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Metz, France

Marc Haelterman
Service OPERA-Photonique
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Abstract—Reservoir computing is a machine learning approach
to designing artificial neural networks. Despite the significant
simplification of the training process, the performance of such
systems is comparable to other digital algorithms on a series
of benchmark tasks. Recent investigations have demonstrated
the possibility of performing long-horizon predictions of chaotic
systems using reservoir computing. In this work we show that
a trained reservoir computer can reproduce sufficiently well the
properties a chaotic system, hence allowing full synchronisation.
We illustrate this behaviour on the Mackey-Glass and Lorenz
systems. Furthermore, we show that a reservoir computer can be
used to crack chaos-based cryptographic protocols and illustrate
this on two encryption schemes.

Index Terms—reservoir computing, chaos synchronisation,
chaos-based cryptography, eavesdropping

I. INTRODUCTION

Is it possible to emulate a non-linear chaotic dynamical
system with a fundamentally different non-linear dynamical
system? This question has been answered positively in the
context of a machine learning technique known as reservoir
computing [1]–[4].

Reservoir Computing (RC) is a set of methods for designing
and training artificial neural networks, introduced indepen-
dently in [5] and [6]. The underlying idea of these techniques
is that one can exploit the dynamics of a recurrent nonlinear
network to process time series without training the network
itself, but simply adding a general linear readout layer and only
training the latter. This results in a system that is significantly
easier to train (the learning is reduced to solving a system
of linear equations [7]), yet powerful enough to match other
algorithms on a series of benchmark tasks. For instance, RC
has been successfully applied to channel equalisation [1],
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phoneme recognition [8], and won an international competition
on prediction of future evolution of financial time series [9].

In the case of emulating a dynamical system, the reservoir
is first driven by the state of the given system, and trained to
predict this state one time step in the future. After training,
the output of the reservoir is fed back into itself, whereupon
it will develop autonomous dynamics that are – one hopes –
close to those of the original dynamical system.

Reservoir computing was originally used for forecasting the
trajectories of chaotic dynamical systems, where it reached
record forecasting horizons [1] (see also the recent improve-
ments in [10]). This method was also implemented experimen-
tally in [2], where it was shown that the reservoir emulator
had similar dynamics to the original system in terms of RF
spectrum, Lyapunov exponents, and “randomness” properties.
It was also used in [3] to infer the values of hidden degrees
of freedom of the dynamical system, and in [4] to estimate
its Lyapunov exponents. These works suggest that a trained
reservoir computer can emulate another, a priori completely
different, even chaotic, dynamical system.

In the first part of this work, we demonstrate that a trained
reservoir computer captures a large part of the characteristics
of the dynamics of the original system. That is, if weakly
driven by the original system, the reservoir computer will
synchronise with it. We illustrate this phenomenon on two
examples, the Lorenz [11] and Mackey-Glass systems [12].
The phenomenon of synchronisation is one of the most
surprising aspects of chaos theory, and has been extensively
studied, see e.g. the review [13]. However, our results appear in
great contrast with what was known about synchronisation of
chaotic systems, in the sense that two twin physical systems
were required to achieve similar properties of the generated
chaotic time series.

After the discovery of chaos synchronisation, considerable
effort was devoted to trying to use this effect and the un-
predictability of chaotic systems to hide secret messages.
Communication protocols based on chaos synchronisation [14]



were proposed in the early 1990s [15], [16]. In this type of
systems, a message is embedded within a chaotic carrier in
the emitter, and recovered after transmission by a receiver
upon synchronisation with the emitter. Chaotic communication
systems are particularly attractive due to the broadband power
spectrum of the generated waveforms, high rates of informa-
tion transmission, and sufficient efficiency at relatively low
signal-to-noise ratios. Besides, many chaotic communication
schemes are simply realised and demonstrate a rich variety
of different oscillating regimes [17]. Optical systems provide
simple ways of generating high-dimensional chaotic carriers,
offering a substantial security level and the possibility of very
high transmission rates [18]. Early experiments demonstrated
successful back-to-back communications in all-optical [19]
and opto-electronic [20] systems with high bit rates (> 1Gb/s).
Recent work [21] reports a successful long-distance field
experiment.

