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Abstract

Data Centers (DCs) need to manage their servers periodically to meet user demand efficiently. Since the cost of the energy
employed to serve the user demand is lower when DC settings (e.g. number of active servers) are done a priori (proactively), there
is a great interest in studying different proactive strategies based on predictions of requests. The amount of savings in energy cost
that can be achieved depends not only on the selected proactive strategy but also on the statistics of the demand and the predictors
used. Despite its importance, due to the complexity of the problem it is difficult to find studies that quantify the savings that
can be obtained. The main contribution of this paper is to propose a generic methodology to quantify the possible cost reduction
using proactive management based on predictions. Thus, using this method together with past data it is possible to quantify the
efficiency of different predictors as well as optimize proactive strategies. In this paper, the cost reduction is evaluated using both
ARMA (Auto Regressive Moving Average) and LV (Last Value) predictors. We then apply this methodology to the Google dataset
collected over a period of 29 days to evaluate the benefit that can be obtained with those two predictors in the considered DC.

Index Terms

data centers management, proactive management, machine learning, prediction, energy cost, ARMAX

I. INTRODUCTION

The problem of managing Data Centers (DC) and clouds optimally, in the sense that the user demand can be met with a
minimal energy cost, remains a major issue [1]. Within this paradigm, the use of predictive models could be useful to improve
the management. Previous studies have proposed DC management models. In the scope of this paper, we evaluate the energy
cost reduction brought by predicting job arrivals and their resource requests in terms of processing capacity and memory,
considering that having knowledge of the number of requests to come can greatly help job placement and scheduling, thus DC
node management, and then reduce the global energy consumption of the DC.

Diverse approaches to obtain predictive models of DCs have been studied recently, as we will see in Section II. Among the
most popular methods with the comparatively lowest prediction errors are the predictive ARMAX (ARMA with eXogenous
signal) family models. In this paper, we study the bounds of the improvement in terms of energy cost that can be
obtained using proactive strategies for DC management based on predictive models. The savings that can be obtained
are numerically evaluated on a real DC dataset [2], [3], made publicly available by Google. These traces were collected
in an operational DC over 29 days. Having traces of a real DC is an excellent opportunity for researchers to improve DC
management, obtain models for testing placement and scheduling algorithms before their deployment in real DCs.

This paper is organized as follows. In Section II, the state of the art in request prediction is described. In Section III, the
energy cost is defined as the sum of two components: a proactive one based on the request prediction, and a reactive one
which is paid only in case of request under-estimation. With this energy cost model, we compare the energy cost reduction
brought by an ARMAX predictor and this given by the Last Value (LV) predictor, which predicts that the next value will be
the same as the current one. Based on the Last Value predictor, which corresponds to pure reactive action, the method for
obtaining the bound of energy saving attainable is presented. In Section IV, the ARMAX family of predictive models, which
is among the most accepted models for request prediction, is analyzed. The conditions of linearity, steady state and residence
time, which are all needed to apply ARMAX models, are expressed. In section V, the parameters of these ARMA models are
tuned recursively, based on the Recursive Prediction Error Method (RPEM), to be used online using the Google dataset. The
savings that can be obtained are also quantified. Finally, we conclude the paper in Section VI.

The bounds computed with the energy cost model proposed in Section III can be applied to any operational DC in steady
state. The values of these bounds depend on the DC considered. With these bounds, one can determine when the LV predictor
is sufficient and when a more sophisticated predictor should be used to reduce the energy cost.



