
HAL Id: hal-02432390
https://hal.science/hal-02432390v3

Preprint submitted on 4 May 2020 (v3), last revised 9 Jun 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On fast multiplication of a matrix by its transpose
Jean-Guillaume Dumas, Clément Pernet, Alexandre Sedoglavic

To cite this version:
Jean-Guillaume Dumas, Clément Pernet, Alexandre Sedoglavic. On fast multiplication of a matrix by
its transpose. 2020. �hal-02432390v3�

https://hal.science/hal-02432390v3
https://hal.archives-ouvertes.fr

On fast multiplication of a matrix by its transpose
Jean-Guillaume Dumas

Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS

UMR 5224, 38058 Grenoble, France

Clément Pernet

Université Grenoble Alpes

Laboratoire Jean Kuntzmann, CNRS

UMR 5224, 38058 Grenoble, France

Alexandre Sedoglavic

Université de Lille

UMR CNRS 9189 CRISTAL

59650 Villeneuve d’Ascq, France

ABSTRACT

We present a non-commutative algorithm for the multiplication

of a 2 × 2-block-matrix by its transpose using 5 block products (3

recursive calls and 2 general products) over C or any field of prime

characteristic. We use geometric considerations on the space of

bilinear forms describing 2 × 2 matrix products to obtain this algo-

rithm and we show how to reduce the number of involved additions.

The resulting algorithm for arbitrary dimensions is a reduction of

multiplication of a matrix by its transpose to general matrix prod-

uct, improving by a constant factor previously known reductions.

Finally we propose schedules with low memory footprint that sup-

port a fast and memory efficient practical implementation over a

prime field. To conclude, we show how to use our result in L · D · L⊺

factorization.

1 INTRODUCTION

Strassen’s algorithm [21], with 7 recursive multiplications and 18

additions, was the first sub-cubic time algorithm for matrix product,

with a complexity bound of O
(
n2.81

)
. Summarizing the many im-

provements which have happened since then, the cost of multiply-

ing two arbitrary n × n matricesO(nω)will be denoted by MMω (n)
(see [18] for the best theoretical value of ω known to date).

We propose here a new algorithm for the computation of the

product of a 2 × 2-block-matrix by its transpose,A · A⊺ , using only 5

block multiplications over some base field, instead of 6 for the nat-

ural divide & conquer algorithm. For such a product, the best previ-

ously known complexity bound was dominated by
2

2
ω−4

MMω (n)
over any base field (see e.g. [11, § 6.3.1]). Here, we establish the

following result:

Theorem 1.1. The product of an n × n matrix by its transpose can

be computed in
2

2
ω−3

MMω (n) field operations over a base field for

which there exists a skew-orthogonal matrix.

Our algorithm is derived from the class of Strassen-like algo-

rithms multiplying 2 × 2 matrices in 7 multiplications. Yet it is a

reduction of multiplying a matrix by its transpose to general matrix

multiplication, thus supporting any admissible value for ω. By ex-

ploiting the symmetry of the problem, it requires about half of the

arithmetic cost of general matrix multiplication when ω is log
2

7.

We focus on the computation of the product of an n × k matrix

by its transpose and possibly accumulating the result to another

matrix. Following the terminology of the blas3 standard [10], this

operation is a symmetric rank k update (syrk for short).

2 MATRIX PRODUCT ALGORITHMS

ENCODED BY TENSORS

Considered as 2 × 2 matrices, the matrix product C = A · B could

be computed using Strassen algorithm by performing the following

computations (see [21]):

ρ1 ← a11(b12 − b22),

ρ2 ← (a11 + a12)b22, ρ4 ← (a12 − a22)(b21 + b22),

ρ3 ← (a21 + a22)b11, ρ5 ← (a11 + a22)(b11 + b22),

ρ6 ← a22(b21 − b11), ρ7 ← (a21 − a11)(b11 + b12),(
c11 c12

c21 c22

)
=

(
ρ5 + ρ4 − ρ2 + ρ6 ρ6 + ρ3

ρ2 + ρ1 ρ5 + ρ7 + ρ1 − ρ3

)
.

(1)

In order to consider this algorithm under a geometric standpoint,

we present it as a tensor. Matrix multiplication is a bilinear map:

Km×n × Kn×p → Km×p ,
(X ,Y) → X · Y ,

(2)

where the spacesKa×b are finite vector spaces that can be endowed

with the Frobenius inner product ⟨M,N ⟩ = Trace(M⊺ · N). Hence,

this inner product establishes an isomorphism between Ka×b and

its dual space (Ka×b)
⋆
allowing for example to associate matrix

multiplication and the trilinear form Trace(Z⊺ · X · Y):

Km×n × Kn×p × (Km×p)⋆ → K,
(X ,Y ,Z⊺) → ⟨Z ,X · Y ⟩.