The security of chaos-based transmissions relies on the fact
that the emitting and receiving parties must have similar copies
of a chaotic attractor, that is very challenging to manufacture
for a third party, without any knowledge of its internal struc-
ture and parameters. However, a potential eavesdropper could
crack the chaotic masking with a device capable of emulating
a chaotic system, such as the reservoir computer.

In the second part of this work, as an application of
our results on chaos synchronisation, we consider using
the reservoir computer to crack two chaos-based encryption
schemes with Mackey-Glass and Lorenz chaotic carriers. The
successful results we obtain suggest that hardware chaos-
based cryptosystems could be cracked by hardware reservoir
computers, as these have been implemented physically with
good performance and high speed, see [22] for a review.

II. RESERVOIR COMPUTING

The reservoir computer used in this work is an echo state
network, introduced in [1], [5]. The reservoir states vector x,
consisting of N neurons, is updated following the equation

x(n) = (1− Ca)x(n− 1)

+ C tanh (winu+Wx(n− 1) + wbackd(n− 1)) , (1)

where n ∈ Z is the discrete time, C is a timescale constant, a
is the leak rate, W is a N ×N matrix of internal connection
weights, wback is N -size weight vector for for feedback con-
nections from the output to the reservoir and win is a N -size
vector and u is a constant.

The elements of win, W and wback are chosen from a
uniform distribution over the interval [−1,+1]. A reservoir
computer must be not too far from the edge of chaos to exhibit
good performance. To this end the matrix W is then rescaled to
adapt its spectral radius. The vectors win and wback are possibly
also rescaled to adapt the strength of the input and feedback.
Throughout this work the input bias is fixed to u = 0.2.

The output equation of a single-output network is given by
a dot product

y(n) = wout · x(n), (2)

where wout are N+1 output weights (also known as the output
mask).

The reservoir computer is operated in two stages: a training
phase and a free run. During the training phase, the system is
driven by a chaotic time series, denoted by s(n). The evolution
of the reservoir during training is given by Eq. 1, supplemented
by

d(n) = s(n) (during training). (3)

The training phase is used to optimise the readout weights
wout so that the reservoir predicts the next point s(n) in the
input chaotic time series, given the previous points s(n −
1), s(n−2), .... To this end we minimise the Normalised Mean
Square Error (NMSE), given by

NMSE =

〈
(y(n)− s(n))2

〉
〈
(s(n)− 〈s(n)〉)2

〉 . (4)

Minimising the NMSE with respect to the readout weights
gives rise to a system of linear equations that are readily solved
with e.g. a simple linear regression.

After the training, the readout weights wout are fixed and
the teacher signal d(n) is replaced by the output signal y(n),
so that the reservoir becomes autonomous. The evolution of
the reservoir computer during the autonomous run is given by
Eqs. 1 and 2, supplemented by

d(n) = y(n) (during autonomous run). (5)

III. TRAINING ON THE MACKEY-GLASS AND LORENZ
SYSTEMS

For illustrative purposes in this work, we use the one-
dimensional Mackey-Glass (MG) delay equation and the tri-
dimensional Lorenz system.

The Mackey-Glass delay differential equation

dx

dt
= β

x(t− τ)
1 + xn(t− τ) − γx (6)

with τ , γ, β, n > 0 was introduced to illustrate the appearance
of complex dynamics in physiological control systems [12].
To obtain chaotic dynamics, we set the parameters as in [1]:
β = 0.2, γ = 0.1, τ = 17 and n = 10. With these settings,
the highest Lyapunov exponent is λ = 0.006 [1].

Eq. 6 was integrated using Matlab’s dde23 solver with
the initial condition x(0) = 0.5 and integration step of 0.5 for
7000 timesteps. The first 1000 transient values were discarded
and the remaining data was split into 3000 training and 3000
test inputs.

For the MG task, we used a reservoir with N = 1500
neurons, the matrix W was rescaled to a spectral radius of
0.79, while the vectors win, wback were not rescaled, and we
set C = 1, a = 0.9. These heuristic parameters were found to
provide good results.

At the training stage we obtained an error of NMSE =
3 × 10−9. During the free run, the error gradually increases,
as the reservoir output signal slowly deviates from the target
trajectory on the Mackey-Glass attractor. Nevertheless, the



system manages to generate the desired output for several
hundreds of time steps with reasonable precision.