II. STATE OF THE ART

There are several studies on request prediction strategies to improve DC management using machine learning techniques such
as linear predictive models, probabilistic approaches, neural networks, among others. In [4], Liu et al. using the dataset from
the Google data center conclude that the Moving Average (MA), AutoRegressive (AR), and the Weighted Moving Average
(WMA) prediction models give the smallest prediction errors with the lowest complexity compared to neural networks. We
recall that AR and MA belong to the family of AutoRegressive Moving Average with Exogenous signal (ARMAX) models.
In [5], Prevost et al. evaluate the predictions provided by neural networks and AR models on the URL resource requests of
a www server at NASA and EPA. They conclude that AR is far superior to neural networks. In [6], Yoon et al. define a
prediction model that estimates parameters of a Poisson distribution with Local Linear Regression (LLR) by using a cyclic
window approach. Using this method to predict the number of job arrivals in the next 30 minutes, the authors evaluate the
prediction accuracy of their method by the Mean Absolute Percentage Error (MAPE), and they obtain a value of 0.38, which
is similar to that obtained using ARMA models. In [7], several variants of ARMA models (such as integrated, fractional,
seasonal) are analyzed and compared with an exponential smoothing model and a spectral estimation method based on singular
spectrum analysis. The methods were used to compare multiple time series models for predicting CPU, RAM, and network
consumption over a one-hour time interval. They conclude that ARIMA models outperform the others. In [8], ARMA models
used to predict the popularity of video content on YouTube, are shown to achieve better performances than other prediction
models.

A data set collected in a Google data center over a period of 29 days and published in [2], [3], has been analyzed by
many researchers [9]–[14] for both classification and prediction. In [9], K-Means is used to classify the jobs into three
categories according to their duration: short, medium and long. Short jobs are shown to be the most frequent and use fewer
resources. Medium jobs are frequent and have strong requirements in terms of memory. Long jobs, the least frequent, have
strong requirements in terms of CPU. Using K-Means and density-based clustering, the authors of [12] also classify the tasks
into two categories according to their resource requests: CPU-intensive and memory-intensive. Their approach consists in
associating a virtual machine with each task, and placing two virtual machines of different categories on the same physical
machine. However, there is no performance evaluation to validate this approach. In [13], the authors use a Bayesian model
to predict the average host load. The authors show that the Bayesian method improves the ARMA prediction error by 5% at
6 hours, and 8% at 12 hours. In [14], the features of jobs submitted in the Google data center are studied.

III. COST AND PREDICTION

Each request arrives in the DC at a random time, and the goal is to predict future requests based on the history of the
past values. The prediction of such individual events is extremely complicated as time intervals between them are statistically
independent of each other. One possible strategy to solve this problem is to split the time into fixed length intervals of size T , and
accumulate the number of requests during each interval, as shown in Fig. 1. T is called the accumulation interval. To simplify
the notation, we call step k, with k ≥ 1, the kth accumulation interval corresponding to times t with (k− 1)T ≤ t < kT . Let
R(t) denote the requests arriving at time t. We define y(k) the number of requests arriving during step k as

y(k) =
∑

(k−1)T≤t<kT

|R(t)|, (1)

where |R(t)| denotes the cardinality of set R(t).
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Fig. 1. Time discretization.

We also adopt the energy model from [15] and [16], where the power P (k) consumed by a server during step k is given
by the following equation:

P (k) = P0 + η × Load(k) (2)

where P0 denotes the power consumption of a server at null load and η is the power variation coefficient as a function of the
load during step k. The load is proportional to the number of arriving requests y(k). In addition, the DC operation guarantees



the average service time of requests is time-invariant. Then in this work, energy is considered proportional to the power and
also to the arriving requests. To maintain these stationary characteristics the DC is reconfigured every time period T either by
adding or removing machines, by performing migrations, etc., in order to optimally serve the requests.

Let us consider the cost of energy at step k used to serve the y(k) incoming requests as the sum of two components. The
first one is the cost of energy due to the proactive action which consists in serving ŷ(k), the predicted incoming requests at
step k, given information until step k− 1. In this case, the DC is configured a priori, i.e. at time (k− 1)T , by expecting ŷ(k)
requests in the next time interval T . The second, is due to the reactive operation which consists in serving max(0, y(k)− ŷ(k))
requests a posteriori, i.e. at time kT , to correct the prediction error made for step k, in case of under-estimation. Only in this
case, reactive actions are needed. In case of over-estimation, the number of available servers is higher than needed, the users
will be served immediately; however, some energy is wasted, as reflected by the proactive cost. Whatever the prediction, the
proactive cost is assumed to be smaller than the reactive one.

