapor +© metal Barotropic No May
exist

(stable)

[3]

3 liquid +© vapor +© metal With Energy Yes May
exist

(stable)

[36]

3 liquid +© (vapor+gas) +©
metal

With Energy Yes May
exist

(stable)

(73)

Table 1: Classical behaviors concerning the pressure relaxation for models with two or
three phases. φ1 +© φ2 means that φ1 and φ2 are two immiscible fields whereas φ1 + φ2

means that φ1 and φ2 are miscible. A threshold effect appears in some cases: pressure
relaxation is ensured only if the initial pressure gap(s) is (are) small enough. Pressure
relaxation can be uniform towards 0, or some oscillations may occur in some area of the
domain. For each model, a bibliographic reference [.] describing the considered model is
given. When the pressure relaxation is not explained in [.], the suitable equation is recalled
in the present document (the corresponding equation number is given in (.)).

with an energy equation, a threshold effect appears, i.e. relaxation occurs

only if the initial pressure gap(s) is (are) small enough. Pressure relaxation

is uniform only in the two-phase flow case. When three phases coexist, os-

cillations may occur in the relaxation process.

We briefly comment table 1 as follows. We insist on the difference between
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fields and phases: a phase is a field or the mixture of two (or more) miscible

fields.

(i) We recall the relaxation pressure equation for a barotropic model with

two immiscible phases (l and v), which can be very easily obtained from

the model described for instance in [49]. By noting ∆P = Pl − Pv and

still neglecting spatial derivatives, we get:

∂t∆P +

(∑
k=l,v

ρkc
2
k

αk

)
d̃∆P = 0, d̃ > 0. (78)

As
∑
k=l,v

ρkc
2
k

αk
> 0, ∆P unconditionally and uniformly relaxes.

(ii) Then, the model proposed in [15] is also a two phase flow model, with

three fields (l, v, g), whose two are miscible gases (v and g). There is

only one ”efficient” pressure gap ∆Pl = Pl − (Pv + Pg). The obtained

pressure relaxation equation is then very similar to (78), except that

an additional term appears since the model is no more barotropic:

∂t∆Pl +

( ∑
k=l,v,g

ρkc
2
k

αk
+ (ml∂Plεl)

−1∆Pl

)
d̂∆Pl = 0, d̂ > 0. (79)

Pressure relaxation process occurs when the following constraint is sat-

isfied:

|∆P t=0
l | < ml∂Plεl

∑
k=l,v,g

ρlc
2
k

αk
. (80)

Once the previous constraint fulfilled, for this hybrid model, pressure

uniformly relaxes without oscillations, unlike for the four-field model

studied in this work with three ”real” phases (73). �
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Conclusion

A three-phase flow model with four components has been proposed and

studied, with both immiscible phases (liquid water, liquid metal and gaseous

phase) and miscible phases (steam and non-condensable gas). The whole

modelling approach has been presented, by specifying step by step the con-

sequences of each additional assumption. On the one hand, the choice of a

mixture entropy enforces unique closures for the non-conservative terms of

the equations: the model is then uniquely defined, up to some relaxation time

scales to be prescribed by the user. On the other hand, particular choices

for the interfacial velocity vI lead to a linearly degenerate coupling wave and

thus uniquely defined jump conditions, independently from the chosen clo-

sure for (Πkk′)k,k′∈K (i.e. the LD-property holds even with another definition

of the entropy as (9)).

A particular admissible submodel has been deeply studied: the case

vI = us. The model is hyperbolic, complies with the second principle of

thermodynamics and admits uniquely defined jump conditions, which en-

ables to build analytical solutions.

Despite the hybrid miscibility conditions, no major mathematical diffi-

culty appears, comparing with the immiscible three-phase flow model [10].

Still, note that the Dalton’s law holds here: the relevant pressure gaps to con-

sider for our present model are Pl − (Pv + Pg) and Ps − (Pv + Pg). However,

the direct generalization to models with more than three phases and hybrid

miscibility constraints is not obvious; whereas properties like the convexity

of the entropy or the existence of a symmetric form for the convective sys-

tem, have been proved in [14] for multiphasic barotropic models containing
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N immiscible pure phases, with N arbitrarily large.

