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Abstract. Looking for conflicts in software policies is a critical activ-
ity in many contexts, like security, expert systems, and databases. These
policies are often written or specified as logical rule-based systems, which
is a flexible and modular formalism. However, this formalism does not
guarantee by itself the safety of the system. While several works address
conflict detection, as far as we know there is little research on making
explicit all these problems in an abstract and simplified form. In this
paper, we compare different techniques to extract all the problems in
a rule-based system. We define an exact algorithm and an application
on three middle-size case studies, but as expected with poor time per-
formances. We improve this with a combine algorithm and a few simple
heuristics that accelerate the computation of all the problems in the case
studies by several orders of magnitude.

keywords: Rule-based systems, Rule conflicts, Satisfiability

1 Introduction

While rule-based systems are popular due to their flexibility and modularity,
techniques and tools are still needed for assisting users in their practical man-
agement. One of the most critical aspects is detecting (and correcting) conflicting
situations. There exist already several approaches, specifically in the area of se-
curity policies, to check for conflicts [11,12,1,4], and even to fix them [13,9,5].
However, these approaches are restricted to specific languages (e.g. for firewall
policies), or only consider a limited set of problems or need a rule ordering. De-
tecting problems in a context without priority, with quantifiers and unrestricted
predicates and functions is still a complex manual activity. We argue that an
automated approach for making explicit all these conflicts in an understandable
form would be of great help during the problem-fixing phase. Users could use
this problem summary to effectively select the most critical problems, that may
be addressed first. For example, several conflicting instances may be coming
from the same problem and of course we should prioritize removing the general
problem rather than each instance one by one. We already defined a solution
to retrieve the list of all conflicts in [4] but in realistic cases this raw list is too
long and its simplification is difficult and expensive. Another point is that we
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should cope with a possible input sanitization. For instance, logically in an ac-
cess control policy DENY and ALLOW is a conflicting situation. However, it is not a
real problem since such a request will not be submitted to the engine running
the rule system.

Obtaining a simplified view of all the conflicts is computationally expensive
for several reasons: requests enumeration, use of variables, number and logic of
the rules, simplification of the found problems. An additional complexity comes
from the fact that the processing intertwines syntactic and semantics aspects.
While the theoretical complexity is high, we look for algorithms and heuristics
which can succeed in processing middle-size case studies in a reasonable amount
of time. We provide the following contributions:

– We discuss a first simple but inefficient algorithm and various other ways of
enumerating these problems.

– We describe an exact solution that improves time performance and size of
the result. For instance we can solve a use case with 61 rules in nearly 50
minutes resulting in 6 problems. However, this exact solution is too slow for
more complex case studies.

– We propose a heuristic that allows to solve our three use cases in less than
60 s and finding the same problems. This heuristic is based on the idea of
exposing the most abstract problems first.

The content of this paper is structured as follows. Section 2 presents a moti-
vating example and provides the necessary background and definitions to under-
stand our approach. Section 3 describes related work in the area of rule-based
systems and checking for conflicting rules. Section 4 discusses several options
to compute the problems and gives additional information about our processing
algorithms. In Section 5 we present a first algorithm and its evaluation on our
case studies. The main contribution is our combine algorithm which is described
in Section 6 and evaluated. Lastly, in Section 7 we conclude and sketch future
work.

2 Motivation

In Figure 1.1 we have three rules of a rule-based system in predicate logic. We
will follow a syntax inspired by the Z3 solver [17], but implication is denoted by
=>.

Listing 1.1. A simple example
And(allow(X), deny(X)) => False #1
student(X) => allow(X) #2
And(student(X), repeating(X)) => deny(X) #3

We know that the language of system inputs (or requests) allows for any logi-
cal combination of the predicates student and repeating. The language of system
outputs (or replies) is compound from the vocabulary allow and deny. Note that
the conclusion of the first rule is false. The rule is not describing an expected
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reply but defines relations between the conclusions allow and deny. We call explicit
unsafe the rules whose conclusion is false.

Our aim is to define a tool which is able to summarize all the correct but
undefined requests. A correct request will be one compliant with the input gram-
mar. An undefined request is responsible for contradictory replies, in other words
its conjunction with the rule system makes it unsatisfiable. A correct and unde-
fined request will be called a real problem or a problem for short. For instance,
we expect our tool to return the result shown in Listing 1.2 when applied to the
previous example.

