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ABSTRACT

We present a non-commutative algorithm for the multiplication

of a 2 × 2-block-matrix by its transpose using 5 block products (3

recursive calls and 2 general products) over C or any field of prime

characteristic. We use geometric considerations on the space of

bilinear forms describing 2 × 2 matrix products to obtain this algo-

rithm and we show how to reduce the number of involved additions.

The resulting algorithm for arbitrary dimensions is a reduction of

multiplication of a matrix by its transpose to general matrix prod-

uct, improving by a constant factor previously known reductions.

Finally we propose schedules with low memory footprint that sup-

port a fast and memory efficient practical implementation over a

prime field. To conclude, we show how to use our result in L · D · L⊺

factorization.
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1 INTRODUCTION

Strassen’s algorithm [20], with 7 recursive multiplications and 18

additions, was the first sub-cubic time algorithm for matrix prod-

uct, with a cost of O
(
n2.81

)
. Summarizing the many improvements

which have happened since then, the cost of multiplying two ar-

bitrary n × n matrices O(nω ) will be denoted by MMω (n) (see [17]
for the best theoretical value of ω known to date).

We propose a new algorithm for the computation of the prod-

uct A · A⊺ of a 2 × 2-block-matrix by its transpose using only 5

block multiplications over some base field, instead of 6 for the natu-

ral divide & conquer algorithm. For this product, the best previously

known complexity bound was dominated by
2

2
ω−4

MMω (n) over
any field (see [11, § 6.3.1]). Here, we establish the following result:

Theorem 1.1. The product of an n × n matrix by its transpose can

be computed in
2

2
ω−3

MMω (n) field operations over a base field for

which there exists a skew-orthogonal matrix.

Our algorithm is derived from the class of Strassen-like algo-

rithms multiplying 2 × 2 matrices in 7 multiplications. Yet it is a

reduction of multiplying a matrix by its transpose to general matrix

multiplication, thus supporting any admissible value for ω. By ex-

ploiting the symmetry of the problem, it requires about half of the

arithmetic cost of general matrix multiplication when ω is log
2

7.

We focus on the computation of the product of an n × k matrix

by its transpose and possibly accumulating the result to another

matrix. Following the terminology of the blas3 standard [10], this

operation is a symmetric rank k update (syrk for short).

2 MATRIX PRODUCT ALGORITHMS

ENCODED BY TENSORS

Considered as 2 × 2 matrices, the matrix product C = A · B could

be computed using Strassen algorithm by performing the following

computations (see [20]):

ρ1 ← a11(b12 − b22),

ρ2 ← (a11 + a12)b22, ρ4 ← (a12 − a22)(b21 + b22),

ρ3 ← (a21 + a22)b11, ρ5 ← (a11 + a22)(b11 + b22),

ρ6 ← a22(b21 − b11), ρ7 ← (a21 − a11)(b11 + b12),( c11 c12

c21 c22

)
=

(
ρ5+ρ4−ρ2+ρ6 ρ6+ρ3

ρ2+ρ1 ρ5+ρ7+ρ1−ρ3

)
.

(1)

In order to consider this algorithm under a geometric standpoint,

we present it as a tensor. Matrix multiplication is a bilinear map:

Km×n × Kn×p → Km×p ,
(X ,Y ) → X · Y ,

(2)

where the spacesKa×b are finite vector spaces that can be endowed

with the Frobenius inner product ⟨M,N ⟩ = Trace(M⊺ · N ). Hence,

this inner product establishes an isomorphism between Ka×b and

its dual space

(
Ka×b

)⋆
allowing for example to associate matrix

multiplication and the trilinear form Trace(Z⊺ · X · Y ):

Km×n × Kn×p × (Km×p )⋆ → K,
(X ,Y ,Z⊺) → ⟨Z ,X · Y ⟩.

(3)

As by construction, the space of trilinear forms is the canonical

dual space of order three tensor product, we could associate the

Strassen multiplication algorithm (1) with the tensor S defined by:∑
7

i=1
Si1⊗Si2⊗Si3 =

(
1 0

0 0

)
⊗

(
0 1

0 −1

)
⊗

(
0 0

1 1

)
+(

1 1

0 0

)
⊗

(
0 0

0 1

)
⊗

(
−1 0

1 0

)
+

(
0 0

1 1

)
⊗

(
1 0

0 0

)
⊗

(
0 1

0 −1

)
+(

0 1

0 −1

)
⊗

(
0 0

1 1

)
⊗

(
1 0

0 0

)
+

(
1 0

0 1

)
⊗

(
1 0

0 1

)
⊗

(
1 0

0 1

)
+(

0 0

0 1

)
⊗

(
−1 0

1 0

)
⊗

(
1 1

0 0

)
+

(
−1 0

1 0

)
⊗

(
1 1

0 0

)
⊗

(
0 0

0 1

)
(4)

in (Km×n )⋆ ⊗ (Kn×p )⋆ ⊗ Km×p with m = n = p = 2. Given any

couple (A,B) of 2 × 2-matrices, one can explicitly retrieve from ten-

sor S the Strassen matrix multiplication algorithm computingA · B
by the partial contraction {S,A ⊗ B}:(
(Km×n )⋆⊗(Kn×p )⋆⊗Km×p

)
⊗

(
Km×n⊗Kn×p

)
→Km×p ,

S ⊗ (A ⊗ B) →
∑

7

i=1
⟨Si1,A⟩⟨Si2,B⟩Si3,

(5)

while the complete contraction {S,A ⊗ B ⊗ C⊺} is Trace(A · B ·C).
The tensor formulation of matrix multiplication algorithm gives

explicitly its symmetries (a.k.a. isotropies). As this formulation is

1
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associated to the trilinear form Trace(A · B ·C), given three invert-

ible matrices U ,V ,W of suitable sizes and the classical properties

of the trace, one can remark that Trace(A · B ·C) is equal to:

Trace

(
(A · B ·C)⊺

)
= Trace(C · A · B) = Trace(B ·C · A),

and Trace

(
U −1 · A ·V ·V −1 · B ·W ·W −1 ·C ·U

)
.

(6)

These relations illustrate the following theorem:

Theorem 2.1 ([8, § 2.8]). The isotropy group of the n × n matrix

multiplication tensor is psl
±(Kn )×3⋊S3, where psl stands for the

group of matrices of determinant ±1 andS3 for the symmetric group

on 3 elements.

