

Simulations of high-velocity impacts on metal in preparation for the Psyche mission

Clara Maurel, Patrick Michel, J. M. Owen, Richard P. Binzel, M. Bruck Syal,

G. Libourel

▶ To cite this version:

Clara Maurel, Patrick Michel, J. M. Owen, Richard P. Binzel, M. Bruck Syal, et al.. Simulations of high-velocity impacts on metal in preparation for the Psyche mission. Icarus, 2020, 338, pp.113505. 10.1016/j.icarus.2019.113505 . hal-02432546

HAL Id: hal-02432546 https://hal.science/hal-02432546

Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Simulations of high-velocity impacts on metal in preparation for the
2	Psyche mission
3	
4	Clara Maurel ¹ , Patrick Michel ² , J. Michael Owen ³ , Richard P. Binzel ¹ , Megan Bruck-Syal ³ , G.
5	Libourel ²
6	
7	¹ Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
8	Technology, Cambridge, MA 02139, USA
9	² Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, CS
10	34229, 06304 Nice Cedex 4, France
11	³ Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
12	
13	Abstract
14	In 2026, the NASA Discovery mission Psyche will orbit the asteroid (16) Psyche, the largest known
15	metal-rich asteroid in the main belt. To estimate relative ages of the surface, identify re-surfacing

events and better constrain Psyche's history, impact craters will be counted and characterized. No spacecraft has ever visited a metal-rich small body; therefore, laboratory-scale impact experiments and numerical simulations will play an important role in the interpretation of the mission's data. However, the planetary applications of high-velocity impacts have so far mostly been studied for silicate targets. Limited attention has been drawn to planetary objects predominantly made of metal, and more laboratory experiments and numerical calibrations are needed. As part of this effort, we present a suite of numerical simulations using an adaptative smoothed particles 23 hydrodynamics numerical code (ASPH) reproducing a high-velocity impact experiment conducted 24 on a steel target. This work primarily focuses on the influence of the chosen equation of state and 25 initial distribution of flaws in the material on the estimated crater dimensions, damage and 26 temperature. We find that changing the EOS and initial flaw distribution affects the crater 27 dimensions, though for a vast majority of cases the dimensions remain within 20% of the 28 experimental values. The target is in most cases only locally weakened but not fully damaged, 29 independently from the EOS chosen. Finally, temperatures at the impact point and around the 30 forming crater can reach values above the melting point of iron at < 100 GPa, which is in agreement 31 with experimental observations. These results allow us to speculate on the differences expected 32 between the surfaces of visited silicate-rich asteroids and that of the metal-rich target of the Psyche 33 mission.

34

35 **1. Introduction**

36 In 2026, the NASA Discovery mission Psyche will orbit the ~200-km asteroid (16) Psyche (Elkins-Tanton et al., 2017). The asteroid bulk density estimate of 3990 ± 260 kg m⁻³ (Viikinkoski et al., 37 2018) is consistent with that of stony-iron meteorites. The high radar albedo of Psyche (0.37 \pm 38 39 0.09) also strongly suggests the presence of metal in abundance at its surface (Shepard et al., 2017). 40 This makes Psyche the largest known metal-rich asteroid in the main belt. The leading hypothesis 41 to explain the nature of Psyche is that the asteroid is the metallic core of an ancient planetesimal, 42 whose silicate mantle was stripped away by one or several grazing, hit-and-run impacts (Asphaug and Reufer, 2014). This idea remains challenged, for example, by the possibility that Psyche 43 44 accreted from a metal-rich reservoir in the proto-planetary disk (Weisberg et al., 2010).

The instruments on board the spacecraft will use different approaches to constrain the 45 46 history of the asteroid, with the objective to elucidate Psyche's nature. One of these approaches is 47 to count and characterize impact craters. The recent radar-derived shape model of Psyche has 48 already allowed the identification of two large depressions in the topography of the asteroid, 49 interpreted as being two craters larger than ~20 km in diameter (Shepard et al., 2017). Although 50 unresolved by this shape model, it is expected that hundreds of > 100-m craters will be observed 51 over the course of the mission based on collisional evolution models of the main belt (Marchi et 52 al., 2019). Craters on small bodies and planets constitute an important source of information to 53 estimate 1) the age of the asteroid relative to other planetary bodies, 2) the chronology of events 54 that shaped the asteroid, 3) the environment in which the body evolved and 4) the composition and 55 strength of its subsurface.

56 Psyche poses an additional challenge compared to other small and planetary bodies studied 57 in situ since no spacecraft has ever visited a metallic asteroid. Also, most numerical and small-58 scale experimental studies of planetary impacts have been carried out on silicates. Since both the 59 size and shape of craters are affected by the nature of the asteroid's surface (Jutzi et al., 2015; 60 Marchi et al., 2016), calibrations against well-known crater size distributions may not apply 61 optimally to Psyche. An important effort in understanding cratering processes in metallic material, 62 through a combination of impact experiments and simulations, is therefore crucial for the 63 interpretation of the mission's data.

For decades, industrial and military applications of high-velocity impacts on metals provided data for the development of several strength models and equations of state (Steinberg et al., 1980; Johnson and Cook, 1985; Tillotson, 1962; Thompson and Lauson, 1972). Although limited attention has been drawn to the planetary-scale applications of high-velocity impacts on such materials, some impact experiments have been carried out on iron meteorites—possible analog to Psyche's surface—or alloyed irons with comparable mechanical properties (Matsui et al.,
1984; Katsura et al., 2011; Ogawa et al., 2017; Ganino et al., 2018; Libourel et al., 2019; Marchi
et al., 2019).

72 For example, Ganino et al. (2018) and Libourel et al. (2019) carried out a suite of impact 73 experiments on Cr-Mo alloy steel (SCM 435) and the iron meteorite Gibeon at the Institute of 74 Space and Astronautical Science (ISAS) in Japan. The objective of the present study is to calibrate 75 the adaptive smoothed particle hydrodynamics (ASPH) computational package Spheral++ (Owen 76 et al., 1998) against the high-velocity impact experiments carried out by these authors. Relying on 77 the well-established Steinberg-Guinan strength model for steel (Steinberg et al., 1980) we are 78 interested in understanding the effect on crater dimensions of 1) the equation of state (EOS), and 79 2) the dynamic fracture model (initial distribution of flaws in the material). We compare the 80 outcomes of 86 simulations obtained with the Tillotson EOS (Tillotson, 1962) and ANEOS 81 (Thomson and Lauson, 1972) with the same initial conditions using different initial flaw 82 distributions characterized by a pair of Weibull parameters, with the objective to identify those that 83 best fit the experimental data. We also compare the damage caused to the target in all cases, and in 84 selected simulations we analyze the evolution of the target's temperature.