Listing 1.2. Undefined requests and problems in the example
----------- undefined requests --------------
And(allow(X), deny(X))

----------- real problems --------------
And(student(X), repeating(X))

The difference between undefined requests and real problems is important be-
cause the first kind is not expected to be submitted to the rule system. Real
problems are called conflicts, inconsistencies, etc. in literature, and can gener-
ally lead to various kinds of failures.

Since we have a grammar for the requests we expect to be able to decide if any
satisfiable logical expression represents a request. We do not consider a grammar
for the replies, since it is not useful in our task of summarizing the problematic
requests. We may consider such a grammar in future work, for analyzing the
correctness of the responses.

Our previous work at [4] is able to generate a list of all the undefined requests
of a given rule-based system. When applied to a full real-world system, this list
becomes easily unmanageable both because of the number of undefined requests
and the size of each one of them. Moreover our previous work cannot distinguish
between undefined requests and real problems.

Thus our objective is to present the user with a short list of simpler prob-
lems, by 1) performing automatic simplification and 2) considering the requests
language throughout the analysis. This objective has in general a higher com-
putational complexity. Thus we need to improve previous work in several ways:
more complex preprocessing, simplification, use of hash coding and binary rep-
resentations.

2.1 Case studies

Our initial objective was to define an algorithm to process three middle-size ex-
amples in a reasonable amount of time. Our time limit to compute a simplified
description of all the problems in the case studies was 10 hours. The first exam-
ple (RBSSIM) is an expert system for recommending investments, the second
(ContinueA) a classic access control policy for a conference management, and
the third (Healthcare) an administrative role-based access control for healthcare
management. Note that these three examples have free universally quantified
variables, but in addition the healthcare one has few rules with universal quan-
tifiers inside its conditions.
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Description Rules Kind of logic
RBSSIM

expert system 36 unary predicates and arithmetic (Int.<, >=, *)
https://courses.csail.mit.edu/6.871/Assignment2/RBSSim.pdf

ContinueA
XACML policy 47 binary and unary predicates
http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/

Healthcare
ARBAC healthcare 61 1,2,3-nary predicates and Int.<
http://www3.cs.stonybrook.edu/~stoller/ccs2007/

Table 1. Our three case studies

2.2 Background and notations

In our tool and our use cases we use FOL and a logical solver (Z3) but the
technique can be applied to a large set of logical frameworks. Of course the
method depends on the ability of the solver to manage such a logic.

A rule is a logical implication, taking the form of D ⇒ C, with D being
the condition and C the conclusion of the rule, expressed in a logical language
possibly with free variables noted by ∗. Condition and conclusion are any kind
of FOL expressions, there is no restriction here. A rule system (∀∗R) is simply a
satisfiable conjunction of rules with possibly free universally quantified variables
(∀ ∗

∧
1≤i≤n(Di ⇒ Ci)). Requests are FOL expressions. When they are sent

to a rule system at runtime, they will be evaluated against all rules in that
system to generate replies (which are also FOL expressions). A request is called
undefined, if it is satisfiable by itself, but unsatisfiable when in conjunction with
R. Depending on the implementation, R would give contradictory/unsatisfiable
replies to the undefined requests, therefore making the system unrealizable.

A rule system will be provided with an input grammar REQ defining the
language of requests. We note D :REQ meaning that D is compatible with the
grammar REQ and D!REQ if it is not.

Let Ai be a set of logical atoms, that is propositional variables Pj or predicate
calls predk(v1, ..., vn). A conjunction will be any AND combination of such
atoms or their negation.