The Lorenz equations, a system of three ordinary differential
equations

dx

dt
= σ (y − x) , (7a)

dy

dt
= −xz + rx− y, (7b)

dz

dt
= xy − bz, (7c)

with σ, r, b > 0, was introduced as a simple model for
atmospheric convection [11]. The system exhibits chaotic
behaviour for σ = 10, b = 8/3 and r = 28 [23], that we used
in this study. This yields a chaotic attractor with the highest
Lyapunov exponent of λ = 0.906 [1].

The Lorenz Eqs. 7 were integrated using Matlab’s ode45
routine with an integration step of 0.02 for 10000 timesteps.
We only used the x coordinate of the chaotic system, which
was rescaled by the factor of 0.01, as in [1]. The first 1000
transient values were discarded and the remaining data was
split into 6000 training and 3000 test inputs.

For the Lorenz task, we used a reservoir of size N = 1500.
We set the spectral radius of the weight matrix W to 0.97,
the input and feedback weights win and wback were rescaled
to belong to the interval [−0.5, 0.5], and we set C = 0.44 and
a = 0.9. These heuristic parameters were found to provide
good results.

We obtained a training error of NMSE = 3×10−8. The error
is one order of magnitude higher here than in the Mackey-
Glass case because the Lorenz systems is more complex and
more chaotic.

IV. SYNCHRONISING A RESERVOIR COMPUTER ON THE
MACKEY-GLASS AND LORENZ SYSTEMS

Let s(n) be the time series of the chaotic system with
which one wishes to synchronise. We first train the reservoir
to predict the next time step in the series, as described above.
Next we start an autonomous run in which the reservoir
follows its own dynamics, given by Eqs. 1, 2, 5. At time
n = n0, we start weakly driving the reservoir with the chaotic
time series s(n). That is, its dynamics is given by Eqs. 1, 2,
supplemented by

d(n) = (1− q)y(n) + qs(n) (when locked). (8)

with 0 ≤ q ≤ 1.
Figures 1 and 2 illustrate how the trained reservoir can

lock onto the MG and Lorenz systems. It should be noted
that during the synchronisation phase, the NMSE stays at a
relatively high value, whereas if we were to synchronise two
identical MG or Lorenz systems, the NMSE would decrease
until it reached the machine precision. This is because the
trained reservoir does not reproduce exactly the dynamics of
the MG or Lorenz system.

V. CRACKING CHAOS-BASED CRYPTOGRAPHY

Chaos-based cryptography systems are based on Alice and
Bob having two identical (or nearly identical) chaotic systems,
and using the unpredictable nature of the chaotic system to
mask the message Alice wants to transmit to Bob. Many
different methods have been proposed to mask the message,
see e.g. [24]. The cryptanalysis problem is for an eavesdropper
(Eve) who has access to the public (encrypted) message sent
by Alice to recover the secret (plain) message.

There have been many attempts to crack such cryptosys-
tems, see e.g. [25]. These approaches are based on fitting
the unknown parameters in Alice’s chaotic device, thereby
enabling Eve to reproduce Bob’s decoder, and hence recover
the message.

The fact that a reservoir computer can be trained to emulate
chaotic systems, to the extent that the trained reservoir will
synchronise with the original chaotic system (as demonstrated
in Sec. IV) suggests that reservoir computing could form the
basis for an alternative, conceptually different, approach to
cracking chaos-based cryptography.

We illustrate this novel approach on two examples of
encryption schemes.

A. Superposition scheme

Let m(t) be the transmitted message, and a(t) and b(t) the
outputs of Alice’s and Bob’s chaotic systems, respectively. The
idea behind this scheme is to create an encrypted signal

s(t) = a(t) +m(t), (9)

with |m(t)| � |a(t)|,∀t. Subtracting the chaotic carrier, Bob
obtains the message m̃(t) = s(t)−b(t). After synchronisation
of Alice’s and Bob’s chaotic systems, so that a(t) ' b(t), Bob
ends up with m̃(t) ' m(t).