For example, assume that at step k there are y(k) = n incoming requests and that the predicted value is ŷ(k) = n−m, with
m > 0. Then, the total cost at step k is equal to the proactive cost of serving n −m requests plus the correction after step
k paying a reactive cost of serving m requests. The cost of the reactive action is higher than the cost of the proactive action
because proactive actions allow optimizing resources much better than corrective ones. In addition, in case of under-estimation,
some requests have to wait until their resources are allocated, whereas in the proactive case, their resources are immediately
available. Then, the total cost can be represented by the following cost function:

J(k, α) = αŷ(k) + (1− α) max (0, y(k)− ŷ(k)) (3)

where J(k, α) is the cost of serving the incoming requests y(k) at step k and α ∈ (0, 1/2) weighs the difference between the
cost of the proactive and reactive actions.

The cost can be computed for a given horizon of N ≥ 1 past accumulation intervals, where k = 1, 2, . . . , N . Using a simple
notation to express the energy cost per request, also called the relative cost Jx(α), for a prediction model x, we get:

Jx(α) = α‖Ŷx‖1 + (1− α)‖max(0, Ex)‖1 (4)

where ‖Ŷx‖1 and ‖max(0, Ex)‖1 are the L1 norms of the sequences ŷx(k) and max(0, ex(k)) defined as: ‖Yx‖1 =
∑N
k=1 |ŷx(k)|,

‖max(0, Ex)‖1 =
∑N
k=1 max(0, ex(k)), where ex(k) = yx(k)− ŷx(k) is the prediction error for a given a prediction model x.

We consider two prediction models: the ARMA (ARMAX) predictor denoted by the index x = p and the Last Value predictor
(LV) denoted by the index x = r, which predicts that the next value will be equal to the current value, ŷr(k) = y(k − 1).
Similarly, the errors ep(k) = y(k)− ŷp(k) and er(k) = y(k)− ŷr(k) = y(k)−y(k−1) stand for the ARMA and LV prediction
errors, respectively.

It is important to note that in the case of the LV prediction, there is no proactive action itself since there is no decision
making prior to the step k, because the prediction is just the same value as at the step before. In other words, if the prediction is
equal to the real value, there is no need of proactive actions. Thus, provided that there are predictors such that Jr(α) ≥ Jp(α),
the difference between the cost using the last value prediction and the cost using the ARMA predictor is in fact a bound of
cost saving using prediction. The relative cost improvement can be written as:

∆(α) =
Jr(α)− Jp(α)

‖Y ‖1
(5)

where the L1 norm of the number of incoming requests during the last N time intervals, ‖Y ‖1 =
∑N
k=1 |y(k)|, is used in

order to have the cost reduction per request. We assume that the Data Center is operated in steady state, which means that
the average input flow of requests to the DC is equal to the average output flow. This condition depends on the length of the
accumulation interval T and also on the average service time. It is shown in Section V that this condition is met by an efficient
management of data centers resources. The flow of requests is slowly time-varying for large values of the accumulation interval
T , but highly fluctuating when T is reduced. In this way, if corrective actions are done at small intervals, the cost may be
considerably reduced with respect to the case of corrections done at greater intervals T .

Finally, it should be pointed out that there are several optimal solutions to minimize the L1-norm problem of cost Jp(α). In
this paper, we obtain the pseudo-optimal solution which consists in minimizing the L2 norm of the error, which is unique using
the standard minimum least squares method. We evaluate the costs defined by equation (4) and the relative cost improvement
defined by equation (5) using experimental data, but first we present the prediction methods in the next section.

IV. HOW TO PREDICT

Many predictors have been developed so far to forecast the state of a system. In the scope of our work, we focus on two
of them that demonstrated their efficiency: ARMA and ARMAX. Later in the article, we analyze how much one can reduce
the prediction error with respect to the classical ARMA model when several sources of information are available. Then, this
section briefly presents the recursive algorithm that solves the least squares problem. The new contribution is the identification



of the model parameters that produce minimum norm 1 of the error, in order to obtain a predictor that minimize the energy
cost. Readers who are familiar with predictors could probably skip this section.
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Fig. 2. a) Single input-single output ARMA model, b) two input-two output ARMA model, c) two input-single output ARMA model.