3 Related work

There is a large amount of work aiming at detecting conflicting situations in
rule-based and related systems. The survey in [25] observes the lack of formal
verification methods for this task. Indeed many existing validation and verifi-
cation approaches for these systems are based on testing. Validation and verifi-
cation techniques for expert systems and database management ([6]), for Web
policies and contracts ([20]) or for knowledge based systems ([18]) already ex-
ist. Our domain is rather security policies where the problem of conflicts has
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been intensively studied. In surveys on security [11,12,1], conflict detection is a
central problem but it is typically treated together with other tasks like finding
bugs, redundancies, misconfigurations, etc. There exist already a few efficient
algorithms to statically detect conflicts but often they are dedicated to specific
languages, and the goal is not to find all the problems in a simplified form.
Amongst them [10,8,14,19,3,2], a more exhaustive list is available in the sur-
vey [22]. There are also several papers about finding and fixing such problems,
we refer to [16] for a bibliography. Researchers try to find automatic fixes for
various kinds of bugs, e.g. redundancies [13], misconfigurations [9]. Son et al. [23]
repair access-control policies in Web applications. Wu focuses on detecting in-
consistency bugs among invariant rules enforced on UML models [24].

Work on extractingminimal unsat core andmaximal sat core (e.g. [15,21]) are
different from ours. Here we consider the minimality of a satisfiable expression
but which is unsatisfiable in conjunction with another expression. The MUS
computation needs the knowledge of the requests and its result is useless to
compute the minimal sum of the requests. Our previous work [4] deals with
finding all the undefined requests in a rule system. In [5] we also study automatic
repair in this context. Our current work has a more ambitious goal which is
finding a simplified description of all the undefined requests compliant with
an input grammar. This objective is more complex and computationally more
expensive, thus the algorithms we will describe in the following sections are very
different from previous solutions.

4 Solving the problem

In this section we discuss some key issues we need to address, and point out
some possible solutions. We are looking for all problems, i.e. all requests that
are correct (w.r.t. the request language) and undefined (w.r.t. the rule system):

– In the general case there are 3#A− 1 correct requests, with #A the number
of atoms in the request language. In our first example there are only eight
correct input requests, that are compound of the predicates student and
repeating.

– By using the method in [4] we can efficiently enumerate all the undefined
requests (including requests that are not correct w.r.t. the request language)
by considering a number of rule combinations that is exponential w.r.t. the
number of rules. In the example, the method in [4] would compute 23 − 1
rule combinations leading to a set of non simplified undefined requests.

Finally, to list all problems we must intersect these two sets. This problem could
be solved with a logic description of the correct requests, however, it is not always
possible to do that. Finally we need to use the solver to check for satisfiability or
unsatisfiability which is an expensive task in general. Thus performing this task
is expensive for three main reasons: the number of correct requests, the number
of undefined requests and the use of a solver. Our final goal is identifying the
smallest set of minimal (simpler) problems. Thus we experiment and compare
several solutions.
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4.1 Input grammar

A first question is how to represent the grammar for requests and how to check
that an expression is compliant with it. The number of such expressions is often
infinite but we need of course a finite way to check compliance. This is a syntactic
problem on the structure of the input. We can try to represent the grammar with
a logical formula, but this is in general not convenient. For instance, we cannot
logically enable requests containing either P or Not(P). Normal forms are often
used to solve this kind of issue, that requires checking both syntactic (here input
compliance) and semantic (here undefinedness) properties.

Intuitively, a request is a conjunction of some atoms (positive or negative).
The reason is that a request should match one or more rule conditions and using
disjunctive normal forms for conditions we can define an equivalent rule system
with conjunctions of atoms as conditions. Thus our hypothesis here is to consider
that any request is a conjunction of predefined atoms which are selected by
the specifier and which define the input grammar. In our prototype we choose
to consider expressions at the top-level, that is under a Boolean operator or
starting with a quantifier. This is a sensible and simple choice but different ones
are possible (with consequences on the number of atoms and the computation
time). In order to simplify and optimize the processing we renamed the rules
according to the chosen expressions. We rename these sub expressions (Tseytin
transformation) and store new predicate definitions in the solver. Note that our
rule system can contain quantifiers, functions in conditions and conclusions.

We consider that the input grammar is represented by a set of expressions.
In our simple example we have REQ = {student(X), repeating(X)}, where X is a free uni-
versally quantified variable. Each expression in REQ has an associated atom with
this expression as definition. Thus applying renaming we will get an equivalent
system with a set of definitions and rules rewritten with atoms.