The next step will obviously concern the numerical approximation of the

present model.

Restricting to the approximation of the convective part, rough schemes,

for instance those currently implemented in [3, 36] in order to obtain approxi-

mate solutions of immiscible three-phase flow models [9, 10], are not accurate

enough : they require too fine meshes that are hardly affordable for industrial

multi-dimensional applications. Thus they should be clearly improved using

more accurate schemes. Actually, while restricting to two-phase flow models,

we recall that the numerical scheme, initially developped in [32, 50] for the

two-phase flow case with immiscible components, has been indeed much im-

proved, both in terms of accuracy and stability, using the relaxation scheme

[51, 52]; a detailed comparison of the latter with other schemes, namely

the approximate Godunov solver [53], and the HLLC scheme [54], confirmed

its advantages and strong potentialities. Moreover, a recent accurate and

efficient relaxation scheme has been proposed in [55] for the barotropic im-

miscible three-phase flow model [9], which is precisely an extension of the

one developped in [51, 52] for two-phase flows with immiscible components.

This new relaxation scheme relies on the properties of the coupling wave:

such a method should certainly be suitable for our model too, thanks to the

properties listed in section 3.

Relaxation procedures to tackle the source terms require additional ef-

forts. The strategy developed in [3, 36] still relies on the use of the frac-

tional step method (used in [50]), and treats separately convective terms and
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source terms. The latter contain the velocity pressure relaxation step which

is rather tricky (see also [56] for similar issues). Moreover, these techniques

might certainly be improved, while getting rid of the fractional step strategy,

and introducing a more coupled numerical approach, as suggested by [57].

Obviously, a lot of work has still to be done on these aspects.

In order to avoid introducing a fourth field with its own velocity for the

non-condensable gas as done in the present work, another idea might be to

consider a three-phase flow model with three immiscible phases like in [10],

and to replace the vapor water by a miscible mixture of vapor water and

non-condensable gas with a unique velocity and a unique mixture equation

of state. The main difficulty is then to build this mixture equation of state

for the miscible gaseous phase, complying with the second principle and en-

abling to manage the phase transition for water.

Modelling the phase transition as a chemical reaction like in [58] would per-

haps enable to treat the gaseous phase. However, it would require a entire

new work, to completely study the compatibility of such thermodynamical

hypotheses with the current formalism (in particular, the fact that we have

an energy equation for each phase contrary to [58]) and its consequences in

terms of hyperbolicity.

The mixture equation of state for the gaseous phase could also be built with

the same guidelines as those used for instance in [21, 27]. A first step would

be to develop a bifluid two-phase flow model based on [19], with such an EOS

for the miscible mixture of non-condensable gas and vapor water. If this ”hy-

brid” two-phase flow model (with both miscible and immiscible phases) had
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all the required properties, it would certainly be interesting to consider the

extension of this approach to a three-phase flow hybrid model (with both

miscible and immiscible components).
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Appendix

A. Entropy equality

A smooth solution is considered. From (18), additional phasic equations

can be written for density, velocity:

∂tρk + uk.∇ρk + ρk∇.uk +
ρk
αk

(uk − vI).∇αk =
Γk − ρkΦk

αk
; (81)

∂tuk + uk.∇uk + τk∇Pk

+
1

mk

(Pk∇αk +
∑
k′ 6=k

Πkk′∇αk′) =
SQk − ukΓk

mk

.
(82)

The governing equation for the kinetic energy can then be deduced:

∂t

(
mku

2
k

2

)
+∇.

(
mku

2
k

2
uk

)
+ αkuk.∇Pk + Pkuk.∇αk

+
∑
k′ 6=k

Πkk′uk.∇αk′ = uk.(SQk −
Γkuk

2
).