The following definition recalls the sandwiching isotropy on

matrix multiplication tensor:

Definition 2.1. Given g = (U ×V ×W ) in psl
±(Kn )×3

, its ac-

tion g ⋄ S on a tensor S is given by

∑
7

i=1
g ⋄ (Si1 ⊗ Si2 ⊗ Si3) where

the term g ⋄ (Si1 ⊗ Si2 ⊗ Si3) is equal to:

(U −⊺ · Si1 ·V
⊺) ⊗ (V −⊺ · Si2 ·W

⊺) ⊗ (W −⊺ · Si3 ·U
⊺). (7)

Remark 2.1. In psl
±(Kn )×3

, the product ◦ of two isotropies д1 de-

fined by u1 ×v1 ×w1 and д2 by u2 ×v2 ×w2 is the isotropy д1 ◦ д2

equal to u1 · u2 ×v1 · v2 ×w1 ·w2. Furthermore,the complete con-

traction {д1 ◦ д2,A ⊗ B ⊗ C} is equal to {д2,д1

⊺ ⋄A ⊗ B ⊗ C}.

The following theorem shows that all 2 × 2-matrix product algo-

rithms with 7 coefficient multiplications could be obtained by the

action of an isotropy on Strassen tensor:

Theorem 2.2 ([9, § 0.1]). The group psl
±(Kn )×3

acts transitively

on the variety of optimal algorithms for the computation of 2 × 2-

matrix multiplication.

Thus, isotropy action on Strassen tensor may define other matrix

product algorithm with interesting computational properties.

2.1 Design of a specific 2 × 2-matrix product

This observation inspires our general strategy to design specific

algorithms suited for particular matrix product.

Strategy 2.1. By applying an undetermined isotropy:

g = U ×V ×W =
( u11 u12

u21 u22

)
×

( v11 v12

v21 v22

)
×

(w11 w12

w21 w22

)
(8)

on Strassen tensor S, we obtain a parameterization T = g ⋄ S of all

matrix product algorithms requiring 7 coefficient multiplications:

T =

7∑
i=1

Ti1 ⊗ Ti2 ⊗ Ti3, Ti1 ⊗ Ti2 ⊗ Ti3 = g ⋄ Si1 ⊗ Si2 ⊗ Si3. (9)

Then, we could impose further conditions on these algorithms and

check by a Gröbner basis computation if such an algorithm exists. If so,

there is subsequent work to do for choosing a point on this variety; this

choice can be motivated by the additive cost bound and the scheduling

property of the evaluation scheme given by this point.

Let us first illustrate this strategy with the well-knownWinograd

variant of Strassen algorithm presented in [22].

Example 1. Apart from the number of multiplications, it is also in-

teresting in practice to reduce the number of additions in an algorithm.

Matrices S11 and S61 in tensor (4) do not increase the additive cost

bound of this algorithm. Hence, in order to reduce this complexity in

an algorithm, we could try to maximize the number of such matrices

involved in the associated tensor. To do so, we recall Bshouty’s results

on additive complexity of matrix product algorithms.

Theorem 2.3 ([6]). Let e(i, j) = (δi,kδj,l )(k,l ) be the single entry
elementary matrix. A 2 × 2 matrix product tensor could not have 4

such matrices as first (resp. second, third) component ([6, Lemma 8]).

The additive complexity bound of first and second components are

equal ([6, eq. (11)]) and at least 4 = 7 − 3. The total additive complex-

ity of 2 × 2-matrix product is at least 15 ([6, Theorem 1]).

Following our strategy, we impose on tensor T (9) the constraints

T11 = e1,1 =
(

1 0

0 0

)
, T12 = e1,2, T13 = e2,2 (10)

and obtain by a Gröbner basis computation [13] that such tensors are

the images of Strassen tensor by the action of the following isotropies:

w =
(

1 0

0 1

)
×

(
1 −1

0 −1

)
×

(w11 w12

w21 w22

)
. (11)

The variant of the Winograd tensor [22] presented with a renumbering

as Algorithm 1 is obtained by the action of w with the specializa-

tionw12 = w21 = 1 = −w11,w22 = 0 on the Strassen tensor S. While

the original Strassen algorithm requires 18 additions, only 15 additions

are necessary in the Winograd Algorithm 1.

Algorithm 1 : C =W(A,B)

Input: A =
( a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
;

Output: C = A · B
s1 ← a11−a21, s2 ← a21+a22, s3 ← s2 − a11, s4 ← a12 − s3,

t1 ← b22 −b12, t2 ← b12 −b11, t3 ← b11 + t1, t4 ← b21 − t3.

p1 ← a11·b11, p2 ← a12·b21, p3 ← a22·t4, p4 ← s1·t1,
p5 ← s3·t3, p6 ← s4·b22, p7 ← s2·t2.

c1 ← p1 + p5, c2 ← c1 + p4, c3 ← p1 + p2, c4 ← c2 + p3,

c5 ← c2 + p7, c6 ← c1 + p7, c7 ← c6 + p6.

return C =
( c3 c7

c4 c5

)
.

As a second example illustrating our strategy, we consider now

the matrix squaring that was already explored by Bodrato in [3].

Example 2. When computing A2
, the contraction (5) of the ten-

sor T (9) with A ⊗ A shows that choosing a subset J of {1, . . . , 7}
and imposing Ti1 = Ti2 as constraints with i in J (see [3, eq 4]) can
save |J | operations and thus reduce the computational complexity.

The definition (9) of T , these constraints, and the fact that U ,V
andW ’s determinant are 1, form a system with 3 + 4 |J | equations
and 12 unknowns whose solutions define matrix squaring algorithms.

The algorithm [3, § 2.2, eq 2] is given by the action of the isotropy:

g =
(

0 1

−1 0

)
×

(
1 1

0 1

)
×

(
1 0

1 1

)
(12)

on Strassen’s tensor and is just Chatelin’s algorithm [7, Appendix A],

with λ = 1 (published 25 years before [3], but not applied to squaring).

Remark 2.2. Using symmetries in our strategy reduces the com-

putational cost compared to the resolution of Brent’s equations [4,

§ 5, eq 5.03] with an undetermined tensor T . In the previous exam-

ple by doing so, we should have constructed a system of at most 64

algebraic equations with 4(3 (7 − |J |) + 2 |J |) unknowns, resulting
from the constraints on T and the relation T = S, expressed using

Kronecker product as a single zero matrix in K8×8
.
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We apply now our strategy on the 2 × 2 matrix product A · A⊺ .