(3)

As by construction, the space of trilinear forms is the canonical

dual space of order three tensor product, we could associate the

Strassen multiplication algorithm (1) with the tensor S defined by:∑
7

i=1
Si1⊗Si2⊗Si3 =

(
1 0

0 0

)
⊗

(
0 1

0 −1

)
⊗

(
0 0

1 1

)
+(

1 1

0 0

)
⊗

(
0 0

0 1

)
⊗

(
−1 0

1 0

)
+

(
0 0

1 1

)
⊗

(
1 0

0 0

)
⊗

(
0 1

0 −1

)
+(

0 1

0 −1

)
⊗

(
0 0

1 1

)
⊗

(
1 0

0 0

)
+

(
1 0

0 1

)
⊗

(
1 0

0 1

)
⊗

(
1 0

0 1

)
+(

0 0

0 1

)
⊗

(
−1 0

1 0

)
⊗

(
1 1

0 0

)
+

(
−1 0

1 0

)
⊗

(
1 1

0 0

)
⊗

(
0 0

0 1

)
(4)

in (Km×n)⋆ ⊗ (Kn×p)⋆ ⊗ Km×p with m = n = p = 2. Given any

couple (A,B) of 2 × 2-matrices, one can explicitly retrieve from ten-

sor S the Strassen matrix multiplication algorithm computingA · B
by the partial contraction {S,A ⊗ B}:(
(Km×n)⋆⊗(Kn×p)⋆⊗Km×p

)
⊗

(
Km×n⊗Kn×p

)
→Km×p ,

S ⊗ (A ⊗ B) →
∑

7

i=1
⟨Si1,A⟩⟨Si2,B⟩Si3,

(5)

while the complete contraction {S,A ⊗ B ⊗ C⊺} is Trace(A · B ·C).
The tensor formulation of matrix multiplication algorithm gives

explicitly its symmetries (a.k.a. isotropies). As this formulation is

associated to the trilinear form Trace(A · B ·C), given three invert-

ible matrices U ,V ,W of suitable sizes and the classical properties

1

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

of the trace, one can remark that Trace(A · B ·C) is equal to:

Trace

(
(A · B ·C)⊺

)
= Trace(C · A · B) = Trace(B ·C · A),

= Trace

(
U −1 · A ·V ·V −1 · B ·W ·W −1 ·C ·U

)
. (6)

These relations illustrate the following theorem:

Theorem 2.1 ([8, § 2.8]). The isotropy group of the n × n matrix

multiplication tensor is psl
±(Kn)×3⋊S3, where psl stands for the

group of matrices of determinant ±1 andS3 for the symmetric group

on 3 elements.

The following definition recalls the sandwiching isotropy on

matrix multiplication tensor:

Definition 2.1. Given g = (U ×V ×W) in psl
±(Kn)×3

, its ac-

tion g ⋄ S on a tensor S is given by

∑
7

i=1
g ⋄ (Si1 ⊗ Si2 ⊗ Si3) where

the term g ⋄ (Si1 ⊗ Si2 ⊗ Si3) is equal to:

(U −⊺ · Si1 ·V
⊺) ⊗ (V −⊺ · Si2 ·W

⊺) ⊗ (W −⊺ · Si3 ·U
⊺). (7)

Remark 2.1. In psl
±(Kn)×3

, the product ◦ of two isotropies д1 de-

fined by u1 ×v1 ×w1 and д2 by u2 ×v2 ×w2 is the isotropy д1 ◦ д2

equal to u1 · u2 ×v1 · v2 ×w1 ·w2. Furthermore,the complete con-

traction {д1 ◦ д2,A ⊗ B ⊗ C} is equal to {д2,д1

⊺ ⋄A ⊗ B ⊗ C}.

The following theorem shows that all 2 × 2-matrix product algo-

rithms with 7 coefficient multiplications could be obtained by the

action of an isotropy on Strassen tensor:

Theorem 2.2 ([9, § 0.1]). The group psl
±(Kn)×3

acts transitively

on the variety of optimal algorithms for the computation of 2 × 2-

matrix multiplication.

Thus, the action of an isotropy on Strassen tensor may define

other matrix product algorithm with interesting computational

properties.

2.1 Design of a specific 2 × 2-matrix product

This observation inspires our general strategy to design specific

algorithms suited for particular matrix product.

Strategy 2.1. By applying an undetermined isotropy:

g = U ×V ×W =
(
u11 u12

u21 u22

)
×

(
v11 v12

v21 v22

)
×

(
w11 w12

w21 w22

)
(8)

on Strassen tensor S, we obtain a parameterization T = g ⋄ S of all

matrix product algorithms requiring 7 coefficient multiplications:

T =

7∑
i=1

Ti1 ⊗ Ti2 ⊗ Ti3, Ti1 ⊗ Ti2 ⊗ Ti3 = g ⋄ Si1 ⊗ Si2 ⊗ Si3. (9)

Then, we could impose further conditions on these algorithms and

check by a Gröbner basis computation if such an algorithm exists. If

so, there is subsequent work to do for choosing a point on this variety;

this choice can be motivated by the additive complexity bound and

the scheduling property of the evaluation scheme given by this point.