85

86 **2. Numerical framework**

We use the computational package Spheral++, which employs the adaptative smooth-particle hydrodynamics method (ASPH; Shapiro et al., 1996; Owen et al., 1998). ASPH replaces the scalar smoothing scale of SPH (Monaghan, 1992) with a symmetric tensor, such that the resolution around each point is represented by an arbitrary ellipsoidal volume allowed to follow the local anisotropies in the particle distribution. This improves the locally Lagrangian approximation of ASPH in that

92 each material points volume can follow the Lagrangian deformation of the local fluid element more 93 faithfully than the simple volume adaptation of SPH. The SPH smoothing scale approximation is 94 really only appropriate for locally isotropic volume changes. In practice it means that ASPH allows 95 the local resolution scale to follow while point distributions are stretched or compressed 96 anisotropically. That way, both numerical stability as well as efficiency can be improved when 97 resolution is needed in preferential directions. More details about Spheral++ can be found in the 98 literature (Owen et al., 1998; Owen, 2004; Owen, 2014); here we describe the parameters and 99 models used and investigated in our simulations. These include the equation of state (material-100 dependent equation that relates the pressure to the density and either directly the temperature or the 101 internal energy), the strength model (which takes into account the mechanical reaction and the 102 possible plastic deformations of the material) and the damage model (initial distribution of incipient 103 flaws that may evolve in fractures under a given amount of stress).

104

105 **2.1. Equations of state**

The equation of state (EOS) relates the pressure of a system to its density and temperature or internal energy. This equation must be added to the equations of conservation and motion for a complete characterization of the system's dynamics. It is material-dependent, and typically consists in a set of interpolation parameters derived to match experimental data in the range of pressure, temperature and density of interest. The effect of two different equations of state is examined in this study: the Tillotson EOS (Tillotson, 1962) and ANEOS (Thomson and Lauson, 1972).

The Tillotson parameters for pure iron have been published by Melosh (1989) and are implemented as default values for iron in Spheral++. The main parameters for steel have also been published (Nesterenko, 2001). Both sets of parameters (Table 1) were compared by conducting two otherwise identical simulations, and no fundamental difference was found between the evolution in time of the crater's dimensions (Fig. 1). Therefore, we chose to perform the rest of the simulations using the Tillotson parameters for pure iron, since they have been more widely used and the other EOS studied (ANEOS) has only been parameterized for pure iron.

119 No detailed work has recently been published on the ANEOS of pure iron since the original 120 publications, unlike for example SiO₂ (Melosh, 2007). Two versions of ANEOS are available for 121 pure iron, accounting for different phases and phase transitions (Melosh, private communication). 122 The version adapted from the original ANEOS library matches experimental data for the solid-123 solid phase transition at ~13 GPa. This version, however, lacks a distinct liquid phase. Another 124 version accounts for the liquid phase but not the solid-solid transition (Thompson, 1990); recent 125 experimental work has shown the limitation of this version for very high pressures (~500 GPa; 126 Kraus et al., 2015). Both versions of ANEOS would equally benefit from being re-evaluated in the 127 light of new available experimental data.

128 The approximate pressure expected in the target during the compression phase of an impact129 was derived by Mizutani et al. (1990):

130

$$P \sim P_0 \left(\frac{D_P}{r}\right)^3 \tag{1}$$

131

133

$$P_0 \sim \frac{\rho_{0,t} C_t v \zeta}{2} \left(1 + \frac{v s_t \zeta}{2C_t} \right) \text{ where } \zeta = 2 \left[1 + \left(\frac{\rho_{0,t} C_t}{\rho_{0,p} C_p} \right)^{1/2} \right]^{-1}$$
(2)

135 In eqs. (1) and (2), subscripts t and p denote target- and projectile-related quantities. D_{P} (m) is the 136 impactor diameter, r (m) is the distance from the closest point located on the sphere of radius D_P below the impact point, ρ_0 (kg m⁻³) is the initial density, C (m s⁻¹) is the bulk sound velocity in the 137 138 material, v (m s⁻¹) is the impact velocity, s is a constant equal to 1.92 (Mizutani et al., 1990). Using 139 eqs. (1) and (2), initial densities of 2700 and 7800 kg m⁻³, bulk sound velocity of 3500 and 5200 m 140 s⁻¹ for basalt and iron, respectively, we find a peak pressure of \sim 75 GPa and up to \sim 45 GPa at 0.45 141 cm below the crater (i.e., the depth of the final crater, see section 4). Given that the pressure 142 involved in the area of interest during the impact can be much higher than 13 GPa, and that based 143 on the experiments partial melting of the target is expected, we chose the version of ANEOS 144 accounting for a liquid phase to compare to the suite of simulations carried out with the Tillotson 145 EOS.

146

147 **2.2. Strength model**

148 The response of a system to an applied force strongly depends on the strength model implemented 149 and it is crucial to choose the model most adapted to the simulated material. The Steinberg-Guinan 150 strength model (Steinberg et al., 1980) describes the evolution of both the shear modulus and yield 151 strength as a function of temperature, pressure and density—as opposed to the Johnson-Cook 152 strength model, also commonly adopted for metals, which does only provide the yield strength. 153 This model assumes that both shear modulus and yield strength are independent from the strain 154 rate, which is only valid if the strain rate is higher than $\sim 10^5$ s⁻¹. During an impact, the compressive 155 strain rate $\dot{\varepsilon}$ is approximately:

$$\dot{\varepsilon} \sim \frac{v_P r_P}{r^2} \tag{3}$$

where v_p is the impact velocity, r_p the radius of the projectile and r is the distance (Melosh et al. 159 1992). In our case, with $v_p = 6.9$ km s⁻¹, $r_p = 1.9$ mm (Section 3) and r = 1 cm (i.e., approximatively twice the size of the final crater; Section 4.1), we find $\dot{\varepsilon} \sim 1.3 \times 10^5$ s⁻¹, which is above the model's validity threshold. The fitting parameters used for steel are summarized in Table 2.