(83)

Recalling the definition of the total energy Ek (2), the equation on internal

energy can be written by substracting the total energy equation and the
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previous kinetic energy equation :

∂tεk + uk.∇εk +
Pk
ρk
∇.uk +

(vI − uk)

mk

∑
k′ 6=k

Πkk′∇αk′

=
1

mk

(SEk +
∑
k′ 6=k

Πkk′Φk′ − uk.(SQk −
Γkuk

2
)︸ ︷︷ ︸

Sεk

−εkΓk). (84)

The internal energy is the equation of state, given in the (Pk, ρk)-plane.

Dependance on P can then be explicitely written from the previous equation,

since εk(Pk, ρk):

∂tPk + uk.∇Pk + ρkc
2
k∇.uk

+
∂εk
∂Pk

∣∣∣∣−1

ρk

(vI − uk)

mk

(∑
k′ 6=k

Πkk′∇αk′ + ρ2
k

∂εk
∂ρk

∣∣∣∣
Pk

∇αk

)

=
1

mk

∂εk
∂Pk

∣∣∣∣−1

ρk

(
Sεk − εkΓk + ρk

∂εk
∂ρk

∣∣∣∣
Pk

(ρkΦk − Γk)

)
= SPk .

(85)

The entropy definition sk(ρk, Pk) (4) can now be used to deduce the phasic

specific entropy equation:

∂tsk + uk.∇sk + ak
(vI − uk)

mk

(∑
k′ 6=k

Πkk′∇αk′ + Pk∇αk

)
=

∂s

∂Pk

∣∣∣∣
ρk

SPk +
∂sk
∂ρk

∣∣∣∣
Pk

Γk − ρkΦk

αk
.

(86)

The definition of mixture entropy (9) gives the mixture entropy governing

equation.
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B. Unicity of (Kkk′)k,k′∈K for a given vI

Minimal entropy dissipation (12) reads:

Aη(Y, (∇αk)k∈K) = 0

i.e.
∑
k∈K

T−1
k (vI − uk).

(∑
k′ 6=k

Πkk′(Y)∇αk′ + Pk∇αk

)
= 0.

(87)

There are three independent relative velocities, for instance:

us − ul ; us − uv ; us − ug.

Because of miscibility constraints (15), there are only two independent gra-

dients, for instance:

∇αl;∇αs,

and it reads:

∇αv = −∇αl −∇αs = ∇αg.

Finally, Aη(Y,∇αk) = 0 reads:

Allη (us − ul).∇αl + Alsη (us − ul).∇αs
+ Avlη (us − uv).∇αl + Avsη (us − uv).∇αs
+ Aglη (us − ug).∇αl + Agsη (us − ug).∇αs = 0,

(88)

which implies in fact six constraints:

Allη = 0; Alsη = 0; Avlη = 0; Avsη = 0; Aglη = 0; Agsη = 0, (89)
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where, for k ∈ {l, s}:

Alkη = (1− βl)alKlk − βlavKvk − βlagKgk − βlasKsk −Sk
2,

Avkη = −βvalKlk + (1− βv)avKvk − βvagKgk − βvasKsk −Sk
3,

Agkη = −βgalKlk − βgavKvk + (1− βg)agKgk − βgasKsk −Sk
4,

(90)

where:

Sl =


0

Sl
2

Sl
3

Sl
4

 =


0

−alPl(1− βl)− avPvβl − agPgβl
alPlβv + avPv(1− βv)− agPgβv
alPlβg − avPvβg + agPg(1− βg)

 ;

Ss =


0

Ss
2

Ss
3

Ss
4

 =


0

−avPvβl − agPgβl + asPsβl

avPv(1− βv)− agPgβv + asPsβv

−avPvβg + agPg(1− βg) + asPsβg

 .