2.2 2 × 2-matrix product by its transpose

Applying our Strategy 2.1, we consider (9) a generic matrix multi-

plication tensor T and our goal is to reduce the computational com-

plexity of the partial contraction (5) withA ⊗ A⊺ computingA · A⊺ .
By the properties of the transpose operator and the trace, the

following relations hold:〈
Ti2,A

⊺〉 = Trace

(
Ti2
⊺ · A⊺

)
= Trace

(
(A ·Ti2)

⊺ ),
= Trace

(
A ·Ti2

)
= Trace

(
Ti2 · A

)
=

〈
Ti2
⊺,A

〉
.

(13)

Thus, the partial contraction (5) satisfies here the following relation:

7∑
i=1

〈
Ti1,A

〉〈
Ti2,A

⊺〉Ti3 = 7∑
i=1

〈
Ti1,A

〉
⟨Ti2
⊺,A⟩Ti3. (14)

2.2.1 Supplementary symmetry constraints. Our goal is to save

computations in the evaluation of (14). To do so, we consider the sub-

sets J of {1, . . . , 7} and H of

{
(i, j) ∈ {2, . . . , 7}2 |i , j, i < J , j < J

}
in order to express the following constraints:

Ti1 = Ti2
⊺, i ∈ J , Tj1 = Tk2

⊺, Tk1
= Tj2

⊺, (j,k) ∈ H . (15)

The constraints of type J allow one to save preliminary additions

when applying the method to matrices B = A⊺ : since then opera-

tions onA andA⊺ will be the same. The constraints of typeH allow

to save multiplications especially when dealing with a block-matrix

product: in fact, if some matrix products are transpose of another,

only one of the pair needs to be computed as shown in Section 3.

We are thus looking for the largest possible sets J and H . By

exhaustive search, we conclude that the cardinality ofH is at most 2

and then the cardinality of J is at most 3. For example, choosing

the sets J = {1, 2, 5} and H = {(3, 6), (4, 7)} we obtain for these so-

lutions the following parameterization expressed with a primitive

element z = v11 −v21:

v11 = z +v21,

v22 =
(
2v21(v21 + z) − 1

)
v21 + z

3,

v12 = −
(
v21

2 + (v21 + z
2)

2

+ 1

)
v21 − z,

u11 = −
(
(z +v21)

2 +v21

2
)
(w21 +w22),

u21 = −
(
(z +v21)

2 +v21

2
)
(w11 +w12),

u12 = −
(
(z +v21)

2 +v21

2
)
w22,

u22 =
(
(z +v21)

2 +v21

2
)
w12,(

(z +v21)
2 +v21

2
)2

+ 1 = 0, w11w22 −w12w21 = 1.

(16)

Remark 2.3. As

(
(z +v21)

2 +v21

2
)2

+ 1 = 0 occurs in this param-

eterization, field extension could not be avoided in these algorithms if

the field does not have—at least—a square root of −1. We show in Sec-

tion 3 that we can avoid these extensions with block-matrix products

and use our algorithm directly in any field of prime characteristic.

2.2.2 Supplementary constraint on the number of additions. As
done in Example 1, we could also try to reduce the additive com-

plexity and use 4 pre-additions on A (resp. B) [6, Lemma 9] and 7

post-additions on the products to form C [6, Lemma 2]. In the cur-

rent situation, if the operations on B are exactly the transpose of

that of A, then we have the following lower bound:

Lemma 2.1. Over a non-commutative domain, 11 additive opera-

tions are necessary to multiply a 2 × 2 matrix by its transpose with a

bilinear algorithm that uses 7 multiplications.

Indeed, over a commutative domain, the lower left and upper

right parts of the product are transpose of one another and one

can save also multiplications. Differently, over non-commutative

domains,A · A⊺ is not symmetric in general (say ac + bd , ca + db)
and all four coefficients need to be computed. But one can still save 4

additions, since there are algorithms where pre-additions are the

same onA andA⊺ . Now, to reach that minimum, the constraints (15)

must be combined with theminimal number 4 of pre-additions forA.
Those can be attained only if 3 of theTi1 factors do not require any

addition [6, Lemma 8]. Hence, those factors involve only one of the

four elements of A and they are just permutations of e11. We thus

add these constraints to the system for a subset K of {1, . . . , 7}:

|K | = 3 andTi1 is in
{(

1 0

0 0

)
,
(

0 1

0 0

)
,
(

0 0

1 0

)
,
(

0 0

0 1

)}
and i inK . (17)

2.2.3 Selected solution. We choose K = {1, 2, 3} similar to (10) and

obtain the following isotropy that sends Strassen tensor to an algo-

rithm computing the symmetric product more efficiently:

a =
(
z2

0

0 z2

)
×

( z −z
0 z3

)
×

(
−1 1

1 0

)
, z4 = −1. (18)

We remark that a is equal to d ◦ w with w the isotropy (11) that

sends Strassen tensor to Winograd tensor and with:

d = D1 ⊗ D2 ⊗ D3 =
(
z2

0

0 z2

)
×

(
z 0

0 −z3

)
×

(
1 0

0 1

)
, z4 = −1. (19)

Hence, the induced algorithm can benefit from the scheduling and

additive complexity of the classical Winograd algorithm. In fact,

our choice a ⋄ S is equal to (d ◦ w) ⋄ S and thus, according to re-

mark (2.1) the resulting algorithm expressed as the total contraction

{(d ◦ w) ⋄ S, (A ⊗ A⊺ ⊗ C)} = {w ⋄ S,d⊺ ⋄ (A ⊗ A⊺ ⊗ C)} (20)

could be written as a slight modification of Algorithm 1 inputs.

Precisely, as d’s components are diagonal, the relation d⊺ = d
holds; hence, we could express input modification as:(

D1

−1 · A · D2

)
⊗

(
D2

−1 · A⊺ · D3

)
⊗

(
D3

−1 ·C · D1

)
. (21)

The above expression is trilinear and the matrices Di are scalings

of the identity for i in {1, 3}, hence our modifications are just:(
1

z2
A · D2

)
⊗

(
D2

−1 · A⊺
)
⊗ z2C . (22)

Using notations of Algorithm 1, this is C =W

(
A · D2,D2

−1 · A⊺
)
.

Allowing our isotropies to have determinant different from 1,

we rescale D2 by a factor 1/z to avoid useless 4th root as follows:

Q =
D2

z
=

(
1 0

0 −z2

)
=

(
1 0

0 −y

)
, z4 = −1 (23)

where y designates the expression z2
that is a root of −1. Hence,

our algorithm to compute the symmetric product is:

C =W

(
A ·

D2

z
,

(
D2

z

)−1

· A⊺

)
=W

(
A ·Q,

(
A · (Q−1)

⊺
)⊺)
. (24)

In the next sections, we describe and extend this algorithm to higher-

dimensional symmetric productsA · A⊺ with a 2
ℓm × 2

ℓmmatrixA.