A. The ARMA model

Fig. 2 depicts three variants of ARMA models that will be used in this paper. The first ARMA variant, depicted in Fig. 2.a,
corresponds to a single input and a single output, where the flow is modeled as the convolution between the impulse response
hy(k) and an i.i.d sequence ey(k) with zero mean and unit variance as follows:

y(k) =

n∑
i=0

hy(i)ey(k − i) = hy(k) ∗ ey(k), (6)

where ∗ means convolution and hy(k) is the impulse response of an invertible-stable-causal linear system, also called a
minimum phase system. A scheme is given in Fig 2a. The minimum-phase property guarantees that there exists another causal
and stable sequence, h̃(k), called the inverse of h(k), such that h̃y(k)∗hy(k) = δ(k), where δ(k) is the unit impulse sequence
[17]. The sequence h̃y(k) is unique. This kind of system can be represented by an AutoRegressive Moving Average (ARMA)
model having the following structure, where na and nc are the orders of past values of y(k) and e(k), respectively, whereas
ai and cj , for i = {1, . . . , na} and j = {1, . . . , nc} are coefficients computed at each step k:

y(k) =a1(k)y(k − 1) + · · ·+ ana(k)y(k − na) (7)
+ ey(k) + c1(k)ey(k − 1) + · · ·+ cnc(k)ey(k − nc).

Now, considering a prediction horizon equal to one step, the sequence hy(k) in equation (6) can be written as the sum of
the anticausal, hy(0), and the causal, h+y (k) = {hy(1), hy(2), . . .} components such that the number of requests arrived during
step k + 1 is written as:

y(k + 1) = hy(k) ∗ ey(k + 1) (8)
= hy(0)ey(k + 1) + h+y (k) ∗ ey(k).

The second term on the right is the causal part in which, replacing ey(k) by h̃y(k) ∗ y(k), we obtain the minimum variance
one-step ahead predictor y(k + 1|k), given data until step k. The first term, the anticausal part, is the prediction error having
variance equal to h2y(0). Hence, we finally get:

y(k + 1) = hy(0)ey(k + 1) + ŷ(k + 1|k) (9)

The two models depicted in Fig. 2.b and Fig. 2.c are explained in the next subsection, which deals with the ARMAX model.



B. ARMAX model

Due to the possible relationship between different requests, is-it possible to improve the predictions of some requests
knowing the values of other requests? The problem is posed in the framework of the Wiener-Granger causality concept, [19]: if
a stationary stochastic sequence x(k) contains information in past time that improves the predictions of a sequence y(k), then
x(k) is said to Granger-cause y(k). Such causality can be known by analyzing the minimum phase property of the system that
relates the input x(k) to the output y(k). Basically, if the system between x(k) and y(k) is causal and stable and the inverse
of the system is also causal and stable (minimum phase systems) predictions cannot be improved, since the input x(k) can
be known from measurements y(k) and the system inverse. On the other hand, if the system is not inverse-causal and stable
(non-minimum phase systems), the measurement x(k) along with the dynamics of the system can improve the prediction of
y(k).

For a formal setup we refer to Fig. 2.b. Let us assume that x(k) and ey(k) can be expressed as:

x(k) = hx(k) ∗ ex(k) (10)
ey(k) = e(k) + g(k) ∗ ex(k), (11)

where hx(k) is the impulse response of a minimum phase system; e(k) and ex(k) are i.i.d zero mean sequences independent
of each other. The sequence ex(k) has unit variance and g(k) is an all-pass filter with gain γ such that

∑
k g

2(k) = γ2 ≤ 1,
thereby e(k) has variance 1−γ2. Using our notation for convolution in equation (6) and replacing equation (11) in equation (8),
the request at step k + 1 is written as:

y(k + 1) = hy(k) ∗ (e(k + 1) + g(k) ∗ ex(k + 1)), (12)

Note that similarly to equation (8), equation (12) is a sum of a causal part and an anti-causal part. By replacing ex(k) by
h̃x(k)∗x(k), where h̃x(k) is the inverse of hx(k), in the causal part we obtain the minimum variance one-step ahead predictor
ŷ(k + 1), given data until step k using requests x(k) and y(k). The anti-causal part is the prediction error and is given by:

hy(0)(e(k + 1) +

0∑
i=−∞

g(i)ex(k + 1− i)). (13)

Note that the sum in the convolution includes the anti-causal part of g(k). Taking into account that e(k) is independent of
ex(k), its variance is:

h2y(0)(1− γ2 +

0∑
i=−∞

g2(i)). (14)

where the last term is always less than or equal to γ2. Thus, the ARMAX predictor outperforms the ARMA predictor, except
when g(k) = γδ(k) (minimum phase all-pass) or when γ2 = 0 meaning that x(k) is independent of y(k).