163

164 **2.3. Damage model**

165 The tensile stress applied during the impact yields the activation and propagation of flaws in the 166 material, which irreversibly damage it (i.e., reduce its strength) up to an eventual breaking point. 167 In Spheral++, the damage of a node is modeled by a tensor D, and the stress tensor applied to a 168 node will be scaled down by I-D, where I is the identity matrix. Because the yield strength of a 169 metrial is directly related to the stress applied by the Steinberg-Guinan model (Steinberg et al. 170 1980), a damaged node will decrease in strength until it is fully damaged. It is then treated as a 171 strengthless material. To quantify the damage of a node, we look at the maximum eigenvalue of 172 the damage tensor calculated for this node.

The accumulation of damage in the material is modeled with the widely-used Grady-Kipp fragmentation theory (Grady and Kipp, 1980) adapted to SPH by Benz and Asphaug (1994). This theory relies on the existence of incipient flaws in the material—naturally occurring due to, for example, crystal defects. Each flaw possesses its own stress threshold above which it starts to grow in order to release part of the stress applied to the material. When the target is initialized, Spheral++ distributes incipient flaws with different threshold stresses and assigns several flaws to each node. The distribution of these incipient flaws follows the Weibull statistics:

$$N(\sigma) = \left(\frac{\sigma}{\sigma_N}\right)^m \tag{4}$$

181

182 where *N* is the number of flaws that activate at or below a stress σ for a given volume. The 183 parameters *m* and σ_N (called shape and scale parameters, respectively) are material dependent and 184 can be experimentally determined—although so far a limited number of materials have been 185 calibrated. Eq. (4) is also commonly found in the form $n(\varepsilon) = k\varepsilon^m$, where *n* is the number density 186 of activated flaws at a strain ε , and:

187

$$k = \frac{1}{V} \left(\frac{E}{\sigma_N}\right)^m \tag{5}$$

188

189 where *V* and *E* are the volume and the Young's modulus of the target, respectively (Nakamura et al., 2007).

One objective of this study is to determine numerically the range of values of Weibull parameters m and σ_N (or equivalently k) that best reproduce the impact experiment carried out by Ganino et al. (2018), and evaluate the dependence of the final crater dimensions on these parameters. None of them has been experimentally measured for SCM 435 steel, and no clear values of m and σ_N were identified in the literature for stainless steel. We selected the range of values investigated for σ_N using the fact that this parameter is related to the mean fracture stress ($\overline{\sigma}$) of the material by:

$$\sigma_N \sim \frac{\bar{\sigma}}{\Gamma(1+1/m)} \tag{6}$$

200 where Γ is the gamma function (Bergman, 1985). Taking $\overline{\sigma}$ equal to the tensile strength of the SCM 201 435 steel (since flaws activate in tension), σ_N should fall in the range 650–950 MPa for values of 202 the shape parameter m between 2 and 30. Regarding an estimate of m, Asphaug et al. (2002) 203 mention that metals could be approximated by $m \sim 8$ (for reference, a value of 9.5 is often adopted 204 for basalt). The authors do not provide additional information or reference. Accounting for the 205 uncertainties of these parameters, we conducted a suite of simulations spanning a broad range of 206 values of m (2, 5, 8, 10, 12, 15 and 30) and σ_N (0.05, 0.2, 0.5, 0.8, 0.9, 1.1, 1.5, 2.0 and 3.0 GPa). 207 The equivalent values of the parameter k are given in Table 3.

208 Note that the Grady-Kipp fragmentation theory was developed to model failure in a brittle 209 material, while steel and iron meteorites are both ductile at room temperature. However, Grady 210 (2003) applied this theory to fragmentation of ductile metals explaining that although some stress 211 may be accommodated by ductile deformation, this dissipation process is relatively limited and 212 represents a minor contribution to the final outcome of high-strain rate events. Moreover, impact 213 experiments comparing steel, Fe-Ni alloy and iron meteorites targets found no significant 214 difference in crater shape between impacts above and below the brittle-ductile transition 215 temperature (Matsui and Schultz, 1984; Libourel et al. 2019). Therefore, we assumed the Grady-216 Kipp theory could reasonably be applied to model high-velocity impacts in steel targets.

217

218 **3. Selected experiment**

We replicated a high-velocity impact experiment conducted by Ganino et al. (2018). In the experiment, the target was a cylinder of SCM 435 steel, with a diameter of 6 cm and a height of 3-

221 4 cm. In the simulation, the target is a parallelepiped of $6 \times 6 \times 3$ cm. The projectile is a 80-mg 222 sphere of basalt (i.e., with a radius of 1.92 mm, assuming a density of 2700 kg m⁻³) impacting vertically at 6.89 km s⁻¹ under Earth gravity (9.81 m s⁻²). It is initially located three radii above the 223 224 target's surface (5.76 mm). The target is simulated with a resolution of 0.5 mm, which represents 225 ~866,000 SPH particles. The impactor is made of ~93,800 SPH particles; this number is calculated 226 the mass per SPH particle is the same in the target and impactor. We also conducted two selected 227 runs with a resolution of 0.2 mm to verify the convergence of the results with increasing resolution 228 and also analyze the target's temperature. The SPH particles were assigned an EOS (Tillotson or 229 ANEOS) and a strength according to the Steinberg-Guinan model for steel (Section 2.2). We 230 carried out simulations with both EOS for 43 pairs of Weibull parameters *m* and σ_N (Section 2.3). We applied a plastic yield model with constant shear modulus $G_0 = 22.7$ GPa and yield strength 231 232 $Y_0 = 3.5$ GPa to characterize the projectile's strength and used Weibull parameters published for basalt (m = 9.5 and $k = 10^{30}$ cm⁻³; Asphaug et al., 2002). 233

234

4. Comparison with the impact experiment

236 **4.1. Crater dimensions**

In the replicated experiment (Ganino et al., 2018), a crater diameter of 9.8 mm was measured at the original level of the target's surface and a depth of 4.5 mm was measured from this original level down to the bottom-center of the crater. We measured both quantities the same way at the end of the simulations (10 μ s); at this time, all the craters had their final dimension. We considered the spatial resolution of our simulation (0.5 mm) as the uncertainty in the dimensions of the simulated craters; this corresponds to a 10% uncertainty for both diameter and depth.