3
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3 FAST 2 × 2-BLOCK RECURSIVE SYRK

The algorithm presented in the previous section is non-commutative

and thus we can extend it to higher-dimensional matrix product

by a divide and conquer approach. To do so, we use in the sequel

upper case letters for coefficients in our algorithms instead of lower

case previously (since these coefficients now represent matrices).

Thus, new properties and results are induced by this shift of per-

spective. For example, the coefficient Y introduced in (23) could

now be transposed in (24); that leads to the following definition:

Definition 3.1. An invertible matrix is skew-orthogonal if the

following relation Y ⊺ = −Y−1
holds.

If Y is skew-orthogonal, then of the 7 recursive matrix products

involved in expression (24): 1 can be avoided (P6) since we do not

need the upper right coefficient anymore, 1 can be avoided since it is

the transposition of another product (P7 = P4

⊺
) and 3 are recursive

calls to syrk. This results in Algorithm 2.

Algorithm 2 syrk: symmetric matrix product

Input: A =
(
A11 A12

A21 A22

)
; a skew-orthogonal matrix Y .

Output: The lower left triangular part ofC = A · A⊺ =
(
C11 C21

⊺

C21 C22

)
.

▷ 4 additions and 2 multiplications by Y :
S1 ← (A21 −A11) · Y , S2 ← A22 −A21 · Y ,
S3 ← S1 −A22, S4 ← S3 +A12.

▷ 3 recursive syrk (P1, P2, P5) and 2 generic (P3, P4) products:

P1 ← A11 · A11

⊺, P2 ← A12 · A12

⊺
,

P3 ← A22 · S4

⊺, P4 ← S1 · S2

⊺, P5 ← S3 · S3

⊺ .

▷ 2 symmetric additions (half additions):

Low(U1)←Low(P1)+Low(P5), ▷ U1, P1, P5 are symm.

Low(U3)←Low(P1)+Low(P2), ▷ U3, P1, P2 are symm.

▷ 2 complete additions (P4 and P3 are not symmetric):

Up(U1) ← Low(U1)
⊺, U2 ← U1 + P4, U4 ← U2 + P3,

▷ 1 half addition (U5 = U1 + P4 + P4

⊺
is symmetric):

Low(U5) ← Low(U2) + Low(P4

⊺).

return

(
Low(U3)

U4 Low(U5)

)
.

Proposition 3.1 (Appendix A.1). Algorithm 2 is correct for any

skew-orthogonal matrix Y .

3.1 Skew orthogonal matrices

Algorithm 2 requires a skew-orthogonal matrix. Unfortunately

there are no skew-orthogonal matrices over R, nor Q. Hence, we re-
port no improvement in these cases. In other domains, the simplest

skew-orthogonal matrices just use a square root of −1.

3.1.1 Over the complex field. Therefore Algorithm 2 is directly

usable over Cn×n with Y = i In ∈ C
n×n

. Further, usually, complex

numbers are emulated by a pair of floats so then the multiplications

by Y = i In are essentially free since they just exchange the real

and imaginary parts, with one sign flipping. Even though over the

complex the product zherk of a matrix by its conjugate transpose is

more widely used, zsyrk has some applications, see for instance [1].

3.1.2 Negative one is a square. Over some fields with prime char-

acteristic, square roots of −1 can be elements of the base field,

denoted i in F again. There, Algorithm 2 only requires some pre-

multiplications by this square root (with also Y = i In ∈ F
n×n

), but

within the field. Proposition 3.2 thereafter characterizes these fields.

Proposition 3.2. Fields with characteristic two, or with an odd

characteristic p ≡ 1 mod 4, or finite fields that are an even extension,

contain a square root of −1.

Proof. If p = 2, then 1 = 1
2 = −1. If p ≡ 1 mod 4, then half of

the non-zero elements x in the base field of size p satisfy x
p−1

4 , ±1

and then the square of the latter must be −1. If the finite field F is

of cardinality p2k
, then, similarly, there exists elements x

pk −1

2

pk +1

2

different from ±1 and then the square of the latter must be −1. □

3.1.3 Any field with prime characteristic. Finally, we show that Al-

gorithm 2 can also be runwithout any field extension, evenwhen−1

is not a square: form the skew-orthogonal matrices constructed

in Proposition 3.3, thereafter, and use them directly as long as the

dimension ofY is even.Whenever this dimension is odd, it is always

possible to pad with zeroes so that A · A⊺ = (A 0 ) ·
( A⊺

0

)
.

Proposition 3.3. Let F be a field of characteristic p, there ex-
ists (a,b) in F2

such that the matrix:(
a b
−b a

)
⊗ In =

(
a In b In
−b In a In

)
in F2n×2n

(25)

is skew-orthogonal.

Proof. Using the relation(
a In b In
−b In a In

) (
a In b In
−b In a In

)⊺
= (a2 + b2) I2n , (26)

it suffices to prove that there exist a,b such that a2 + b2 = −1. In

characteristic 2, a = 1,b = 0 is a solution as 1
2 + 0

2 = −1. In odd

characteristic, there are
p+1

2
distinct square elements xi

2
in the base

prime field. Therefore, there are
p+1

2
distinct elements −1 − xi

2
. But

there are only p distinct elements in the base field, thus there exists

a couple (i, j) such that −1 − xi
2 = x j

2
[19, Lemma 6]. □

Proposition 3.3 shows that skew-orthogonal matrices do exist

for any field with prime characteristic. For Algorithm 2, we need to

build them mostly for p ≡ 3 mod 4 (otherwise use Proposition 3.2).

For this, without the extended Riemann hypothesis (erh), it is

possible to use the decomposition of primes into squares:

(1) Compute first a prime r = 4pk + (3 − 1)p − 1, then the rela-

tions r ≡ 1 mod 4 and r ≡ −1 mod p hold;

(2) Thus, results of [5] allow one to decompose primes into

squares and give a couple (a,b) in Z2
such that a2 + b2 = r .

Finally, we get a2 + b2 ≡ −1 mod p.

By the prime number theorem the first step is polynomial in log(p),
as is the second step (square root modulo a prime, denoted sqrt,
has a cost close to exponentiation and then the rest of Brillhart’s

algorithm is gcd-like). In practice, though, it is faster to use the fol-

lowing Algorithm 3, even though the latter has a better asymptotic

complexity bound only if the erh is true.

4
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Algorithm 3 SoS: Sum of squares decomposition over a finite field

Input: p ∈ P\{2}, k ∈ Z.
Output: (a,b) ∈ Z2

, s.t. a2 + b2 ≡ k mod p.