The scheme of Fig. 2.b is equivalent to the AutoRegressive Moving Average with eXogenous signal (ARMAX) model as
depicted in Fig. 2.c. The ARMAX model has the following structure, where na, nb and nc are the orders of past values of
y(k), x(k), and e(k), respectively, whereas ai, bj and ch, for i = {1, . . . , na}, j = {1, . . . , nb} and h = {1, . . . , nc} are
coefficients computed at each step k,

y(k) =a1(k)y(k − 1) + · · ·+ an(k)y(k − na) (15)
+ b1(k)x(k − 1− nk) + · · ·+ bn(k)x(k − nk − nb)
+ e(k) + c1(k)e(k − 1) + · · ·+ cn(k)e(k − nc),

where nk is the delay of the exogenous signal x(k) and the input signal e(k) is assumed to be i.i.d. stochastic processes with
normal distributions ek v N (0, σ2

e(0)). Note that when x(k) = 0 the structure turns into an ARMA model.
Then, the prediction problem can be formulated as an identification of ARMA or ARMAX models to obtain the one-step

ahead prediction ŷ(k + 1), based on the knowledge of previous values for steps k, k − 1, k − 2, · · · , where their parameters
are identified by the Recursive Prediction Error Method (RPEM) [18], detailed in the next Section.

C. RPEM

Let us assume the following quadratic cost over an horizon of k past samples:

Vk =
1

2

k∑
i=1

λk−iε2i (16)

where εi is the prediction error defined in equation (17) and λ is a scalar in the interval (0, 1] called the forgetting factor,
which performs an exponential windowing over the previous prediction errors. The width of the exponential window depends



on the value of λ. If λ < 1, previous prediction errors contribute only marginally to the criterion function. The window’s width
is reduced as λ decreases. If λ = 1, all past data are equally weighted. Thus, the value of λ determines the memory of the
past data, which is a suitable parameter to take into account time-variant mobility dynamics. The prediction error is given by:

εk = y(k)− ŷ(k) (17)

where ŷ(k) = f(k)θ(k) is the ARMAX model written as a linear regression prediction problem with f(k) = [y(k −
1), · · · , y(k−na), x(k−1−nk), · · · , x(k−nk−nb), e(k), e(k−1), · · · , e(k−nc)], and parameters vector θk = [a1(k), . . . , an(k),
b1(k), . . . , bn(k), c1(k), . . . , cn(k)]T that minimizes Vk. The parameters vector θk is unknown and it is estimated by using the
well-known Prediction Error Method (RPEM). The algorithm and its properties are given by the following theorem:

Theorem: Consider the cost function V (k) to be minimized with respect to the parameter vector θ(k− 1) by the following
Gauss-Newton recursion:

ŷ(k) = f(k)θ̂(k − 1)

εk = y(k)− y(k|k − 1)

ϕ(k) = −ε′(k)

M(k) = M(k − 1)− M(k − 1)ϕ(k)ϕT (k)M(k − 1)

1 + ϕT (k)M(k − 1)ϕ(k)

θ(k) = θ(k − 1) +M(k)ϕ(k)ε(k)

where k is the iteration step, Mk is a square matrix of dimension (2n); and ε
′

k is a column vectors derivative of εk with respect
to the parameters in θk. Then, θk converges as k →∞ with probability 1 to one element of the set of minimizers{

θ|σ
′2
ε = 0

}
; (18)

where σ
′2
ε is the derivative of the prediction error variance with respect to θ.

Proof : See [18].

V. PREDICTION ON THE GOOGLE DATASET

A. Dataset properties

The dataset used in this study [3] comes from traces collected in a Google data center over a period of 29 days. It represents
about 12,000 servers and 670,000 jobs. Data are organized into 2002 files, representing 179.4 GBytes. Files are grouped into
6 tables dealing with machine events, machine attributes, job events, task events, task constraints and task usage, respectively.