Listing 1.3. Renaming
----------- definitions --------------

OrderedDict ([( P_1(X), allow(X)), (P_2(X), deny(X)),
(P_3(X), student(X)), (P_4(X), repeating(X))])

----------- rules renamed --------------
<And(P_1(X), P_2(X)) => False >
<P_3(X) => P_1(X)>
<And(P_3(X), P_4(X)) => P_2(X)>

The cost of this renaming step is linear and we use Z3 hashcode to check ex-
pression equality. Our hypothesis on the input grammar could seem a bit strict,
nevertheless it is rather flexible and it is possible to consider cases where an atom
is legal but its negation is not. However, in the following and in our experiments
we strictly embrace this assumption, which will be discussed in detail later.

4.2 Identifying the real problems

The above hypothesis greatly simplifies the automatic distinction between cor-
rect and incorrect requests. The major problem is to identify the requests which
are problems and to get a simplified set of these problems. And of course this
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may be time consuming due to the number of requests to test, the use of a logical
solver, and the time to simplify expressions. Many different ways are possible,
we give here some hints about the ones we have experimented and we will detail
a naive solution and a more efficient one in the next sections.

Our first approach was to reuse our previous work in [4]. The basic idea is
to compute all the undefined expressions as defined by the following formula∨

I∈2n ∃ ∗ (
∧

i∈I1 Di

∧
j∈I0 ¬Dj¬

∧
i∈I1 Ci), where I1 (respectively I0) is the set

of positive (respectively negative) rules in the binary combination of the rules.
This computation was done in [4], using an iterative and a sorting method. The
first problem is that the method succeeds in less than 2 minutes with the Contin-
ueA example but takes more than 2 hours for the two other cases. Furthermore,
the undefined information is numerous and complex because of lack of simplifica-
tions. Even by using a normal form for the rules, the computing process was too
expensive. This way was unsuccessful also because some problems result from
the conjunction of undefined requests as we will see later.

The most naive approach is testing: generating all the correct requests and
identifying the ones which in conjunction with the system are unsatisfiable. The
problem is that the set of requests can be infinite, and in many practical cases it
is finite but too large. Furthermore, if we have free variables in our rule system
we should check for all free variable instantiations, since a real problem has an
existential nature. But freezing free quantified variables and using normalized
requests leads to a possible solution which is called enumerate and will be described
in the next section. We present it because this may be the simplest solution which
provides partial results.

Another approach could use the fact that any real problem is included in the
negation of the rule system (¬∀ ∗ R) which is equivalent to

∨
1≤i≤n ∃ ∗ (Di ∧

¬Ci). But one real problem could be included in several of the terms of this
union, take for instance to A => C and B => Not(C), with REQ = {A, B} which combined
produce a problem And(A, B). Thus we should compute all the exponential number
of combinations between the rules, and we still have the problem of simplification.

In both the two last cases there is an exploration of a set of requests. Since we
expect to get minimal (in the abstract sense) expressions, a breadth-first search
is preferable. We could also note that once a node is undefined all descendants
are undefined which limits the search process. Conversely, if one node is known
to be defined, then all its ancestors are also defined.

4.3 Problem simplification

We consider the classic two-level minimization principles of Boolean logic [7].
However, because of the cost of this task we assume a prime algorithm which
computes a list of prime implicants covering all the problems. We generally do
not manage directly MIN-terms (that is a maximal conjunction of atoms) but
rather a binary list representing a sum of product terms. We implement our
proper solution for the prime algorithm but exact or more efficient solutions,
like the Quine McCluskey, Expresso or SCHERZO algorithms, can be used. We
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do not go in these technical details here because, as we will see, the simplification
solution is not essential to the algorithms and our final result.

4.4 Preprocessing

This subsection summarizes some preliminary steps before discussing our two
algorithms. Our algorithms exploit some initial transformations of the rule sys-
tem.

Simplification. The rule system is checked for satisfiability, then redundant
rules are discarded. Of course this step depends from the rule ordering but this
is not an issue.

Renaming. As discussed above, we apply a renaming step which allows to
simplify the rule system. The user chooses a set of expressions occurring in the
rule system and this step computes an equivalent system using the principle
of Tseytin renaming. We suggest to use expressions close to the top-level of
conditions and conclusions, otherwise the parsing and the further computation
will be too expensive. Note that we do not assume that the definitions used for
renaming are logically independent.