1: if

(
k
p

)
= 1 then ▷ k is a square mod p

2: return (sqrt(k), 0).
3: else ▷ Find smallest quadratic non-residue

4: s ← 2; while

(
s
p

)
== 1 do s ← s + 1

5: c ← sqrt(s − 1) ▷ s − 1 must be a square

6: r ← ks−1
mod p

7: a ← sqrt(r ) ▷ Now k ≡ a2s ≡ a2(1 + c2) mod p
8: return (a,ac mod p)

Proposition 3.4. Algorithm 3 is correct and, under the erh, runs

in expected time Õ
(
log

3(p)
)
.

Proof. If k is square then the square of one of its square roots

added to the square of zero is a solution. Otherwise, the lowest qua-

dratic non-residue (lqnr) modulo p is one plus a square b2
(1 is al-

ways a square so the lqnr is larger than 2). For any generator of Zp ,
quadratic non-residues, as well as their inverses (s is invertible as it
is non-zero and p is prime), have an odd discrete logarithm. There-

fore the multiplication of k and the inverse of the lqnr must be a

square a2
. This means that the relation k = a2

(
1 + b2

)
= a2 + (ab)2

holds. Now for the running time, under erh, the lqnr should be

lower than 3 log
2(p)/2 − 44 log(p)/5 + 13 [21, Theorem 6.35]. The

expected number of Legendre symbol computations is O
(
log

2(p)
)

and this dominates the modular square root computations. □

Remark 3.1. Another possibility is to use randomization: instead

of using the lowest quadratic non-residue (lqnr), randomly select a

non-residue s , and then decrement it until s − 1 is a quadratic residue

(1 is a square so this will terminate)
1
. Also, when computing t sum

of squares modulo the same prime, one can compute the lqnr only

once to get all the sum of squares with an expected cost bounded

by Õ
(
log

3(p) + t log
2(p)

)
.

Remark 3.2. Except in characteristic 2 or in algebraic closures,

where every element is a square anyway, Algorithm 3 is easily ex-

tended over any finite field: compute the lqnr in the base prime field,

then use Tonelli-Shanks or Cipolla-Lehmer algorithm to compute

square roots in the extension field.

Denote by SoS(q,k) this algorithm decomposing k as a sum of

squares within any finite field Fq . This is not always possible over
infinite fields, but there Algorithm 3 still works anyway for the special

case k = −1: just run it in the prime subfield.

3.2 Conjugate transpose

Note that Algorithm 2 remains valid if transposition is replaced

by conjugate transposition, provided that there exists a matrix Y

such that Y · Y
⊺
= −I. This is not possible anymore over the com-

plex field, but works for any even extension field, thanks to Al-

gorithm 3: if −1 is a square in Fq , then Y =
√
−1 · In still works;

1
In practice, the running time seems very close to that of Algorithm 3 anyway, see, e.g.

the implementation in Givaro rev. 7bdefe6, https://github.com/linbox-team/givaro.

otherwise there exists a square root i of −1 in Fq2 , from Propo-

sition 3.2. In the latter case, thus build (a,b), both in Fq , such

that a2 + b2 = −1. Now Y = (a + ib) · In in Fq2

n×n
is appropriate:

indeed, since q ≡ 3 mod 4, we have that a + ib = (a + ib)q = a − ib.

4 ANALYSIS AND IMPLEMENTATION

4.1 Complexity bounds

Theorem 4.1. Algorithm 2 requires
2

2
ω−3

Cωn
ω + o(nω ) field op-

erations, over C or over any field with prime characteristic.

Proof. Algorithm 2 is applied recursively to compute three prod-

ucts P1, P2 and P7, while P4 and P5 are computed in MMω (n) =
Cωn

ω + o(nω ) using a general matrix multiplication algorithm. We

will show that applying the skew-orthogonal matrix Y to a n × n
matrix costs yn2

for some constant y depending on the base field.

Then applying Remark 4.1 thereafter, the cost T (n) of Algorithm 2

satisfies:

T (n) ≤ 3T (n/2) + 2Cω (n/2)
ω + (7.5 + 2y)(n/2)2 + o

(
n2

)
(27)

and T (4) is a constant. Thus, by the master Theorem:

T (n) ≤
2Cω

2
ω − 3

nω + o
(
nω

)
=

2

2
ω − 3

MMω (n) + o
(
nω

)
. (28)

If the field is C or satisfies the conditions of Proposition 3.2,

there is a square root i of −1. Setting Y = i In/2 yields y = 1. Oth-

erwise, in characteristic p ≡ 3 mod 4, Proposition 3.3 produces Y

equal to

(
a b
−b a

)
⊗ In/2 for which y = 3. As a subcase, the latter

can be improved when p ≡ 3 mod 8: then −2 is a square (indeed,(
−2

p

)
=

(
−1

p

) (
2

p

)
= (−1)

p−1

2 (−1)
p2−1

8 = (−1)(−1) = 1). There-

fore, in this case set a = 1 and b ≡
√
−2 mod p such that the rela-

tion a2 + b2 = −1 yields Y =
(

1

√
−2

−
√
−2 1

)
⊗ In/2 for which y = 2.

□

To our knowledge, the best previously known result was with

a
2

2
ω−4

factor instead, see e.g. [11, § 6.3.1]. Table 1 summarizes the

arithmetic complexity bound improvements.

Problem Alg. O
(
n3

)
O

(
nlog

2
(7)

)
O (nω )

A · A⊺ ∈ Fn×n
[11] n3 2

3
MM

log
2
(7)(n) 2

2
ω−4

MMω (n)
Alg. 2 0.8n3 1

2
MM

log
2
(7)(n) 2

2
ω−3

MMω (n)

Table 1: Arithmetic complexity bounds leading terms.

Alternatively, overC, the 3M method (Karatsuba) for non-symmetric

matrix multiplication reduces the number of multiplications of

real matrices from 4 to 3 [15]: if RRω (n) is the cost of multiply-

ing n × n matrices over R, then the 3M method costs 3RRω (n) +
o(nω ) operations over R. Adapting this approach to the symmet-

ric case yields a 2M method to compute the product of a complex

matrix by its transpose, using only 2 real products: H = A · B⊺

andG = (A + B) · (A⊺ − B⊺). Combining those into (G −H⊺ +H )+
i(H + H⊺), yields the product (A + iB) · (A⊺ + iB⊺). This approach
costs 2RRω + o(n

ω ) operations in R.
Classical algorithm [11, § 6.3.1] applies a divide and conquer

approach directly on the complex field. This would use only the

equivalent of
2

2
ω−4

complex floating point n × n products. Using

5
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the 3M method for the complex products, this algorithm uses over-

all
6

2
ω−4

RRω + o(n
ω ) operations in R. Finally, Algorithm 2 only

costs
2

2
ω−3

complex multiplications for a leading term bounded

by
6

2
ω−3

RRω , better than 2RRω for ω > log
2
(6) ≈ 2.585. This is

summarized in Table 2, replacing ω by 3 or log
2
(7).