In this work, the message sent by Alice to Bob is composed
of a sequence of 4000 random bits. The message is preceded
by a series of 400 null bits (that is, no message is added to the
chaotic carrier), so that to transmit an example of the chaotic
carrier signal in order to allow Bob’s system to lock on to the
Alice’s one. That is, the synchronisation is only performed
during a relatively short time interval.

As the synchronisation between two chaotic systems is
sensitive to noise, the superposition scheme, that fully relies
on synchronisation, is also affected by noise. Figure 3(a)
illustrates the message decrypted by Bob. The transmitted bits
are shown with circles, and form two thick horizontal lines, as
we display a long part of the message. The decrypted message
is displayed with crosses, connected with a dashed line. We set
a high level of transmission noise (Aν = 10−5) to make the
desynchronisation effect more apparent. The first decrypted
bits match the encoded ones. As we advance further through
the message, the decrypted signal oscillates around the correct
values, before these oscillations grow bigger in amplitude than
the message itself, thus compromising the decryption. Starting
from t = 1200, the decrypted signal looks more and more
similar to the Mackey-Glass chaotic carrier, which means that
Bob’s system has lost synchronisation with Alice’s generator.
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Fig. 1. Synchronisation of a trained reservoir computer on the Mackey-Glass system, integrated from xMG(0) = 0.5. The reservoir, started from a different
initial condition xRC(0) = 0.9, is autonomous until t = 500, whereupon we set the driving strength to q = 0.25. Plot (a) only depicts the region of interest
around t = 500, where the reservoir (plotted with a solid line) synchronises with the chaotic system (traced with a dotted line). Plot (b) shows the evolution
of the NMSE, averaged over 100-timestep intervals, for the entire duration of the simulation, where the coupling is removed (q = 0) at t = 1500. Plot (c)
illustrates the same scenario with a higher coupling strength q = 0.5. The synchronisation is quicker in this case, as can be seen from the steeper slope,
and the resulting NMSE is lower. These observations suggest that the synchronisation phenomenon is more efficient with higher coupling ratios, and may
disappear for q below a certain threshold value.
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Fig. 2. Synchronisation of a trained reservoir computer on the Lorenz system, integrated from (x0, y0, z0)LZ = (10, 0, 0). The reservoir, integrated from
(x0, y0, z0)RC = (4, 0, 0) is autonomous until t = 20, whereupon we set the driving strength to q = 0.25. Plot (a) only depicts the region of interest around
t = 20, where the reservoir (plotted with a solid line) synchronises with the chaotic system (traced with a dotted line). Plot (b) shows the evolution of the
NMSE, averaged over 100-timestep intervals, for the entire duration of the simulation, where the coupling is removed (q = 0) at t = 40. Plot (c) illustrates
the same scenario with a higher coupling strength q = 0.5. Here again, the synchronisation is slightly quicker, and the resulting NMSE is slightly lower.

−0.02

−0.01

0

0.01

0.02

0.03

600 800 1000 1200 1400

M
es

sa
ge

(b
it

s)

Time (t)

Original message
Decoded message

(a)

−10

−8

−6

−4

−2

0

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

lo
g
1
0

(N
M

SE
)

B
it

er
ro

r
ra

te

Time (t)

NMSE
Bit error rate

(b)

−0.01

0

0.01

0.02

400 450 500

M
es

sa
ge

(b
it

s)

Time (t)

Original message
Cracked message

(c)

Fig. 3. Decryption of the superposition scheme with the Mackey-Glass carrier. (a) Illustration of Bob’s decryption process in presence of high transmission
noise Aν = 10−5. The decrypted message starts at t = 400, as explained above, but we focus here on a specific region to demonstrate the desynchronisation
issues. The encoded bits form the two horizontal lines because a long portion of the message is displayed. The decrypted bits, shown with crosses, first match
the encoded ones. From approximately t = 800, the decrypted signal starts oscillating and after t = 1200 the decrypted bits can no longer be identified. This
shows that Bob’s chaotic system is no longer locked on to the one of Alice. (b) Comparison of the synchronisation error (solid line, averaged over intervals of
200 timesteps) between Alice’s and Bob’s carriers, and the bit error rate (dashed line) of the decrypted message. As the former crosses the NMSE = 10−4

mark, the bit error start growing as well, until it reaches the 0.5 value, indicating randomly guessed bits. The initial dip of the NMSE corresponds to the
locking of Bob’s systems on Alice’s. (c) Eve’s attempt to crack the encoded message, shown with circles. The null bits before t = 400 correspond to the
synchronisation period, as explained above. Eve’s cracked bits are plotted with crosses. She managed to recover roughly 80 first bits of the message. After
that, her signal starts oscillating in the manner of the chaotic carrier, because the reservoir computer lost synchronisation with Alice’s system.