Binary conversion. A conjunction of atoms can be converted into a binary
list of digits. The reference ordering is obtained from the sequence of definitions
(ordering matters here) and 1 stand for positive, 0, for negative and -1 for a
don’t care bit. Thus we defined a type Binary as List[{0, 1, -1}] which is used by
some of our algorithms.

Negation of the rule system. To compute the negation of our rule systems
we reuse tactics from Z3. We define a compound tactic:
Then(nnf, simplify, Repeat(OrElse(split-clause, skip)), simplify) to compute the sum of
product terms of the negation of the renamed rule system.

5 The enumerating process

The simplest way to identify the problems is to enumerate the MIN-terms rep-
resenting input requests and to check them against the rule system using the
solver. We note #REQ the number of distinct atoms (or definitions) used in
the renaming process and defining the input grammar. This is expensive since
we have 3#REQ − 1 correct requests, furthermore we do not get a simplified re-
sult. Since we need to extract simpler problems first, we enumerate the requests
starting from single atoms and their negation. Generating these requests in a
breadth-first order has higher chances to obtain a simplified result. However,
this is not sufficient and we get a long list of problems. It is possible to use our
prime algorithm, but it needs a binary conversion and this consumes more time.
We also remark that checking for unsatisfiable requests before their undefined-
ness is time expensive, since it calls the solver for each request. Indeed, there
is no undefined request involving the first 30 rules of the ContinueA and the
Healthcare examples, but there are more than six thousands undefined requests
on the first 20 rules of the RBSSIM case.
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The enumerate algorithm is rather straightforward from a breadth-first search of
the atoms combinations. It starts with each atom and its negation then computes
all the combinations from the smallest to the largest.

Listing 1.4. The Enumerate algorithm
1 enumerate_check(problems , lprop)
2 IF lprop THEN
3 current = lprop [0][0]
4 pb = check_undefined_request(current)
5 pbnot = check_undefined_request(Not(current ))
6 IF pb THEN
7 problems.append(current)
8 IF pbnot THEN
9 problems.append(notcurrent)

10 enumerate_check(lprop [1:])
11 ELSE
12 # notcurrent is defined
13 res = check_conj(notcurrent , lprop [0][1])
14 IF len(lprop) > 1 THEN
15 lprop [1] = [lprop [1][0] , res]
16 enumerate_check(lprop [1:]) #
17 # ---
18 # ... other cases are similar
19 RETURN problems
20 END # --- enumerate_check

The sketched algorithm in Listing 1.4 starts from the single atoms in REQ. The
conjunctions are represented by list of atoms in REQ. lprop is used to store visited
nodes. It is a list of lists, each one with the current node to visit and a list of
successors. It is initialized with a list of an atom and an empty list for each atom
in REQ. The algorithm checks each atom and its negation then if a problem is
found it is stored. The search continues on the rest of the list. When the atom
is defined a conjunction is built and checked with check_conj. This returns a list
of new conjunctions to visit which is stored at the end of the list for breadth-
first processing. The check_conj function builds a new conjunction from prop and
each conjunction in listoflconj. Then it checks for undefinedness and stores the
problems. This function returns all the remaining defined conjunctions to visit
in the next step. It uses a check_undefined_request function to check a conjunction of
atoms for undefinedness against the rule system. If the solver gives an unknown
reply, a message is printed to alert the user. There are three ways to tackle this
case. The user can change the solver timeout to remove this uncertainty but he
may also fall into an undecidable case. She may change the specification or use a
more suitable solver for that logic. Finally, if she continues, she will not be sure
to get all the problems.

Name #rules time (s) #problems #checking

RBSSIM 20 538 6736 65730
Healthcare 30 1563 26 106578
ContinueA 30 36284 1071 3672198
Table 2. Few results with the enumerate algorithm
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With the ContinueA policy and the first 30 rules the enumeration takes 10
hours. Our experiments (see Table 2) show that after nearly 20 or 30 rules it
is tedious to wait for a long list of complex problems. These experiments have
been performed on a Mac Book Pro under High Sierra, 2.9 GhZ, 16Go of RAM,
pydev 7.2.1, Python 3.7.2 and the z3-solver package 4.8.5.0. When it is sensible,
the shown time results from an average of 10 runs. The full source code and
examples can be found at the tool website1. In the table, #checking is the
number of solver calls, which is an indicator of the real complexity of the task.