Moreover, the balance momentum constraint (8) gives two additional equa-

tions:

Kll +Kvl +Kgl +Ksl = 0 ; Kls +Kvs +Kgs +Kss = 0. (91)

Finally, for given βk, (Kkk′)k,k′∈K are solutions of the following system:

 M 04×4

04×4 M

K =

Sl

Ss

 , (92)
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with:

M =


1 1 1 1

(1− βl)al −βlav −βlag −βlas
−βval (1− βv)av −βvag −βvas
−βgal −βgav (1− βg)ag −βgas

 ,

K = (Kll, Kvl, Kgl, Ksl, Kls, Kvs, Kgs, Kss)
t.

As:

det

 M 04×4

04×4 M

 = (alavasβg+alagasβv+avagasβl+alavagβs)
2 6= 0, (93)

the system (92) is inversible. The final solution is given by (19).

C. Eigenvectors of the system (45)

It must be reminded that αl and αs can not be equal to 0 or 1. Eigen-

vectors can be exhibited independently from the chosen mixture entropy (i.e.

without expliciting (Πkk′)k,k′∈K). Recalling:

∆uk = vI − uk ∀k ∈ K;

we use the following notations in the sequel, with i ∈ {l, s}, j ∈ {v, g}, k ∈

{l, s}:

xkρi =
1

αi((∆ui)2 − c2
i )

[
−ρi(∆ui)2 + (Pi +Kik){1 + (∂Piεi)

−1τi}
]

;

xkui =
∆ui

αi((∆ui)2 − c2
i )

[
−ci2 + τi(Pi +Kik){1 + (∂Piεi)

−1τi}
]

;

54



xkPi =
1

αi((∆ui)2 − c2
i )

[
−ρi(∆ui)2ci

2 + (Pi +Kik){c2
i + (∆ui)

2(∂Piεi)
−1τi}

]
;

zkρi =
1

αi((∆ui)2 − c2
i )

[
Kik{1 + (∂Piεi)

−1τi}
]

;

zkui =
∆ui

αi((∆ui)2 − c2
i )

[
τiKik{1 + (∂Piεi)

−1τi}
]

;

zkPi =
1

αi((∆ui)2 − c2
i )

[
Kik{c2

i + (∆ui)
2(∂Piεi)

−1τi}
]
.

ykρj =
1

αj((∆uj)2 − c2
j)

[
ρj(∆uj)

2 + (Kjk − Pj){1 + (∂Pjεj)
−1τj}

]
;

ykuj =
∆uj

αj((∆uj)2 − c2
j)

[
cj

2 + τj(Kjk − Pj){1 + (∂Pjεj)
−1τj}

]
;

ykPj =
1

αj((∆uj)2 − c2
j)

[
ρj(∆uj)

2cj
2 + (Kjk − Pj){c2

j + (∆uj)
2(∂Pjεj)

−1τj}
]

;

Eigenvectors rk for the homogeneous system (45) are given below, with the

same order as in (56) (resonance is excluded).

r1 = (1, 0, xlρl , x
l
ul
, xlPl ,

ylρv , y
l
uv , y

l
Pv
,

ylρg , y
l
ug , y

l
Pg
,

zlρs , z
l
us , z

l
Ps

);

r2 = (0, 1, zsρl , z
s
ul
, zsPl ,

ysρv , y
s
uv , y

s
Pv
,

ysρg , y
s
ug , y

s
Pg
,

xsρs , x
s
us , x

s
Ps

);
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r3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t ; r4 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)t;

r5 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)t ; r6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)t;

r7 = (0, 0,
ρl
cl
, 1, ρlcl, 0, 0, 0, 0, 0, 0, 0, 0, 0)t ; r8 = (0, 0, 0, 0, 0,

ρv
cv
, 1, ρvcv, 0, 0, 0, 0, 0, 0)t;

r9 = (0, 0, 0, 0, 0, 0, 0, 0,
ρg
cg
, 1, ρgcg, 0, 0, 0)t ; r10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ρs
cs
, 1, ρscs)

t;

r11 = (0, 0,−ρl
cl
, 1,−ρlcl, 0, 0, 0, 0, 0, 0, 0, 0, 0)t ; r12 = (0, 0, 0, 0, 0,−ρv

cv
, 1,−ρvcv, 0, 0, 0, 0, 0, 0)t;

r13 = (0, 0, 0, 0, 0, 0, 0, 0,−ρg
cg
, 1,−ρgcg, 0, 0, 0)t ; r14 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−ρs

cs
, 1,−ρscs)t.

