
A Tool for the Coverability Problems in Petri Nets
Alain Finkel1, Serge Haddad12, and Igor Khmeniltsky12

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
{finkel,haddad,khmelnitsky}@lsv.fr

2 Inria, France

Goals of CovMin. Petri nets are an infinite-state model for specification and verification of
concurrent systems. An important generic problem of this model is coverability, which asks
the following question: Given a Petri net N and two markings m0,mt ∈ Np, does there exist
a firing sequence σ such that m0

σ−→ m′ ≥ mt. Another related problem, is the coverability
set problem which asks: Given a Petri net N and an initial marking m0, produce a finite set
Clover(N ,m0) of markings such that a marking m is coverable iff there exists an ω-marking
m′ ∈ Clover(N ,m0) such that m′ ≥ m. The computational complexity of these problems is
very high: The coverabilty problem is EXPSPACE-complete while the size of the coverabilty
set may be non primitive recursive. The tool CovMin was designed to efficiently solve these
problems.
Functionalities of CovMin. The coverability set problem was first solved by the Karp-Miller’s
algorithm [5]. However the space requirement of this algorithm may be huge. To address this
issue, Alain Finkel designed a new algorithm (denoted AF) [2] Unfortunately, it was shown
that this algorithm was incomplete [3]. Thus there were a few attempts ([7],[6],[4]) to fix this
algorithm by keeping more information during the execution. However the size of this extra
memory may be non primitive recursive. In a paper submitted to an international conference, we
design an algorithm that fixes the AF using at most 2-EXPSPACE of extra memory by reification
of accelerations. Furthermore CovMin solves the coverability problem via the coverability set.
Technical details. CovMin was implemented in Python 3.7 using the Numpy and the Z3-
solver libraries, and it is around 2000 lines of code. As input CovMin imports Petri net in .spec
format from Mist. CovMin and the benchmarks discussed below can be found here: https:
//github.com/IgorKhm/MinCov.
Benchmarks. All the benchmarks were performed on a single computer equipped with Intel
i5-8250U CPU with 4 cores, 16 GB of memory and Ubuntu Linux 18.03.
• Minimal coverability set: We compare CovMin with the tool MP [6], the tool VP [7] and
the original algorithm AF. Both MP and VP tools were sent to us by the courtesy of the authors.

We ran two types of benchmarks: (1) 123 standard benchmarks from the literature Table 1,
(which were taken from [1]); (2) 100 randomly generated Petri nets Table 1. The execution
time of the tools was limited to 900 seconds.

Each of these tables is a summary of all the instances of the benchmarks. The first column
shows the number of instances that the tool timed out on. The next two columns only consider
the instances that didn’t time out on any of the tools. The second column consists of the total
time. The third one consists of the peak number of nodes where for CovMin we also took into
account the number of accelerations.

In the benchmarks from the literature we observed that the instances that timed out from
CovMin are included in those of AF and MP. However there were instances that timed out on VP
but did not time out on CovMin and vice versa. W.r.t. memory requirements AF and CovMin
have the least number of nodes. CovMin is the second fastest tool, and compared to VP it is 2.6
times slower. A possible explanation would be that VP is implemented in C++. To get a fairer
comparison, we counted for VP and CovMin the number of comparisons between two ω-markings
and observed that VP has approximatively 1.5 less comparisons then CovMin.

https://github.com/pierreganty/mist/wiki#input-format-of-mist
https://github.com/IgorKhm/MinCov
https://github.com/IgorKhm/MinCov


MinCov - a tool for coverability in Petri nets Finkel, Haddad and Khmelnitsky

Table 1: Benchmarks for the clover construction.
Benchmarks from the literature Random benchmarks

T/O #Nodes Time

CovMin 16/123 48218 391
AF 19/123 45660 431
VP 15/123 75225 163
MP 24/123 478681 2304

T/O #Nodes Time

CovMin 14/100 61164 225
AF 16/100 63275 302
VP 15/100 208134 16
MP 21/100 755129 2818

• Coverability: We compare CovMin to the tool qCover [1] on the set of benchmarks from
the literature Table 2. We split the results into safe instances (coverable) and unsafe ones (not
coverable). In both categories we counted the number of instances that the tools successfully
verified and the total time it took to run the instances that did not time out.

Table 2: Benchmarks for the coverability problem.

Time Unsafe T/O Unsafe Time safe T/O safe

CovMin 854 1/60 3623 53/115
qCover 3067 26/60 1965 11/115
CovMin ‖ qCover 41 2/60 3593 11/115

We observed that the two tools are complementary, i.e. qCover is faster at proving that
an instance is safe and CovMin is faster at proving that an instance is unsafe. Therefore, by
splitting the processing time between them we get better results. The third row of Table 2
represents this parallel execution, where the time for each instance is computed as follows:
Time = 2min (Time(CovMin),Time(qCover)). We got that combining both tools is 7 times
faster than qCover and 10 times faster than CovMin (where we add 900 seconds for each instance
that timed out). This confirms the above statement. We could still get better results by
dynamically deciding which ratio of CPU to be shared between the tools depending on some
predicted status of the instance.

References
[1] Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the coverability

problem continuously. In Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 480–496, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[2] A. Finkel. The minimal coverability graph for petri nets. In Advances in Petri Nets 1993, 1993.
[3] Alain Finkel, Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. A counter-example

the the minimal coverability tree algorithm. Technical Report 535, Université Libre de Bruxelles,
Belgium, 2005.

[4] G. Geeraerts, A. Heußner, M. Praveen, and J.-F. Raskin. ω-Petri nets: algorithms and complexity.
Fundamenta Informaticae, 137(1):29–60, 2015.

[5] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System Sciences,
3(2):147–195, 1969.

[6] P.-A. Reynier and F. Servais. Minimal coverability set for Petri nets: Karp and Miller algorithm
with pruning. Fundamenta Informaticae, 122(1–2):1–30, 2013.

[7] A. Valmari and H. Hansen. Old and new algorithms for minimal coverability sets. Fundamenta
Informaticae, 131(1):1–25, 2014.

2