6 The combining process

We have experimented a set of algorithms based on the principle that undefined
requests are included in the negation of the rule system. Thus we compute a
sum of product terms with the Z3 tactic for the negation of the rule system,
and we get

∨
1≤i≤m Ui a union of conjunctions of atoms. Each Ui can be viewed

as a conjunction Ri ∧ Ni where Ri :REQ and Ni!REQ. Furthermore, we can
assume that both expressions are not false. We also assume that Ri is not true,
since we have no problem included in Ni. To compute all the problems we use
the following principle.

Property 1 (Combining principle).
Let ∨1≤i≤m(Ri ∧Ni) with Ri neither false nor true and Ni not false.

– If ∨j∈J⊆{1≤i≤m}Nj is true ∧j∈JRj is satisfiable then ∧j∈JRj is a problem.
– If a problem pb is included in the union ∨1≤i≤m(Ri ∧ Ni) then it exists

J ⊆ {1 ≤ i ≤ m} such that ∨j∈J⊆{1≤i≤m}Nj is true.

The sufficient condition for a problem is simple to see. The necessary condi-
tion can be explained as follows. If pb is a problem included in the union then
pb = ∨1≤i≤m pb∧Ri∧Ni. Eliminating the unsatisfiable case of the union we get
pb = ∨1≤j≤k R′i ∧ Ni with the same hypothesis as above. Then we decompose
the equation with all R′i combinations, and we get a disjoint union with one
term ∧1≤i≤k Ri ∧ (∨1≤i≤kNj). Since we have a disjoint union of !REQ normal
forms then the problem is a disjoint union of problems included in each term.
There is no problem in the terms except in ∧1≤i≤k R′i ∧ (∨1≤i≤k Nj). It shows
that the above condition is necessary. Concretely we can use this result as fol-
lows: compute all the conjunctions of the REQ parts in ¬R and check them for
undefinedness.

We use the simple tactic from Z3 to reduce the negation of the rule system
to a sum of conjunction of atoms. This tactic was chosen because it is efficient
but more sophisticated algorithms are possible. We get a list of atom conjunc-
tions which is converted in a list of binary representations, called binary:Binary to
be short. From this list of Binary we can first extract some problems. We also
simplify the list for convenience, but these steps are not essential. A second step
is to reduce each binary in the list, since real problems should be compliant
1 https://github.com/atlanmod/ACP-all branch fixall_june2019
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with the input grammar. We get a list of reductions (reduction:REQ), that is
binary reduced to atoms occurring in the input grammar. Then several ways are
possible to compute all the real problems: i) To expand each reduction and to
check it for undefinedness, and ii) To compute all the conjunctions and to check
them for undefinedness. There are also several possible optimizations: to discard
cases when the reduction is unsatisfiable, to check if a conjunction expression
has been already seen, or to check if it is a MIN-term (that is without don’t
care bit) since by combination either we get an unsatisfiable request or the same
expression. Experiments have shown that these techniques outperform the pre-
vious enumerative method. Table 3 allows comparison with the previous Table 2
on the same first rules of the three case studies. The table shows that times are
obviously improved. This is also true for the size of the set of problems, even
if we deactivate the simplification algorithm. Logical equivalence of the found
problems was also checked using the Z3 solver but only for the 20 first rules.

Name #rules time (s) #problems #checking

RBSSIM 20 45 4 10357
Healthcare 30 26 5 3036
ContinueA 30 243 6 32151

Table 3. To compare combine and enumerate algorithms

However, this combine method is still rather expensive due to the huge num-
ber of expressions to check for undefinedness. The best configuration of opti-
mizations is described in the following section.

6.1 A complete solution

In Listing 1.5 the initial steps are used to compute a sum of product for the
negation of the rule system. Thus binaries contains all the undefined requests.
This list is then filtered to extract initial problems (that are compliant with
REQ) and simplified. Then a list of reductions is extracted and cleaned for double
or True cases (that is [-1*]). The loops are computing all the distinct combina-
tions of reductions by stage of same number of combinations. Each time a new
combination (common) is computed from existing combinations and reductions. If
the combination is not trivially unsatisfiable or not already included in the set
of problems, it is checked for undefinedness. The nextcombined list memorizes the
defined combinations with an index (nextlasts) of the last allreq element in order
to only include distinct combinations. Finally, the set of problems is checked for
unsatisfiable cases and simplified.