243 With the Tillotson EOS, we find that only 58% of the diameters and 30% of the depths 244 obtained in the simulations are within $\pm 10\%$ of the experimental values, though all diameters and 245 almost all depths (95%) remain within $\pm 20\%$ (Fig. 2A). Both depth and diameter vary 246 monotonically with the Weibull scale parameter σ_N : for a given shape parameter m, the dimensions 247 decrease inversely to σ_N (except for m = 2, where they are approximately constant). In most cases, the higher σ_N , the closer the dimensions to experimental values. However, we do not observe 248 significant differences when σ_N is kept constant and *m* varies. Both results are not surprising if we 249 250 consider the cumulative distribution function of the Weibull distribution (Fig. 3). When σ_N 251 increases, a larger applied stress is necessary for the same amount of nodes to fail, yielding a 252 smaller crater. If *m* increases, the simulated material becomes more homogenous, but the amount 253 of stress needed to fail ~2/3 of the nodes (definition of σ_N) is the same, explaining why varying m 254 has less effect than σ_N . Interestingly, the pairs $(m, \sigma_N) = (8, 0.8-0.9 \text{ GPa})$ are among the best fits 255 when accounting for both diameter and depth. This is in agreement with our preliminary calculations for σ_N (Section 2.3), and with the value suggested by Asphaug et al. (2002) for *m*, and 256 257 corresponds to a value of k of ~ 10^{17} cm⁻³.

With ANEOS, the diameters and depths are overall closer to experimental values with 77% and 51% within ±10%, respectively (Fig. 2B). We observe a similar monotonic trend with σ_N as with the Tillotson EOS, with more spread in depth than diameter as a function of σ_N . Note that the pairs $(m, \sigma_N) = (8, 0.8-0.9 \text{ GPa})$ also reproduce well the experimental values.

262

263**4.2. Target damage**

264 Because the strength of a material decreases with accumulating damage, any area within the target 265 with non-zero damage will be irreversibly and proportionally weakened. Ganino et al. (2018) imaged a section of the crater with scanning electron microscopy (SEM) and observed deformations of the target and minor cracks within ~1 mm around the crater edge and up to several mm directly below the crater. Cracks < 0.2-mm wide were also observed down to about 2 mm underneath the bottom of the crater, indicating the material had marginally failed. Given the resolution of the nominal simulations (0.5 mm), it was expected that such cracks would not be resolved, but that a possible partial damage of the target could be found.

272 For m > 5, the cases where $\sigma_N = 0.05$ GPa produce near-global failure of the target, with a 273 majority of nodes damaged at 100%. This is also the case for m = 30 and $\sigma_N = 0.2$ GPa. The cases 274 where m = 2 leave the target completely undamaged. In all other cases and with both EOS, the first 275 layer of SPH particles surrounding the crater is only partially damaged by the impact (Fig. 4A-B). 276 Increasing m from 5 to 30 increases the maximum damage (typically near the impact point) of 277 ~10% and the thickness of material damaged below the impact point by a factor of 2 to 3. Not surprisingly, increasing σ_N yields less damaged nodes because the average threshold stress of the 278 279 incipient flaws shifts toward higher values. Globally, the smaller this scale parameter, the thicker 280 and more damaged the layer of material below the crater. The Tillotson EOS yields on average a 281 maximum that is about 10% smaller than the same simulation conducted with ANEOS. However, 282 the EOS does not have a significant influence on the amount of damaged material below the crater 283 (Fig. 4B). For the cases where the crater dimensions are within 10% the experimental values, the 284 layer of damaged material below the crater does not exceed 2 mm, which is in agreement with 285 experimental observations.

For comparison, we performed one simulation with the same initial setup, the Tillotson EOS and a basaltic target (Fig. 5A-B). We used the Weibull parameters of basalt (m = 9.5, $k = 10^{30}$ cm⁻³) and the strength model developed by Collins et al. (2004) for rock materials. The impact resulted in a crater 1.5 times larger in diameter and depth after $10 \mu s$ (end of the simulations with a steel target). We observed a more important damage (between 0 and 10%) affecting larger regions of the target, as opposed to the very localized, minor damage of the steel target. This illustrates the importance of the nature of the target in the characterization of impact craters.

293

4.3. Temperatures in the target

The temperature in the target was not measured during the experiments by Ganino et al. (2018). However, the authors found numerous metal beads embedded in the ejecta and in the quenched impactor melt that was deposited at the surface of the target or infiltrated in cracks, suggesting that the metal reached at least locally melting temperatures. Similarly, immiscible emulsion of silicate and Fe-Ni metal liquid were observed at the bottom of the crater on the Gibeon iron meteorite (Libourel et al., 2019), showing the target had experienced temperatures above the melting point of Fe-Ni metal.

We recorded the evolution of the temperature in the target for two simulations (one for each EOS) with 0.2-mm resolution and the Weibull parameters $(m, \sigma_N) = (8, 0.9 \text{ GPa})$. The Tillotson EOS relates the pressure and density to the internal energy of the system, not directly to the temperature, which is calculated assuming a constant specific heat capacity. Because of this approximation, the simulations with the Tillotson EOS may provide less reliable temperatures than with ANEOS, which directly relates the temperature to the other quantities.