Figure 3(b) illustrate the same case from the synchronisation
point of view between the chaotic carriers of Alice and Bob.
The solid line corresponds to the synchronisation error, that
steadily grows until NMSE ∼ 10−1, where both systems are
completely out of sync. The dashed line displays the bit error
rate on the decoded message, which grows together with the
synchronisation error before reaching 0.5, where the decoded
bits are guessed at random.

Figure 3(c) shows the message decrypted by Eve. In this ex-
ample of a noiseless transmission, Eve manages to accurately
decrypt the first 80 bits of the message, before bit-errors start
to appear in the cracked message. After roughly 100 timesteps,
the reservoir computer looses synchronisation with the chaotic
carrier to the point where the recovered bits become useless.

These results show that Eve finds herself in the same
situation as Bob in case of a noisy communication, discussed
above. Since the reservoir computer can only emulate the
chaotic system with a limited precision, it desynchronises
fairly quickly from the Alice’s system, thus making further
decryption impossible. Nevertheless, this simple proof-of-
principle experiment demonstrates that Eve is capable of
cracking some part of the message without any information
about the chaotic carrier used for transmission.

To check the influence of the chaotic carrier signal, we now
switch from the Mackey-Glass system to Lorenz. Again, we
start with Bob in possession of a valid copy of the Lorenz
system with identical parameters to Alice. The communication
scheme is the same as above, with one exception: 1600
null bits are sent for the synchronisation process, as Lorenz
dynamics seems more complex to capture than Mackey-Glass.
Therefore, since the system is integrated with a step of
h = 0.02, the message starts at t = 32.

Figure 4(a) illustrates the scenario with a high noise level
Aν = 10−5. Since the Lorenz system is more chaotic, the
desynchronisation effect is quicker and more apparent in this
case, compared to the Mackey-Glass carrier. The encrypted
bits are shown with circles. As we display a large portion
of the message, the bits fuse into two horizontal lines. The
graph shows how the decrypted bits, displayed with crosses,
match the encoded ones. While the beginning of the message
is recovered accurately, at approximately t = 36 the decoded
signal starts oscillating, before becoming meaningless at t =
40. Again, this shows that Bob’s system is no longer locked
onto the chaotic carrier.

Figure 4(b) displays the carrier NMSE and the bit error rate
for the same case. Similarly to the situation with the Mackey-
Glass carrier (see Fig. 3(b)), the growth of the synchronisation
error is followed by a growth of the bit error rate. The only
difference with the Lorenz carrier is that, since it is more
chaotic, the desynchronisation happens faster.

Figure 4(c) shows the message decrypted by Eve. In this ex-
ample of a noiseless transmission, Eve manages to accurately
decrypt the first 30 bits of the message, before bit-errors start
to appear in the cracked message. After roughly 50 timesteps,
the reservoir computer looses synchronisation with the chaotic
carrier to the point where the recovered bits become useless.

These results show that, again, Eve finds herself in the same
situation as Bob in case of a noisy communication, discussed
above – the reservoir computer desynchronises fairly quickly
from the Alice’s system because of the limited emulation
precision, thus making further decryption impossible. Never-
theless, Eve could recover some part of the message without
any knowledge of the chaotic carrier.

B. Nonlinear mixing scheme

Here we study an encryption scheme introduced in [17]
(specifically, the III/1 scheme of this paper).

To encode her message, Alice uses a delay dynamical
system in which she injects her message m(t). Her dynamical
system obeys the equation

εẋ(t) = −γx(t) + f [x(t− τ) +m(t− τ)] , (10)

where τ is the delay. Alice sends s(t) = x(t) +m(t) to Bob,
i.e. the argument of f [.] in Eq. 10.

To decrypt the message, Bob uses the same delay system,
but in an open loop configuration to obtain the variable x′(t)
given by

εẋ′(t) = −γx′(t) + f [s(t− τ)] . (11)

To recover the message, Bob then simply computes the dif-
ference m′(t) = s(t)− x′(t).