This process is optimized using few additional elements which have a real
effect on performances. The implemented algorithm manages a list of already
seen expressions to avoid double checks. In case common is not a problem and if it
has no don’t care bit or J == size-1 it is not necessary to combine it further.
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Listing 1.5. The Combine algorithm
1 binaries = tactic(Not(R))
2 filtered , problems = remove -problems(binaries)
3 allreq = reduction(filtered)
4 combined = allreq
5 lasts = [0 .. size(allreq )-1]
6 WHILE size(combined) > 1 DO
7 nextcombined = []
8 nextlasts = []
9 I = 0

10 WHILE (I < size(combined )) DO
11 current = combined[I]
12 last = lasts[I]
13 FOR J in [last .. size(allreq )-1] DO
14 other = allreq[J]
15 common = compute -and(current , other)
16 IF (common != []) THEN
17 IF (common not included in problems) THEN
18 IF (check -undefined(R, common )) THEN
19 add(problems , common)
20 ELSE
21 add(nextcombined , common)
22 add(newtlasts , J)
23 ENDFOR J
24 ENDWHILE I
25 combined = nextcombined
26 lasts = nextlasts
27 ENDWHILE combined
28 RETURN prime(remove -unsat(problems ))

Note that the test common != [] is only a sufficient syntactic check for unsatisfi-
ability. Hence a final check for unsatisfiability is done to remove unsatisfiable
requests from the list of real problems (there were one in the Healthcare and
four in the RBSSIM example). If it is performed during the exploration, it is
much more costly than doing it only at the end, like with the enumerate algorithm.
The results are shown in Table 4. It takes nearly 50 minutes to entirely process

Name time (s) #problems #checking #level #without

RBSSIM 378039 13 3252166 19 13
Healthcare 2892 6 50107 14 6
ContinueA 253108 64 1548997 18 111

Table 4. Results with the combine algorithm

the Healthcare case, but much more for the two other examples. The number
of simplified problems for the two first cases are low. There is a large number
of problems with ContinueA, it is not surprising since the system results from
removing the combining rules in the XACML original example. Indeed without
final simplification we get the number of problems in the #without column. This
shows that a simplification algorithm is not essential but of course useful if it
is not too much time consuming. #level is the number of combination stages,
meaning that at most #level stages are needed to compute all the possible com-
binations of the reductions. Let #BIN the number of binaries after tactic and
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prime simplification and reduction to REQ, that is the initial size of allreq in the
algorithm. We know that the number of levels (#level) is less than the minimum
of #REQ and #BIN . We observe that the real level is generally smaller than
this limit but it seems difficult to predict it.

6.2 Simpler problems first

In fact, we observe that in our examples the problems are located near the top of
the enumerating process. Of course, it is not difficult to find artificial examples
where this is not the case and we can build examples containing only one problem
situated at the last level.

Listing 1.6. Healthcare results
### level 1 problems ---------------
And(Doctor(T, X), Not(PrimaryDoctor(T, X)))
And(Patient(T, X), PrimaryDoctor(T, X))
And(Doctor(T, X), Receptionist(T, X))
And(Nurse(T, X), Doctor(T, X))
And(Manager(T, X), assign(T, X, Y))
And(Doctor(T, X), Not(assign(T, X, Y)), revoke(T, X, Y),

ForAll(Q, And(Q < T, assign(Q, X, Y))))

### level 2 problems ---------------
And(Doctor(T, X), Not(PrimaryDoctor(T, X)))
And(Patient(T, X), PrimaryDoctor(T, X))
And(Doctor(T, X), Receptionist(T, X))
And(Nurse(T, X), Doctor(T, X))
And(Manager(T, X), assign(T, X, Y))
And(Doctor(T, X), Not(assign(T, X, Y)), revoke(T, X, Y),