308 During crater formation (t = 1 μ s, Fig. 6A-B), a >2-mm heated zone surrounds the crater. 309 In particular, the temperature of the upper half layer of the heated zone exceeds ~2600°C, the 310 liquidus for iron at pressures ~70 GPa (maximum pressure in the target; Ahrens et al., 1998). This 311 confirms that liquid metal is formed during the impact, as expected from the presence of spheroidal 312 metal blebs in crater and ejecta (Ganino et al., 2018), or by metal-silicate liquid immiscibility in

313 craters (Libourel et al., 2019). At the end of the simulation when the crater is in steady state (t =314 10 µs, Fig. 6C-D), a zone heated above 100°C remains between 1 and ~3 mm (on the sides and 315 below the crater, respectively). The maximum temperatures are reached in the uppermost layer in 316 the crater, which is right at the liquidus temperature for SCM 435 steel at room pressure ($\sim 1500^{\circ}$ C) 317 and therefore could still contain melted residues. Remarkably, the temperatures both at 1 μ s and 318 $10 \,\mu s$ do not drastically differ between the case with the Tillotson EOS and ANEOS. In our case, 319 the Tillotson EOS seems to provide a relatively reliable approximation of the temperature in the 320 target. In both cases, we suspect that the highest temperatures ($\gg 2600^{\circ}$ C) could be artifacts due 321 to the still relatively coarse resolution of the simulations. Note that the Tillotson EOS has a 322 continuous analytic solution for internal energy (and therefore temperature), whereas for ANEOS, 323 a grid of temperatures accessible to the EOS must be created. This is due to the fact that Spheral++ 324 evolves the model in terms of the specific thermal energy, while ANEOS works in temperature. 325 For efficiency, Spheral++ accommodates this difference by computing lookup tables converting 326 the energy to temperature (as a function of density) and using bilinear interpolation to go between 327 the two. This increases the computation speed at the expense of a certain discreteness in the 328 resulting temperatures. In the simulations, the resolution for the ANEOS case was ~50°C, which 329 explains why small temperature differences cannot be resolved (Fig. 6A-D).

330

331 **5. Discussion**

332 5.1. Tillotson EOS versus ANEOS

Overall, in the conditions of the experiment we replicated, the influence of the EOS on the outcomes of the simulations remains limited and always depends on other parameters such as the initial flaw distribution. In terms of crater dimensions, ANEOS cases are overall closer to the 336 experimental values than the Tillotson cases. However, for the Weibull shape parameter m = 8337 found in the literature (Asphaug et al., 2002) and reasonable values of the scale parameter σ_N (0.8– 338 0.9 GPa) estimated by simple calculation (Section 2.3) both EOS yield accurate dimensions. In 339 terms of temperature recorded in the target, we do not find a significant difference between ANEOS 340 and the Tillotson EOS, which in this case provides reliable temperature estimates despite the 341 approximation of a constant specific heat capacity. Finally, except for extreme values of the 342 Weibull scale parameter $\sigma_N < 0.2$ GPa where the target fails with ANEOS but is only widely 343 damaged with Tillotson, there is no notable difference in the amount of material damaged between 344 the two EOS. The simulations with ANEOS globally result in a damage ~10% higher that with 345 Tillotson, though in both cases the target is only marginally affected (damage below 40%).

346

347 **5.2. Steel versus meteoritic metal**

348 Iron meteorites—possible analog to Psyche's surface material—are made of a Fe-Ni alloy that was 349 most often very slowly cooled (a few degrees per million years), yielding the formation of very 350 specific structures characteristic of meteoritic alloys. One of the most striking example is the formation of the Widmanstätten pattern, a mm-scale intergrowth of two Fe-Ni phases called 351 352 kamacite (Ni-poor) and taenite (Ni-rich) that gives iron meteorites their recognizable geometric 353 pattern when etched (Buchwald, 1975). With such exceptional cooling conditions and resulting 354 heterogeneities, differences may be expected between the mechanical behavior of iron meteorites 355 and that of man-made steels. The limited number of impact experiments and strength tests carried 356 out on iron meteorites had companion experiments made on various steel targets (Matsui and 357 Schultz, 1984; Katsura et al., 2011; Ogawa et al., 2017; Libourel et al. 2019). Tensile tests carried 358 out on the iron meteorite Gibeon measured a yield strength at room temperature of ~310 MPa 359 (Johnson and Remo, 1974), similar to that of the SCM 435 steel (~350 MPa). Matsui et al. (1984)

performed high-velocity impact experiments on 1020 steel (yield strength ~300 MPa), pure iron 360 361 and three iron meteorites. They found that crater size and shape (lip) were very similar for each 362 type of target. Matsui et al. (1984) also reported evidence of failure on most iron meteorites, with 363 cracks propagating along the Widmanstätten discontinuities. Similar observations (lip and cracks 364 along boundaries) were made by Libourel et al. (2019) after comparison between impacts on 365 Gibeon and on SCM 435 steel. This difference likely emerges from the contrast between a 366 relatively isotropic steel and highly anisotropic iron meteorites. The similarities between the craters 367 in steel and in meteorite show the relevance of modeling steel targets, for which more data are 368 available. On the other hand, the failure observed on meteorites away from the crater suggests that 369 the Weibull distribution for incipient flaws may have to be adapted for iron meteorites and should 370 not necessarily be assumed to be similar to steel, because of the weaker interfaces of the meteoritic 371 Widmanstätten structure. However, whether such heterogeneities are relevant for planetary-scale 372 impacts remains to be investigated.

373

5.3. Possible implications for impact craters on Psyche

375 The results of our simulations allow us to compare and contrast what impacts into targets of 376 different compositions might be like. For a given set of initial conditions, iron targets are almost 377 never fully damaged but rather experience a minor and very localized weakening, whereas a 378 basaltic target is more widely weakened. Crater size gives us another way to examine these trends. 379 In the experiment simulated here, the crater to projectile diameter ratio is 2.6 (and varies between 380 2.2 and 2.9 for other experiments conducted by Ganino et al. (2018) for velocities between 3.39 381 and 6.88 km s⁻¹). In comparison, impacts at 6.9 km s⁻¹ into aluminum targets yield a ratio of 4.8 382 (Hörz, 2012). Both these values are smaller than the value of 8 calculated from scaling laws for 383 intact basalt (Holsapple and Housen, 2007; Marchi et al., 2010).

Scaling laws tested against experiments on silicate targets predict that the threshold for catastrophically destroying the target, and therefore activating flaws, will decrease as the target's size increases (Housen and Holsapple, 1999). This dependence is in particular controlled by the shape parameter *m*. Since the value of this parameter estimated in this study (m = 8-10) bracket that estimated for basalt ($m \sim 9.5$), it is expected that, like a silicate object, an iron-rich object of increasing size will get weaker.