Problem Alg. MM3(n) MM
log

2
7
(n) MMω (n)

A · B ∈ Cn×n
naive 8n3

4RR
log

2
(7)(n) 4RRω (n)

3M 6n3
3RR

log
2
(7)(n) 3RRω (n)

A · A⊺ ∈ Cn×n
2M 4n3

2RR
log

2
(7)(n) 2RRω (n)

[11] 3n3
2RR

log
2
(7)(n) 6

2
ω−4

RRω (n)
Alg. 2 2.4n3 3

2
RR

log
2
(7)(n) 6

2
ω−3

RRω (n)

Table 2: Symmetric multiplication over C: leading term of

the cost in number of operations over R.

Remark 4.1. Each recursive level of Algorithm 2 is composed of 9

block additions. An exhaustive search on all symmetric algorithms

derived from Strassen’s showed that this number is minimal in this

class of algorithms. Note also that 3 out of these 9 additions in Algo-

rithm 2 involve symmetric matrices and are therefore only performed

on the lower triangular part of the matrix. Overall, the number of

scalar additions is 6n2 + 3/2n(n + 1) = 15/2n2 + 1.5n, nearly half of
the optimal in the non-symmetric case [6, Theorem 1].

To further reduce the number of additions, a promising approach

is that undertaken in [2, 16]. This is however not clear to us how

to adapt our strategy to their recursive transformation of basis.

4.2 Implementation and scheduling

This section reports on an implementation of Algorithm 2 over

prime fields. We propose in Table 3 and Figure 1 a schedule for the

operationC ← A · A⊺ using no more extra storage than the unused

upper triangular part of the result C .

# operation loc. # operation loc.

1 S1 = (A21 − A11) · Y C21 9 U1 = P1 + P5 C12

2 S2 = A22 − A21 · Y C12 Up(U1) = Low(U1)
⊺ C12

3 P4

⊺ = S2 · S1

⊺ C22 10 U2 = U1 + P4 C12

4 S3 = S1 − A22 C21 11 U4 = U2 + P3 C21

5 P5 = S3 · S3

⊺ C12 12 U5 = U2 + P4

⊺ C22

6 S4 = S3 + A12 C11 13 P2 = A12 · A12

⊺ C12

7 P3 = A22 · S4

⊺ C21 14 U3 = P1 + P2 C11

8 P1 = A11 · A11

⊺ C11

Table 3: Memory placement and schedule of tasks to com-

pute the lower triangular part ofC ← A · A⊺ when k ≤ n. The
block C12 of the output matrix is the only temporary used.

For the more general operation C ← αA · A⊺ + βC , Table 4 and
Figure 2 propose a schedule requiring only an additional n/2 × n/2
temporary storage. These algorithms have been implemented as the

fsyrk routine in the fflas-ffpack library for dense linear algebra
over a finite field [14, from commit 0a91d61e].

Figure 3 compares the computation speed in effective Gfops

(defined asn3/(10
9 × time)) of this implementation overZ/131071Z

C22 C12 C21 C11

S2 S1

P4

⊺ S3

P5 S4

P3

P1

U1

U2

U5 U4

P2

U3

Figure 1: dag of the tasks and their memory location for the

computation of C ← A · A⊺ presented in Table 3.

operation loc. operation loc.

S1 = (A21 − A11) · Y tmp P1 = αA11 · A11

⊺
tmp

S2 = A22 − A21 · Y C12 U1 = P1 + P5 C12

Up(C11) = Low(C22)
⊺ C11 Up(U1) = Low(U1)

⊺ C12

P4

⊺ = αS2 · S1

⊺ C22 U2 = U1 + P4 C12

S3 = S1 − A22 tmp U4 = U2 + P3 C21

P5 = αS3 · S3

⊺ C12 U5 = U2 + P4

⊺ + βUp(C11)
⊺ C22

S4 = S3 + A12 tmp P2 = αA12 · A12

⊺ + βC11 C11

P3 = αA22 · S4

⊺ + βC21 C21 U3 = P1 + P2 C11

Table 4: Memory placement and schedule of tasks to

compute the lower triangular part of C ← αA · A⊺ + βC
when k ≤ n. The block C12 of the output matrix as well as

an n/2 × n/2 block tmp are used as temporary storages.

C11 C22 C12 tmp C21

Up(C11) S2 S1

P4

⊺ S3

P5 S4

P1 P3

U1

U2

U5 U4

P2

U3

Figure 2: dag of the tasks and their memory location for the

computation of C ← αA · A⊺ + βC presented in Table 4.

with that of the double precision blas routines dsyrk, the classical
cubic-time routine over a finite field (calling dsyrk and performing

modular reductions on the result), and the classical divide and

conquer algorithm [11, § 6.3.1]. The fflas-ffpack library is linked
with Openblas [23, v0.3.6] and compiled with gcc-9.2 on an Intel

skylake i7-6700 running a Debian gnu/Linux system (v5.2.17).

The slight overhead of performing the modular reductions is

quickly compensated by the speed-up of the sub-cubic algorithm

6
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Figure 3: Speed of an implementation of Algorithm 2

(the threshold for a first recursive call is near n = 2000). The classi-

cal divide and conquer approach also speeds up the classical algo-

rithm, but starting from a larger threshold, and hence at a slower

pace. Lastly, the speed is merely identical modulo 131041, where

square roots of −1 exist, thus showing the limited overhead of the

preconditioning by the matrix Y .

5 SYRKWITH BLOCK DIAGONAL SCALING

Symmetric rank k updates are a key building block for symmetric

triangular factorization algorithms, for their efficiency is one of the

bottlenecks. In the most general setting (indefinite factorization),

a block diagonal scaling by a matrix D, with 1 or 2 dimensional

diagonal blocks, has to be inserted within the product, leading to

the operation: C ← C −A · D · A⊺ .
Handling the block diagonal structure over the course of the

recursive algorithm may become tedious and quite expensive. For

instance, a 2 × 2 diagonal block might have to be cut by a recur-

sive split. We will see also in the following that non-squares in the

diagonal need to be dealt with in pairs. In both cases it might be

necessary to add a column to deal with these cases: this is poten-

tially O
(
log

2
(n)

)
extra columns in a recursive setting.