In order to crack this system, we suppose that Eve has
access to a plain text attack, i.e. she has access to both s(t)
and m(t) during some time interval. She then trains a reservoir
computer which receives as input s(t) to compute x(t+τ), i.e.
to reproduce the operation of Bob’s decoder Eq. 11. Once the
training is accomplished, she can use her reservoir computer to
replace Bob’s system, thereby recovering encrypted messages.

To illustrate this, we used the MG system Eq. 6 with
the same parameters used elsewhere in this work (β = 0.2,
γ = 0.1, τ = 17 and n = 10). We use a discretised time
step of 0.02. As message we consider a frequency-modulated
harmonic signal of the form

m(t) = A sin [2πfct−B cos(2πfmt)] , (12)

where fc = 5 × 10−3 is the central frequency of the power
spectrum of the signal, B = 3 is the frequency modulation
index, fm = 5 × 10−5 is the modulation frequency and A =
0.01 is the amplitude of the message, chosen to ensure that
the information signal comprises 1% of the amplitude of the
chaotic carrier. The message and the values of the parameters
are identical to those used in [17].

To crack the system, Eve used a reservoir computer with
N = 1500 internal nodes and trained on a message comprising
12000 time steps. The spectral radius of the weight matrix
W was set to 0.97, the input and feedback weights win and
wback were rescaled with global coefficients of 0.9 and 0.8,
respectively, and we set C = 0.44 and a = 0.9. We obtained
a training error of NMSE = 5.8× 10−6.

Using this trained RC, Eve can now try to recover an
unknown message sent by Alice. The results are presented
in Fig. 5, where we compare decryption by Bob and Eve.
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Fig. 4. Decryption of the superposition scheme with the Lorenz carrier. (a) Illustration of Bob’s decryption process in presence of high transmission noise
Aν = 10−5. The decrypted message starts at t = 32, as explained above, but we focus here on a specific region to demonstrate the desynchronisation issues.
The encoded bits form the two horizontal lines because a long portion of the message is displayed. The decrypted bits, shown with crosses, first match the
encoded ones. From approximately t = 36, the decrypted signal starts oscillating and after t = 40 the decrypted bits can no longer be identified. This shows
that Bob’s chaotic system is no longer locked on to the one of Alice. (b) Comparison of the synchronisation error (solid line, averaged over intervals of 200
timesteps) between Alice’s and Bob’s carriers, and the bit error rate (dashed line) of the decrypted message. Because of the high Lyapunov exponent of the
Lorenz carrier, the desynchronisation process is very fast here, and so is the growth of the bit error rate. The initial dip of the NMSE corresponds to the
locking of Bob’s systems on Alice’s. (c) Eve’s attempt to crack the encoded message, shown with circles. The null bits before t = 32 correspond to the
synchronisation period, as explained above. Eve’s cracked bits are plotted with crosses. She managed to recover roughly 30 first bits of the message. After
that, her signal starts oscillating in the manner of the chaotic carrier, because the reservoir computer lost synchronisation with Alice’s system.

We depict the raw messages decoded by Bob and Eve, their
spectra, and the messages after processing with a low-pass
filter. We see that both Bob’s and Eve’s decoded messages are
corrupted by high frequency noise, with Eve suffering from
much higher levels of noise.

VI. CONCLUSION

In this work we addressed the question of the quality of
emulation of a nonlinear dynamical system by a reservoir
computer. We have shown that a trained RC captures a
large part of the characteristics of the primary system, to
the point where synchronisation is possible. We demonstrated
this phenomenon by synchronising a weakly driven reservoir
computer onto Mackey-Glass and Lorenz chaotic systems. Fur-
thermore, we tackled two encryption schemes in chaos-based
cryptography and managed to successfully decode the secret
messages in both cases. This study thus asserts the capacity of
a reservoir computer to faithfully emulate dynamical systems,
even in a chaotic regime, and opens new applications in the
field of cryptography.
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Fig. 5. Comparison of messages recovered by Bob (panels (a), (b) and (c)) and Eve (panels (d), (e) and (f)). The panels (a) and (d) show the raw outputs
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