Since more than 92% of jobs have a single task and more than 95.75% of jobs have fewer than 10 tasks, we can assume
as a first approximation that all jobs have a single task. That is why in this paper, we focus on the number of incoming jobs.

In addition, since only 1.54% of jobs have a CPU request larger than 10% of the capacity of the most powerful machine,
and only 1.74% of jobs have a memory request larger than 10%, we assume as a second approximation that all jobs have
similar requests. With these simplifying assumptions, we are able to express the energy cost of a DC as a function of the
number of incoming jobs.

From the original data, flow sequences are obtained according to the accumulation time interval T depicted in Fig. 1.
In analyzing job arrivals, we observed a periodic pattern in the incoming number of jobs, as shown in the autocovariance

function depicted in Fig. 3. From this figure it is possible to distinguish three periods, T = 300s, T = 3600s, and T = 86400s,
corresponding to 5 minutes, 1 hour and 24 hours, respectively. Since these durations are frequently used in human reasoning,
it is natural to find them in job submissions.

B. Prediction models

In order to predict the number of incoming jobs, the ARMAX predictor model is used with several exogenous signals like the
number of outgoing jobs, the number of CPU requests and the number of memory requests; but no significant improvements
with respect to the ARMA prediction were obtained, except in the case of predictions of output jobs using the number on
input jobs as the exogenous signal, as we see later. The optimal order for all of them was found to be na = 1 and nc = 2
with a forgetting factor of 0.99.

Now we show that the ARMAX model is appropriate for predicting the number of outgoing jobs using the number of input
jobs as the exogenous signal. To this end, we first compute the impulse response of the system by calculating the lifetime of
each job within the DC and computing the distribution of those times, as depicted in Fig. 4. The number of jobs needs to be
large in order to allow the normalized distribution to approach the probability density function which is, in fact, the theoretical



-0.1

0

0.1

0.2

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

-0.1

0

0.1

0.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

104

-0.5

0

0.5

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s] 105

Fig. 3. Covariance function of incoming number of jobs

unit impulse response. The same impulse response is obtained from different sections of the data set which shows that the
averaged number of incoming jobs equals the outputs. This steady state condition is the assumption we consider to derive the
value of the cost reduction in equation (5).

Using the concept that the impulse response is the distribution of jobs’ lifetime, we conclude that the system in steady state
is linear with respect to the flow of incoming jobs since it fulfills the superposition theorem. Let us assume that p and q are
large numbers of jobs used to compute two histograms, hp(k) and hq(k). For example, we consider the number of jobs that
enter over five days as p and the following ten days for q. The histograms fulfill the superposition theorem which states that
the sum of scaled functions is the function of the scaled sum as follows:

a hp(k) + b hq(k) = hap+bq. (19)

where a and b are constants. Then, the ARMAX model is appropriate to represent the output number of jobs using the number
of incoming jobs as the exogenous signal, a sampling interval of T = 10s. First, we use a pure Moving Average (MA) model
by setting orders na = nc = nk = 0 and nb = 20 and nb = 40. The identified coefficients correspond exactly to the true
impulse response in the number of coefficients considered, as depicted in Fig. 4.i. After that the matching is poor. In order
to represent the complete system using an MA model we need more than nb = 600 samples, which is impractical. Instead,
ARMAX models are used. In this same figure, we depict the responses obtained with na = 5. It can be seen that it is a very
good approximation.

After having obtained the different approximated systems representing the DC, we observe that all of them are non-invertible
causal, and therefore, we expect some improvements in predicting the output flow using the input flow and the identified system.
To evaluate such improvements, the performance of the N predictions are evaluated using the mean absolute percentage error
(MAPE) computed with the following equation:

MAPE =
1

N

N∑
k=1

|y(k)− ŷ(k)|
y(k)

(20)

In Fig. 4.ii and Fig. 4.iii, the best relative one-step ahead error predictions of input and output flows are depicted, respectively.
For the predicted output flow it can be observed that ARMAX improves ARMA prediction for intervals less than T = 10
minutes (approximately 102.8).