ForAll(Q, And(Q < T, assign(Q, X, Y))))
And(Doctor(T, X), Patient(T, X))

### level 3 problems ---------------
### <same problems as above >

Most of the problems are found after the initial steps or after the binary
combinations. If there is only few problems no simplification is possible but if
we have more, the simplified problems go up in the hierarchy of requests and are
found first. Let K the maximal number of atoms in the problems, that is the
number of bits different of -1. Initially, the reductions have a minimal number
of atoms which is greater or equal to one. At each step the combining process
combines distinct reductions and this increases the number of atoms at least
of one. Since this computation is exhaustive we will reach the maximum K at
most after K−1 steps. Listing 1.6 shows the three first levels for the Healthcare
case study. We get 7 cases but the 6th is an unsatisfiable request and should be
avoided, most of the problems are found by the initial step. We do not know how
to exactly evaluate K, but one interesting heuristic is to observe the first level
where no new problem is computed. The results are shown in Table 5, where
#SL is the first level where no new problem appears.

It can be noticed that the time to process and the number of checks are
radically smaller due to the reduced level of combinations. We should check
with the solver the logical equivalence between the two sets of problems, but in
fact they are syntactically the same.
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Name time (s) #problems #checking #REQ #BIN #SL

RBSSIM 17 13 3688 32 31 3
Healthcare 45 6 2216 23 37 3
ContinueA 32 64 5968 30 42 3

Table 5. Results with the heuristic

6.3 Discussion

Due to lack of information our specifications are missing some relevant relations.
For instance, in the Healthcare case we may assume that all resources are dis-
joint. This adds 78 explicit unsafe rules and as many problems. This multiplies
the number of rules by two but this does not penalize the combine algorithm. Ex-
plicit unsafe with atoms in REQ are problems which are detected by the initial
step. This increases the success rate for a combination to be already included
in a problem thus less combinations are checked by the solver. With this new
specification we have 139 rules and we get 84 problems in 34 seconds. We also
note that the sufficient level is reached at level 2.

There are many different algorithms and optimizations, we defined and stud-
ied only some of them. For instance, we known that once a conjunction is defined
all its contained conjunctions are also defined. Thus in the above algorithm we
can bypass the check by the solver replacing it with a syntactic check that the
new combination includes some already seen combinations. This is convenient
if the syntactic check is faster than the solver execution. And in fact this is
not obvious, except using a prime integer encoding which slightly improves the
performances for the Healthcare and the ContinueA cases.

Another example is based on the fact that some enumerated combinations are
not useful since they are included in already known problems. Though, adding
such a check does not have a decisive impact on performances mainly because
checking that the binary has been already seen is simpler and more general. With
this optimization, ContinueA and Healthcare perform slightly better, RBSSIM
slightly worst.

We do not study a smart tactic for the negation of the rule system but
choosing a tactic which computes undefined requests with a maximum of atoms
would increase the convergence of the above process.

It seems difficult to predict the value of the sufficient level to reach all the
problems. One idea was to consider the set of problems and the set of undefined
requests which are not problems. Another track is to explore the maximal satis-
fiable combinations of the existing combinations and to check if they are making
explicit new problems or not. An alternative is to bound the K value from the
rule system.

In our experiment we consider two assumptions about the choice of REQ.
The first is to consider as atoms the expressions at the top and under a Boolean
operator. Relaxing this assumption would multiply the number of atoms and
have a bad impact on performances. The second choice was to consider that an
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atom or its negation are allowed in the correct requests. It is simple to relax this
assumption by considering the set of binary requests which are correct. This
would have little impact on the performance of the last algorithm.

7 Conclusion

It is obvious that finding all the problems of a rule system is a computationally
expensive task. There are three main reasons: the input request enumeration, the
solver checking and the simplification process. We have discussed several possible
processes and shown one complete algorithm but with still poor performances.
This algorithm produces the simpler and abstract problems first, which can be
considered as the most critical problems. Thus it provides a sensible practical
tooling to analyze a rule system. However, one interesting heuristic is possible
and allows us to compute most of the problems (if not all) in a reasonable amount
of time.

As future work we plan to investigate ways of configuring the searching pro-
cess and to exploit the simplified list of problems to further assist an iterative
problem-fixing activity.
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