Over a finite field, though, we will show in this section, how to

factor the block-diagonal matrix D into D = ∆ · ∆⊺ , without need-
ing any field extension, and then compute instead (A · ∆) · (A · ∆)⊺ .
Algorithm 6, deals with non-squares and 2 × 2 blocks only once

beforehand, introducing no more than 2 extra-columns overall. Sec-

tion 5.1 shows how to factor a diagonal matrix, without resorting to

field extensions for non-squares. Then Sections 5.2.1 and 5.2.2 show

how to deal with the 2 × 2 blocks depending on the characteristic.

5.1 Factoring non-squares within a finite field

First we give an algorithm handling pairs of non-quadratic residues.

Proposition 5.1. Algorithm 4 is correct.

Proof. Given α and β quadratic non-residues, the couple (a,b),
such that α = a2 + b2

, is found by the algorithm of Remark 3.2.

Second, as α and β are quadratic non-residues, over a finite field

their quotient is a residue since:

(
βα−1

) q−1

2 = −1

−1
= 1. Third, if c

denotes −bda−1
then c2 + d2

is equal to (−bd/a)2 + d2
and thus

to (b2/a2 + 1)d2
; this last quantity is equal to (α)d2/a2

and then

Algorithm 4 : nrsyf: Sym. factorization. of a pair of non-residues

Input: (α , β) ∈ Fq
2
, both being quadratic non-residues.

Output: Y ∈ Fq
2×2

, s.t. Y · Y ⊺ =
(
α 0

0 β

)
.

1: (a,b) ← SoS(q,α); ▷ α = a2 + b2

2: d ← a sqrt(βα−1); ▷ d2 = a2βα−1

3: c ← −bda−1
; ▷ ac + bd = 0

4: return Y ←
(
a b
c d

)
.

to α(a
√
β/α)

2

/a2 = α(a2β/α)/a2 = β . Fourth, a (or w.l.o.g. b) is in-
vertible. Indeed, α is not a square, therefore it is non-zero and

thus one of a or b must be non-zero. Finally, we obtain the can-

cellation ac + bd = a(−dba−1) + bd = −db + bd = 0 and the matrix

product Y · Y ⊺ is

(
a b
c d

) ( a c
b d

)
=

(
a2+b2 ac+bd
ac+bd c2+d2

)
=

(
α 0

0 β

)
. □

Using Algorithm 4, one can then factor any diagonal matrix

within a finite field as a symmetric product with a tridiagonal matrix.

This can then be used to compute efficiently A · D · A⊺ with D a

diagonal matrix: factorD with a tridiagonal matrixD = ∆ · ∆⊺ , then
pre-multiply A by this tridiagonal matrix and run a fast symmetric

product on the resulting matrix. This is shown in Algorithm 5,

where the overhead, compared to simple matrix multiplication, is

only O
(
n2

)
(that is O(n) square roots and O(n) column scalings).

Algorithm 5 syrkd: sym. matrix product with diagonal scaling

Input: A ∈ Fq
m×n

and D = Diag(d1, . . . ,dn ) ∈ Fq
n×n

Output: A · D · A⊺ in Fq
m×m

1: if number of quadratic non-residues in {d1, . . . ,dn } is odd
then Let dℓ be one of the quadratic non-residues

2: D̄ ← Diag(d1, . . . ,dn ,dℓ) ∈ Fq
(n+1)×(n+1)

3: Ā← (A 0 ) ∈ Fq
m×(n+1) ▷ Augment A with a zero column

4: else

5: D̄ ← Diag(d1, . . . ,dn ) ∈ Fq
n×n

6: Ā← A ∈ Fq
m×n

7: for all quadratic residues dj in D̄ do

8: Ā∗, j ← sqrt(dj ) · Ā∗, j ▷ Scale col. j of Ā by a sq. root of dj

9: for all distinct pairs of quadratic non-residues (di ,dj ) in D̄ do

10: ∆← nrsyf(di ,dj ) ▷ ∆ · ∆⊺ =
(
di 0

0 dj

)
using Algorithm 4

11: ( Ā∗,i Ā∗, j ) ← ( Ā∗,i Ā∗, j ) · ∆;

12: return syrk(Ā) ▷ Ā · Ā⊺ using Algorithm 2

5.2 Antidiagonal and antitriangular blocks

In general, an L · D · L⊺ factorization may have antitriangular or

antidiagonal blocks inD [12]. In order to reduce to a routine for fast

symmetric multiplication with diagonal scaling, these blocks need

to be processed once for all, which is what this section is about.

5.2.1 Antidiagonal blocks in odd characteristic. In odd characteris-

tic, the 2-dimensional blocks in an L · D · L⊺ factorization are only

of the form

(
0 β
β 0

)
, and always have the symmetric factorization:(

1 1

1 −1

) (
1

2
β 0

0 − 1

2
β

) (
1 1

1 −1

)⊺
=

(
0 β
β 0

)
. (29)

7
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This shows the reduction to the diagonal case (note the requirement

that 2 is invertible).

5.2.2 Antitriangular blocks in characteristic 2. In characteristic 2,

some 2 × 2 blocks might not be reduced further than an antitrian-

gular form:

(
0 β
β γ

)
, with γ , 0.

In characteristic 2 every element is a square, therefore those

antitriangular blocks can be factored as shown in Eq. (30):(
0 β
β γ

)
=

((
βγ −1/2

0

0 γ 1/2

) (
1 1

1 0

) ) ((
βγ −1/2

0

0 γ 1/2

) (
1 1

1 0

) )⊺
. (30)

Therefore the antitriangular blocks also reduce to the diagonal case.

5.2.3 Antidiagonal blocks in characteristic 2. The symmetric factor-

ization in this case might require an extra row or column [18] as

shown in Eq. (31):(
1 0

0 β

) (
1 0 1

0 1 1

) ((
1 0

0 β

) (
1 0 1

0 1 1

) )⊺
=

(
0 β
β 0

)
mod 2. (31)

A first option is to augment A by one column for each antidiagonal

block, by applying the 2×3 factor in Eq. (31). However one can

instead combine a diagonal element, say x , and an antidiagonal

block as shown in Eq. (32).( √
x
√
x
√
x

1 0 1

0 β β

) ( √
x
√
x
√
x

1 0 1

0 β β

)⊺
=

( x 0 0

0 0 β
0 β 0

)
mod 2. (32)

Hence, any antidiagonal block can be combined with any 1×1 block

to form a symmetric factorization.