The average lifetime is obtained by computing the complete impulse response, but it has the problem that outliers can shift
the average value in such a way that it does not represent the most probable cases. For example, in our case, the average
lifetime of all jobs is 612 seconds, but if we remove these outliers the time changes to 175 seconds. This value coincides with
the transit time of the jobs, which is obtained by identifying the dynamics of the system between input and output numbers
of jobs.

C. Cost computation

We now evaluate the costs of reactive and proactive strategies as defined in equation (4) but divided (normalized) by the
norm ‖Y ‖1.

The approach proposed to compute the relative cost consists of the following steps:
• use ARMA to predict the number of incoming jobs;
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Fig. 4. i) Different estimated responses of outgoing jobs for an impulse of 329960 incoming jobs, ii) MAPE of number of incoming jobs, for ARMA and Last
Value predictions, and iii) MAPE of number of ougoing jobs using ARMA, ARMAX with incoming jobs as the exogenous signal, and Last Value models.

• use ARMAX to predict the number of outgoing jobs using the exogeneous signal of the number of incoming jobs;
• compute the load;
• compute the relative cost, that is the cost normalized per request.

This allows to obtain the cost of serving the requests that only depend on the number of incoming jobs.
Figure 5 shows both relative costs, when the time varies from 1 min (101.8 seconds) to 12 hours (104.6 seconds). The value

of α in the cost is 0.3 which means the reactive actions’cost is 7/3 times the proactive ones. In Fig. 5, we observe that i) the
costs decrease when the accumulation interval T increases, and ii) the improvement no longer exists or it is not significant
for a time interval larger than 10 minutes (3%) or 20 minutes (2%). This is due to the fact that samples of the sequence are
correlated and become more and more correlated as the accumulation interval, T , increases. In contrast, as the accumulation
interval is reduced, the flow samples are less correlated and the prediction becomes poor. We notice that for T = 300 s and
T = 3600 s, corresponding to 102.48 and 103.56, the two curves are mixed. This is not surprising since it corresponds to the
periodicity of the dataset observed in Fig. 3. For such values of T , LV is an excellent predictor.

In Fig. 6, the relative cost improvement ∆(α), defined in equation (5), is depicted as a function of α. For small values of
T (i.e. less than 2.5 mn= 102.2 s), the improvement increases when α (or proactive cost) decreases. In such time intervals
the ARMA predictor outperforms LV. In addition, for all the values of α ∈ [0.1, 0.4], the improvement is maximized for
the smallest value of T tested that is 1 mn= 101.8 s. For instance, it is equal to 12% when α = 0.1. For larger values of
T ≥ 2.5 mn, all the gains are smaller and lesser than 2% which is obtained for α = 0.4.
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VI. CONCLUSION

In this paper, we focused on the improvement bound of DC proactive management using predictive models. The main
contribution of this paper is threefold: 1) the mathematical expression of the relative cost improvement brought by proactive
management, 2) a generic methodology that can be applied to any DC, but the values of the obtained bounds depend on the
data set considered, and 3) the improvement of outgoing jobs prediction using an ARMAX predictor. A data set provided by
Google has been used to illustrate the procedure.

The used prediction model takes into account not only the time series to be predicted, but also the possibility of improving
the performance using other correlated signals. From the Google data set studied, we conclude that:
• The larger the accumulation interval, the lower the cost, as the requests become more and more correlated are more

predictable. On the other hand, the lower the accumulation interval, the less correlated the requests and the poorer the
prediction.

• The maximum improvement is approximately 12% and is reached for small accumulation intervals, T < 2.5 mn. Then,
the improvement is getting smaller when the accumulation interval increases, e.g. lesser than 2% for T ≥ 2.5 mn.

• If some periodicity exists in job arrivals (e.g. 5 mn and 1 hour in the Google dataset), the Last Value predictor and the
ARMA predictor give close results for such values of the accumulation interval T .

• We obtain a dynamic model of the data center to improve the predictions of the output flow of jobs using the ARMAX
model. The improvements are explained in the context of Granger-causal signals.

In this paper, we showed it is possible to predict with a high-confidence degree the arrival of jobs and the resources they
request (CPU and memory capacity, etc.). This makes it possible to have an almost optimal placement and scheduling of the
jobs, leading to a near-best management of DCs that can allow significant energy savings at the global scale.
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