Let us first illustrate this strategy with the well-knownWinograd

variant of Strassen algorithm presented in [23].

Example 1. Apart from the number of multiplications, it is also

interesting in practice to reduce the number of additions in an algo-

rithm. Matrices S11 and S61 in tensor (4) do not increase the additive

complexity bound of this algorithm. Hence, in order to reduce the

number of addition in an algorithm, we could try to maximize the

number of such matrices involved in the associated tensor. To do so,

we recall Bshouty’s results on additive complexity of matrix product

algorithms.

Theorem 2.3 ([6]). Let’s denote by e(i, j) the matrix whose (l ,k)
entry is 1 when (i, j) is (l ,k) and 0 otherwise. A 2 × 2 matrix product

tensor could not have 4 such matrices as first (resp. second, third)

component ([6, Lemma 8]). The additive complexity bound of first and

second components are equal ([6, eq. (11)]) and at least 4 = 7 − 3. The

total additive complexity of 2 × 2-matrix product is at least 15 ([6,

Theorem 1]).

Following our strategy, we impose on tensor T (9) the constraints

T11 = e1,1 =
(

1 0

0 0

)
, T12 = e1,2, T13 = e2,2 (10)

and obtain by a Gröbner basis computation [13] that such tensors are

the images of Strassen tensor by the action of the following isotropies:

w =
(
1 0

0 1

)
×

(
1 −1

0 −1

)
×

(
w11 w12

w21 w22

)
. (11)

The variant of the Winograd tensor [23] presented with a renumbering

as Algorithm 1 is obtained by the action of w with the specializa-

tionw12 = w21 = 1 = −w11,w22 = 0 on the Strassen tensor S. While

the original Strassen algorithm requires 18 additions, only 15 additions

are necessary in the Winograd Algorithm 1.

Algorithm 1 : C =W(A,B)

Require: A =
(a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
;

Ensure: C = A · B
1: 8 additions:

s1 ← a11 − a21, s2 ← a21 + a22, s3 ← s2 − a11, s4 ← a12 − s3,

t1 ← b22 − b12, t2 ← b12 − b11, t3 ← b11 + t1, t4 ← b21 − t3.

2: 7 recursive multiplications:

p1 ← a11 · b11, p2 ← a12 · b21, p3 ← a22 · t4, p4 ← s1 · t1,
p5 ← s3 · t3, p6 ← s4 · b22, p7 ← s2 · t2.

3: 7 final additions:

c1 ← p1 + p5, c2 ← c1 + p4, c3 ← p1 + p2, c4 ← c2 + p3,

c5 ← c2 + p7, c6 ← c1 + p7, c7 ← c6 + p6.

4: return C =
(c3 c7

c4 c5

)
.

As a second example illustrating our strategy, we consider now

the matrix squaring that was already explored by Bodrato in [3].

Example 2. When computing A2
, the contraction (5) of the ten-

sor T (9) with A ⊗ A shows that choosing a subset J of {1, . . . , 7}
and imposing Ti1 = Ti2 as constraints with i in J (see [3, eq 4]) can
save |J | operations and thus reduce the computational complexity.

2

On fast multiplication of a matrix by its transpose

The definition (9) of T , these constraints, and the fact thatU ,V and

W ’s determinant are 1, form a system with 12 unknowns and 3 + 4 |J |
equations whose solutions define matrix squaring algorithms.

The algorithm [3, § 2.2, eq 2] is given by the action of the isotropy:

g =
(

0 1

−1 0

)
×

(
1 1

0 1

)
×

(
1 0

1 1

)
(12)

on Strassen’s tensor and is just Chatelin’s algorithm [7, Appendix A],

with λ = 1 (published 25 years before [3], but not applied to squaring).

Remark 2.2. Using symmetries in our strategy reduces the com-

putational cost compared to the resolution of Brent’s equations [4,

§ 5, eq 5.03] with an undetermined tensor T . In the previous exam-

ple by doing so, we should have constructed a system of at most 64

algebraic equations with 4(3 (7 − |J |) + 2 |J |) unknowns, resulting
from the constraints on T and the relation T = S, expressed using

Kronecker product as a single zero matrix in K8×8
.

We apply now our strategy on the 2 × 2 matrix product A · A⊺ .