D. Symmetrization

The proof for the symmetrization of system (45) is given in the multidi-

mensional case. It is a direct extension of the proofs presented in [14] or [15].

The case vI = um is treated, but the case vI = us would have been very

similar.

A different state vector as (44) is considered :

W̃ = (αl, αs, sl, ul, Pl, sv, uv, Pv, sg, ug, Pg, ss, us, Ps)
t. (94)

The associated convective matrix B̃(W̃) keeps the same structure as (46);

only the block matrices Bk, k ∈ K should be slightly modified and replaced
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by B̃k:

∀k ∈ K, B̃k =


uk 0 0

0 uk τk

0 ρkc
2
k uk

 . (95)

We aim to build a suitable matrix S enabling to symmetrize the system. We

assume a particular block symmetric structure for S:

S =



a2
0Id2×2 Ml

t Mv
t Mg

t Ms
t

Ml Dl 03×3 03×3 03×3

Mv 03×3 Dv 03×3 03×3

Mg 03×3 03×3 Dg 03×3

Ms 03×3 03×3 03×3 Ds


;∀k ∈ K,Dk =


1 0 0

0 ρ2
kc

2
k 0

0 0 1

 , (96)

with a0 ∈ R and Mk ∈ R3×2, k ∈ K, satisfying some constraints to deter-

mine.

• Step 1 of the proof: SB̃ is symmetric:

Imposing SB̃ = B̃tS induces some conditions:

1. DkB̃k = B̃ktDk for any k ∈ K, which can be easily checked;

2. B̃k
tMk = vIMk +DkCk:

excluding resonance conditions (i.e. if |uk − um| 6= ck) and since

um 6= uk, (B̃k
t−vIId3×3) is inversible, a suitable definition forMk

is obtained:

Mk = (Bkt − vIId3×3)−1DkCk; (97)

3. a2
0vIId2×2 +

∑
k∈K
Mk

tCk = a2
0vIId2×2 +

∑
k∈K
CktMk:

one can check that for any k ∈ K, Mk
tCk = CktMk, thanks
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to the previous definition for Mk and the property DkB̃k
n

=

(B̃k
n
)tDk, n ∈ N.

• Step 2 of the proof: S is semi-definite positive:

Using the block structure, S can be rewritten as follows:

S =

a2
0Id2×2 Mt

M D

 ; M∈ R12×2; D ∈ R12×12.

Consider the quadratic form Ψ associated to S: Ψ : X = (x, y) ∈

R2×12 7→ X tSX = a2
0||x||2+2xtMty+ytDty. We will impose conditions

so that Ψ(x, y) > 0 ∀(x, y) 6= (0, 0).

If x = 0 and y 6= 0 or x 6= 0 and y = 0, ϕ(x, y) > 0. We assume from

now x 6= 0 and y 6= 0. Moreover, we introduce v = y
||x|| , z = x

||x|| and D 1
2

the square root matrix of D (since D is diagonal with strictly positive

eigenvalues):

Ψ(x, y) = ||x||2
(
a2

0 + 2(D− 1
2Mz)tD 1

2v + (D 1
2v)t(D 1

2v)
)

= ||x||2
(
||D 1

2v + (ztMtD− 1
2 )t||2 + a2

0 − ||D−
1
2Mz||2

)
.

The following constraint on a0 is obtained:

∀z, a2
0 − ||ztMtD−

1
2 ||2 > 0, (98)

which leads to the following sufficient condition, where ρ(.) denotes the
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spectral radius of a matrix:

a0 ≥ ρ(MtD−
1
2 ). (99)

Finally, by multiplying on the left system (45) by S defined in (96) and

fulfilling both (97) and (99), we get as expected a symmetric system.
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