390 However, in the case of cratering, we have seen that the strength of the target influences the 391 crater size. Therefore, despite the fact that both silicate-rich and metal-rich targets would weaken 392 at larger scale, the threshold for failure for iron will always be higher than that for silicate. The 393 implication is that for equivalent impacts, much larger or faster projectiles would be necessary to 394 cause a similar crater on a metal-rich surface as that inflicted to a silicate one. As a consequence, a 395 comparison between impact experiments or simulations and the size-frequency distribution of 396 craters measured on Psyche combined with models of the main belt population may allow us to 397 glean insights into the composition and strength of Psyche's surface relative to other asteroid 398 surfaces. A different crater to projectile diameter ratio on Psyche than that measured on other main 399 belt asteroids would also mean that scaling laws derived for objects dominated by silicates could 400 not optimally apply to this asteroid.

This study focused on modeling non-porous, pure-iron targets. It is probable that Psyche's surface and subsurface will rather be made of a mixture of iron with silicates, possibly hydrated (Takir et al., 2017), and possibly micro or macroporous. Moreover, we only focused on vertical impacts, even though oblique impacts would more realistically occur in nature (Pierazzo and Melosh, 2000). With confidence that vertical impacts on pure iron can be well replicated, a next step could be to introduce complexities such as oblique impacts, along with varying microporosity and macroporosity of the target. Further simulating layered or rubble-pile-like silicate-iron 408 mixtures, in comparison with experiments on stony-iron meteorites and alloyed mixtures, will409 allow us to explore the effects of surface heterogeneities on the fate of impact craters.

410

411 **6. Conclusion**

412 Understanding the outcomes of impact processes on iron alloys and iron meteorites, as well as their 413 scaling to planetary-like events is crucial for the optimal interpretation of the cratering data of the 414 forthcoming NASA Discovery mission Psyche. Moreover, verifying the reliability of numerical 415 models applicable to metals against simple experiments is an essential step toward more general 416 investigations of planetary processes involving metallic or differentiated bodies. This work aims at 417 better characterizing the influence of numerical parameters in the modeling of high-velocity 418 impacts in steel targets, and possibly iron meteorites, using the ASPH package Spheral++. For a 419 given strength model of stainless steel, we investigated the influence of the equations of state 420 (Tillotson EOS and ANEOS), as well the influence of the Weibull distribution of incipient flaws 421 in the material. The crater dimensions are within 10% of the experimental value in more cases with 422 ANEOS than the Tillotson EOS. However, for reasonable Weibull parameters estimated from the 423 literature or simple calculations, both EOS yield craters similar to the experimental one. In a 424 majority of cases and independently from the EOS, the target does not fail and is only marginally 425 damaged (damage <40% within 1 to 2 mm around the crater). Finally, the recorded temperatures 426 are not significantly affected by the choice of the EOS and reach locally values above the melting 427 point of iron at pressure <100 GPa, which is in good agreement with experimental observations of 428 melted metal beads coming from the target. This work highlights the importance of specifically studying impacts in Psyche-like targets, because crater formation differs from what would be 429 430 observed with a silicate target in similar impact conditions. Differences might therefore be expected between the crater size distribution of Psyche (if metal is dominating the surface and subsurface)
and other asteroids of similar size orbiting in the main belt. The NASA Psyche mission will for the
first time image impact craters on a metal-rich asteroid and predictions arising from experimental
and numerical work will be valuable during data interpretation.

435

436 Acknowledgements

437 We are very grateful to Dr. Dawn Graninger for her help with the ANEOS package in Spheral++, 438 and to Dr. William F. Bottke and Dr. Simone Marchi for their comments on the manuscript. The 439 simulations presented in this paper were performed on the Engaging cluster located at the 440 Massachusetts Green High Performance Computing Center (MGHPCC). C.M. thanks the NASA 441 Discovery program (Psyche mission) for financial support, P.M. acknowledges funding support 442 from the French space agency CNES and from Academies of Excellence: Complex systems and 443 Space, environment, risk, and resilience, part of the IDEX JEDI of the Université Côte d'Azur. The 444 work of M.B.S. and J.M.O. was performed under the auspices of the U.S. Department of Energy 445 by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

446

447 **References**

Ahrens, T. J., Holland, K. G. and Chen, G. Q. (1998) Shock temperatures and the melting point of

449 iron, AIP Conference Proceedings 429, 133–136.

450

451 Asphaug, E. and Reufer A. (2014) Mercury and other iron-rich planetary bodies as relics of
452 inefficient accretion, Nat. Geosci. 7, 564–567.

454	Asphaug, E., Ryan, E. V. and Zuber, M. T. (2002) Asteroid interiors, in Bottke et al. Eds., Asteroid
455	III, pp. 463–484.
456	
457	Benz, W. and Asphaug E. (1994) Impact simulations with fracture. I. Method and tests, Icarus 107,
458	98–116.
459	
460	Bergman, B. (1985) On the variability of the fracture stress of brittle materials, J. Mater. Sci. Lett.
461	4 , 1143–1146.
462	
463	Buchwald, V. F. (1975) Handbook of iron meteorites, Vol. 1, 254 pp.
464	
465	Collins, G. S., Melosh, H. J. and Ivanov, B. A. (2004) Modeling damage and deformation in impact
466	simulations, Meteorit. Planet. Sci. 39, 217–231.
467	
468	Elkins-Tanton, L. T., Asphaug, E., Bell, J. F., et al. (2017) Asteroid (16) Psyche: visiting a metal
469	world, abstract 1718, 48th Lunar and Planetary Sci. Conf., The Woodlands, TX, March 20-24,
470	2017.
471	
472	Ganino, C., Libourel, G., Nakamura, A. M., Jacomet, S., Tottereau, O. and Michel, P. (2018)
473	Impact-induced chemical fractionation as inferred from hypervelocity impact experiments with
474	silicate projectiles and metallic targets, Meteorit. Planet. Sci. 53, 2306–2326.
475	
476	Grady, D. E. (2003) Investigation of explosively driven fragmentation of metals-two-dimensional

477 fracture and fragmentation of metal shells: progress report II, doi:10.2172/15005042.