There remains the case when there are no 1×1 blocks. Then,

one can use Eq. (31) once, on the first antidiagonal block, and add

column to A. This indeed extracts the antidiagonal elements and

creates a 3×3 identity block in the middle. Any one of its three

ones can then be used as x in a further combination with the next

antidiagonal blocks. Algorithm 6 sums up the use of Eqs. (29) to (32).
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A APPENDIX

A.1 Proof of Proposition 3.1

Proposition 3.1 (Appendix A.1). Algorithm 2 is correct for any

skew-orthogonal matrix Y .

Proof. If Y is skew-orthogonal, then Y · Y ⊺ = −I. First,

U3 = P1 + P2 = A11 · A11

⊺ +A12 · A12

⊺ = C11. (33)

Denote by R1 the product:

R1 = A11 · Y · S2

⊺ = A11 · Y · (A22

⊺ − Y ⊺ · A21

⊺)

= A11 · (Y · A22

⊺ +A21

⊺).
(34)

Thus, as S3 = S1 −A22 = (A21 −A11) · Y −A22 = −S2 −A11 · Y :

U1 = P1 + P5 = A11 · A11

⊺ + S3 · S3

⊺

= A11 · A11

⊺ + (S2 +A11 · Y ) · (S2

⊺ + Y ⊺ · A11

⊺)

= S2 · S2

⊺ + R1

⊺ + R1.

(35)

And denote R2 = A21 · Y · A22

⊺
, so that:

S2 · S2

⊺ = (A22 −A21 · Y ) · (A22

⊺ − Y ⊺ · A21

⊺)

= A22 · A22

⊺ −A21 · A21

⊺ − R2 − R2

⊺ .
(36)

Furthermore, from Equation (34):

R1 + P4 = R1 + S1 · S2

⊺

= R1 + (A21 −A11) · Y · (A22

⊺ − Y ⊺ · A21

⊺)

= A11 · (Y · A22

⊺ +A21

⊺) + S1 · S2

⊺

= A21 · Y · A22

⊺ +A21 · A21

⊺ = R2 +A21 · A21

⊺ .

(37)

Therefore, from Equations (35), (36) and (37):

U5 = U1 + P4 + P4

⊺ = S2 · S2

⊺ + R1 + R1

⊺ + P4 + P4

⊺

= A22 · A22

⊺ + (−1 + 2)A21 · A21

⊺ = C22.
(38)

And the last coefficient U4 of the result is obtained from Equa-

tions (37) and (38):

U4 = U2 + P3 = U5 − P4

⊺ + P3

= U2 +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺ −A22

⊺)

= A21 · A21

⊺ − P4

⊺ +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺)

= R1

⊺ − R2

⊺ +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺)

= R1

⊺ +A22 · (A12

⊺ − Y ⊺ · A11

⊺)

= A21 · A11

⊺ +A22 · A12

⊺ = C21.

(39)

Finally, P1 = A11 · A11

⊺
, P2 = A12 · A12

⊺
, and P5 = S3 · S3

⊺
are sym-

metric by construction. So are therefore,U1 = P1 + P5,U3 = P1 + P2

andU5 = U1 + (P4 + P4

⊺). □

A.2 Threshold in the theoretical number of

operations for dimensions that are a power

of two

Here, we look for a theoretical threshold where our fast symmetric

algorithm performs less arithmetic operations than the classical one.

Below that threshold any recursive call should call a classical algo-

rithm forA · A⊺ . But, depending whether padding or static/dynamic

peeling is used, this threshold varies. For powers of two, however,

no padding nor peeling occurs and we thus have a look in this

section of the thresholds in this case.

n 4 8 16 32 64 128

syrk 70 540 4216 33264 264160 2105280

Rec. SW

Syrk-i

1 0

70 540 4216 33264 264160 2105280

G0-i 81 554 4020 30440 236496 1863584

G1-i 89 586 4148 30952 238544 1871776

G2-i 97 618 4276 31464 240592 1879968

G3-i 105 650 4404 31976 242640 1888160

Syrk-i

2 1

90 604 4344 32752 253920 1998784

G0-i 651 4190 29340 217784 1674096

G1-i 707 4414 30236 221368 1688432

G2-i 763 4638 31132 224952 1702768

G3-i 819 4862 32028 228536 1717104

Syrk-i

3 2

824 5048 34160 248288 1886144

G0-i 4929 30746 210900 1546280

G1-i 5225 31930 215636 1565224

G2-i 5521 33114 220372 1584168

G3-i 5817 34298 225108 1603112

Syrk-i

4 3

6908 40112 260192 1838528

G0-i 36099 221390 1500540

G1-i 37499 226990 1522940

G2-i 38899 232590 1545340

G3-i 40299 238190 1567740

Table 5: Number of arithmetic operations in the multiplica-

tion an n × n matrix by its transpose: blue when Syrk-i (us-

ing Strassen-Winograd with i − 1 recursive levels) is better

than other Syrk; orange/red/violet/green when ours (using

Strassen-Winograd with i − 1 recursive levels, and G0-i for C
/ G1-i if −1 is a square / G2-i or G3-i otherwise, depending

whether −2 is a square or not) is better than others.

First, from Section 3.1, over C, we can choose Y = i In . Then

multiplications by i are just exchanging the real and imaginary

parts. In Equation (27) this is an extra cost of y = 0 arithmetic

operations in usual machine representations of complex numbers.

Overall, for y = 0 (complex case), y = 1 (−1 a square in the finite

field) or y = 3 (any other finite field), the dominant term of the

complexity is anyway unchanged, but there is a small effect on the

threshold. In the following, we denote byG0,G1 andG3 these three

variants.

More precisely, we denote by syrk the classical multiplication of

a matrix by its transpose. Then we denote by Syrk-i the algorithm

making four recursive calls and two calls to a generic matrix multi-

plication via Strassen-Winograd’s algorithm, the latter with i − 1

recursive calls before calling the classical matrix multiplication.

Finally G1-i (resp. G3-i) is our Algorithm 2 when −1 is a square

(resp. not a square), with three recursive calls and two calls to

Strassen-Winograd’s algorithm, the latter with i − 1 recursive calls.

Now, we can see in Table 5 in which range the thresholds live.

For instance, over a field where −1 is a square, Algorithm 2 is better

for n ≥ 16 with 1 recursive level (and thus 0 recursive levels for

Strassen-Winograd), for n ≥ 32 with 2 recursive levels, etc. Over

a field where −1 is not a square, Algorithm 2 is better for n ≥ 32

with 1 recursive level, for n ≥ 64 with 3 recursive levels, etc.
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