- Grady, D. E. and Kipp, M. E. (1980) Continuum modelling of explosive fracture in oil shale, Int.
 J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 147–157.
- 481
- Holsapple, K. A. and Housen, K. R. (2007) A crater and its ejecta: An interpretation of Deep
 Impact, Icarus 191, 586–597.
- 484
- 485 Hörz, F. (2012) Cratering and penetration experiments in aluminum and teflon: Implications for
 486 space-exposed surfaces, Met. Planet. Sci. 47, 763–797.
- 487
- Housen, K. R. and Holsapple, K. A. (1999) Scale effects in strength-dominated collisions of rocky
 asteroids, Icarus 142, 21–33.
- 490
- 491 Johnson, G. R. and Cook, W. H. (1985) Fracture characteristics of three metals subjected to various

492 strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21, 31–48.

- 493
- Johnson, A. A. and Remo, J. L. (1974) A new interpretation of the mechanical properties of the
 Gibeon meteorite, J. Geophys. Res. 79, 1142–1146.
- 496
- 497 Jutzi, M., Holsapple, K., Wünneman, K. and Michel P. (2015) Modeling asteroid collisions and
- 498 impact processes, in Michel et al. Eds., Asteroid IV, pp. 679–699.
- 499

- 500 Katsura, T., Nakamura A. M., Takabe, A., Okamoto, T., Sange, K., Hasegawa, S., Liu, X. and
- 501 Mashimo, T. (2011) Impact experiments on collisional evolution of iron regolith, abstract 1695,
- 502 42nd Lunar and Planetary Sci. Conf., The Woodlands, TX, March 7–11.
- 503
- Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B. and Mattsson, T.R. (2015)
 Impact vaporization of planetesimal cores in the late stages of planet formation, Nat. Geosci.
 8, 269–272.
- 507
- 508 Libourel, G., Nakamura, A. M., Beck, P., Potin, S., Ganino, C., Jacomet, S., Ogawa, R., Hasegawa,
- 509 S., Michel, P. (2019) Hypervelocity impacts as a source of deceiving surface signatures on iron-510 rich asteroids, Sci. Adv. **5**, eaav3971.
- 511
- 512 Marchi, S., Barbieri, C., Küppers, M., Marzari, F., Davidsson, B., Keller, H. U., Besse, S., Lamy,
- 513 P., Mottola, S., Massironi, M. and Cremonese, G. (2010) The cratering history of asteroid (2867)
- 514 Steins, Planet. Space Sci. 58, 1116–1123.
- 515
- 516 Marchi, S., Durda, D. D., Polanskey, C. A., Asphaug, E., Bottke, W. F., Elkins-Tanton, L. T.,
- 517 Garvie, L. A. J., Ray, S. and Williams, D. A. (2019) Hypervelocity impact experiments in metallic
- 518 targets: Implications for the NASA Psyche mission, submitted to J. Geophys. Res.
- 519
- Marchi, S., Ermakov, A. I., Raymond, C. A. et al. (2016) The missing large impact craters on Ceres,
 Nat. Commun. 7, 12257.
- 522

523	Matsui, T. and Schultz, P. H. (1984) On the brittle-ductile behavior of iron meteorites' new
524	experimental constraints, J. Geophys. Res. 89, C323-C328.
525	
526	Melosh, H. J. (1989) Impact cratering: a geologic process, Research supported by NASA. New
527	York, Oxford University Press (Oxford Monographs on Geology and Geophysics, No. 11), pp.
528	234.
529	
530	Melosh, H. J. (2007) A hydrocode equation of state for SiO2, Meteorit. Planet. Sci. 42, 2079–2098.
531	
532	Melosh, H. J., Ryan, E. V. and Asphaug, E. (1992) Dynamic fragmentation in impacts: hydrocode
533	simulation of laboratory impacts, J. Geophys. Res. 97, 14735–14759.
534	
535	Mizutani, H., Takagi, Y. and Kawakami, SI. (1990) New scaling laws on impact fragmentation,
536	Icarus 87 , 307–326.
537	
538	Monaghan, J. J. (1992) Smoothed particles hydrodynamics, Annu. Rev. Astron. Astr. 30, 543–574.
539	
540	Nakamura, A. M., Michel, P. and Sehto, M. (2007) Weibull parameters of Yakuno basalt targets
541	used in documented high-velocity impact experiments, J. Geophys. Res. 112, E02001.
542	
543	Nesterenko, V. F. (2001) Dynamics of heterogeneous materials, Springer-Verlag New York, pp.
544	177.
545	

546	Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001) Cratering records in the inner solar system
547	in relation to the lunar reference system, Space Sci. Rev. 96, 55–86.

- Ogawa, R., Nakamura, M. and Hasegawa, S. (2017) The effect of temperature and impact velocity
 on crater shape on the surface of iron bodies, abstract 6074, 80th Annual Meeting of the
- 551 Meteoritical Society, Santa Fe, NM, June 23–28.
- 552
- 553 Owen, J. M. (2004) A tensor artificial viscosity for SPH, J. Comput. Phys. 201, 601–629.

554

- Owen, J. M. (2014) A compatibly differenced total energy conserving form of SPH, Int. J. Numer.
 Meth. Fluids **75**, 749–775.
- 557
- Owen, J. M., Villumsen, J. V., Shapiro, P. R. and Martel, H. (1998) Adaptive smoothed particle
 hydrodynamics: Methodology. II, Astrophys. J. Suppl. Ser. 116, 155–209.

560

- 561 Pierazzo, E. and Melosh, H. J. (2000) Understanding oblique impacts from experiments,
 562 observations, and modeling, Annu. Rev. Earth Planet. Sci. 28, 141–167.
- 563
- Shapiro, P. R., Martel, H., Villumsen, J. V. and Owen, J. M. (1996) Adaptive smoothed particle
 hydrodynamics, with application to cosmology: Methodology, Astrophys. J. Suppl. Ser. 103, 269–
 330.

- 568 Shepard, M. K., Richardson, J., Taylor, P. A., et al. (2017) Radar observations and shape model of
- 569 asteroid 16 Psyche, Icarus **281**, 388–403.

- 571 Steinberg, D. J., Cochran, S. G. and Guinan, M. W. (1980) A constitutive model for metals 572 applicable at high-strain rate, J. Appl. Phys. **51**, 1498–1504.
- 573
- 574 Takir, D., Reddy, V., Sanchez, J. A., Shepard, M. K. and Emery, J.P. (2017) Detection of water
- and/or hydroxyl on asteroid (16) Psyche, Astronomical Journal **153**:31.

576

- 577 Thompson, S. L. (1990) ANEOS analytic equation of state for shock physics codes input manual.
- 578 Sandia National Laboratory Report SAND89-2951.

579

- 580 Thompson, S. L. and Lauson, H. S. (1972) Improvements in the Chart D radiation-hydrodynamic
- 581 CODE III: Revised analytic equations of state, Sandia National Laboratory Report SC-RR-71 0714.
 582
- Tillotson, J. H. (1962) Metallic equation of state for hypervelocity impacts, General Atomic ReportGA-3216.

- 586 Viikinkoski, M., Vernazza, P., Hanuš, J., et al. (2018) (16) Psyche: A mesosiderite-like asteroid?
 587 Astron. Astrophys. 619, L3.
- 588
- 589 Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., Zashu, S. and Ebihara, M.
- 590 (2010) A new metal-rich chondrite grouplet, Meteorit. Planet. Sci. **36**, 401–418.

591 Figures

Fig. 1. Depth versus diameter of a crater formed after an impact at 6.89 km s⁻¹ by an impactor ~1.9mm in radius, for two different sets of Tillotson parameters: pure iron (Melosh, 1989) and steel (Nesterenko, 2001). Apart from their EOS parameters (given in Table 1), the targets were identical. The simulations lasted 10 μ s and both craters had their final shape at the end of the simulation. Squares and circles represents 0.5- μ s time steps.

Fig. 2. Crater dimensions as a function of the Weibull shape parameter *m* for the simulations with the Tillotson EOS (A) and ANEOS (B). Each rectangle represents one value of *m* and white dots represent increasing values of σ_N (see Table 3) from left to right. The top panels show the diameter of the crater (D_{sim}) normalized by the experimental value (D_{exp} = 9.8 mm) and the bottom panels show the depth of the crater (H_{sim}) normalized by the experimental value (H_{exp} = 4.5 mm). The grey bands highlight the dimensions that are within ±10% of the experimental values.

609 Fig. 3. Percentage of activated flaws as a function of stress, assuming a Weibull distribution with

Fig. 4. A) Maximum damage (in %) reached in a node of the target (typically near the impact point) as a function of the Weibull scale parameter σ_N . This does not account for ejected material. Circles and triangles represent the simulations with ANEOS and the Tillotson EOS, respectively. The increasing color darkness corresponds to increasing values of *m*. The cases with zero or full damage are not included. B) Thickness of the layer below the impact point with non-zero damage as a function of the Weibull scale parameter σ_N .

Fig. 5. A) Damage in the steel target at the end of the simulation (10 μ s) obtained with the Weibull parameters (m, σ_N) = (8, 0.9 GPa). B) Damage in a basalt target with otherwise identical impact conditions. The color bar applies to both panels and correspond to the maximum eigenvalue of the damage tensor. The damage of the steel target is minor and very localized at the bottom of the crater compared to the damage of basalt target. Conversely to the crater in steel, the crater in basalt is still mildely expanding at 10 μ s.

628 Fig. 6. Temperature in the target after 1 µs (A-B) and 10 µs (C-D). Simulations use the Tillotson EOS (A-C) and ANEOS (B-D) with Weibull parameters $(m, \sigma_N) = (8, 0.9 \text{ GPa})$ and a resolution 629 630 of 0.2 mm.

631 Tables

632

			A	В	E ₀	α	β	E _{IV}	E _{CV}
Parameter	а	b	(GPa)	(GPa)	(J kg ⁻¹)			(J kg ⁻¹)	(J kg ⁻¹)
Pure iron	0.5	1.5	128	105	9.5×10 ⁶	5	5	2.4×10^{6}	8.67×10 ⁶
Steel	0.55	0.62	117	55	17.5×10 ⁶	5	5	2.4×10^{6}	8.67×10 ⁶

633

Table 1. Tillotson parameters published for pure iron (Melosh, 1989) and steel (Nesterenko, 2001).

635 Parameters a, b, A, B, E_0 are material-specific, α , β are fitting parameters and E_{IV} , E_{CV} are the

636 energy of incipient and complete vaporization, respectively. Because the values of E_{IV} and E_{CV} for

637 steel were not provided by Nesterenko (2001), we used the same values as pure iron.

Parameter	G ₀ (MPa)	<i>Y</i> ₀ (MPa)	A (MPa ⁻¹)	B (K ⁻¹)	β	n	Y _{max}
Stainless steel (except Y ₀)	7.7×10 ⁵	350	2.26×10 ⁻⁶	4.55×10 ⁻⁴	43	0.35	2.5×10 ³

639 Table 2. Parameters of the Steinberg-Guinan strength model for stainless steel (Steinberg et al.,

640 1980). Y_0 is taken equal to the yield strength of the SCM 435 steel used in the expe	eriment.
---	----------

<i>k</i> (cm ⁻³)		Shape parameter <i>m</i>						
		2	5	8	10	12	15	30
	0.05	1.41e5	9.05e15	5.79e26	9.27e33	1.5e41		
	0.2	8.84e3	8.84e12	8.84e21	8.87e27	9.2e33	9.2e42	9.2e87
	0.5	1.41e3	9.05e10	5.79e18	9.27e23	1.48e29	9.49e36	1.1e76
Scale	0.8		8.63e9	1.34e17	8.43e21	5.27e26	8.23e33	8.0e69
parameter	0.9			5.25e16	2.59e21	1.28e26	1.40e33	2.4e68
σ_N (GPa)	1.1			1.06e16	3.49e20	1.15e25	6.93e31	5.44e65
	1.5				1.57e19	2.9e23	6.61e29	4.95e61
	2.0					8.84e21	8.84e27	8.84e57
	3.0						2.02e25	4.61e52

Table 3. Corresponding values of the Weibull parameter *k* for a given shape parameter *m* and scale parameter σ_N . The combinations showed with a gray cell were not investigated. These values were obtained using the equation $k = 1/V(E/\sigma_N)^m$ (Nakamura et al., 2007), where *V* is the volume of the target (108 cm³ in the simulations) and *E* the Young modulus of the target material (~200 GPa).