2.2 2 × 2-matrix product by its transpose

Applying our Strategy 2.1, we consider (9) a generic matrix multi-

plication tensor T and our goal is to reduce the computational com-

plexity of the partial contraction (5) withA ⊗ A⊺ computingA · A⊺ .
By the properties of the transpose operator and the trace, the

following relations hold:〈
Ti2,A

⊺〉 = Trace

(
Ti2
⊺ · A⊺

)
= Trace

(
(A ·Ti2)

⊺),
= Trace

(
A ·Ti2

)
= Trace

(
Ti2 · A

)
=

〈
Ti2
⊺,A

〉
.

(13)

Thus, the partial contraction (5) satisfies here the following relation:

7∑
i=1

〈
Ti1,A

〉〈
Ti2,A

⊺〉Ti3 = 7∑
i=1

〈
Ti1,A

〉
⟨Ti2
⊺,A⟩Ti3. (14)

2.2.1 Supplementary symmetry constraints. Our goal is to save

computations in the evaluation of (14). To do so, we consider the sub-

sets J of {1, . . . , 7} and H of

{
(i, j) ∈ {2, . . . , 7}2 |i , j, i < J , j < J

}
in order to express the following constraints:

Ti1 = Ti2
⊺, i ∈ J , Tj1 = Tk2

⊺, Tk1
= Tj2

⊺, (j,k) ∈ H . (15)

The constraints of type J allow one to save preliminary additions

when applying the method to matrices B = A⊺ : since then oper-

ations on A and A⊺ will be the same. The constraints of type H
allow to save multiplications especially when dealing with a block-

matrix product: in fact, if some matrix products are transpose of

one another, only one of the pair needs to be computed as shown

in Section 3.

We are thus looking for the largest possible sets J and H . By

exhaustive search, we conclude that the cardinality ofH is at most 2

and then the cardinality of J is at most 3. For example, choosing

the sets J = {1, 2, 5} and H = {(3, 6), (4, 7)} we obtain for these so-

lutions the following parameterization expressed with a primitive

element z = v11 −v21:

v11 = z +v21,

v22 =
(
2v21(v21 + z) − 1

)
v21 + z

3,

v12 = −
(
v21

2 + (v21 + z
2)

2

+ 1

)
v21 − z,

u11 = −
(
(z +v21)

2 +v21

2
)
(w21 +w22),

u21 = −
(
(z +v21)

2 +v21

2
)
(w11 +w12),

u12 = −
(
(z +v21)

2 +v21

2
)
w22,

u22 =
(
(z +v21)

2 +v21

2
)
w12,(

(z +v21)
2 +v21

2
)2

+ 1 = 0, w11w22 −w12w21 = 1.

(16)

Remark 2.3. As

(
(z +v21)

2 +v21

2
)2

+ 1 = 0 occurs in this param-

eterization, field extension could not be avoided in these algorithms if

the field does not have—at least—a square root of −1. We show in Sec-

tion 3 that we can avoid these extensions with block-matrix products

and use our algorithm directly in any field of prime characteristic.

2.2.2 Supplementary constraint on the number of additions. As
done in Example 1, we could also try to reduce the additive com-

plexity and use 4 pre-additions on A (resp. B) [6, Lemma 9] and 7

post-additions on the products to form C [6, Lemma 2]. In the cur-

rent situation, if the operations on B are exactly the transpose of

that of A, then we have the following lower bound:

Lemma 2.1. Over a non-commutative domain, 11 additive opera-

tions are necessary to multiply a 2 × 2 matrix by its transpose with a

bilinear algorithm that uses 7 multiplications.

Indeed, over a commutative domain, the lower left and upper

right parts of the product are transpose of one another and one

can save also multiplications. Differently, over non-commutative

domains, A · A⊺ is not symmetric in general (say ac +bd , ca +db)
and all four coefficients need to be computed. But one can still save

4 additions, since there are algorithms where pre-additions are the

same onA andA⊺ . Now, to reach that minimum, the constraints (15)

must be combined with theminimal number 4 of pre-additions forA.
Those can be attained only if 3 of theTi1 factors do not require any

addition [6, Lemma 8]. Hence, those factors involve only one of the

four elements of A and they are just permutations of e11. We thus

add these constraints to the system for a subset K of {1, . . . , 7}:

|K | = 3 and Ti1 ∈
{(

1 0

0 0

)
,
(

0 1

0 0

)
,
(

0 0

1 0

)
,
(

0 0

0 1

)}
, i ∈ K . (17)

2.2.3 Selected solution. We choose K = {1, 2, 3} similar to (10) and

obtain the following isotropy that sends Strassen tensor to an algo-

rithm computing the symmetric product more efficiently:

a =
(
z2

0

0 z2

)
×

(
z −z
0 z3

)
×

(
−1 1

1 0

)
, z4 = −1. (18)

We remark that a is equal to d ◦ w with w the isotropy (11) that

sends Strassen tensor to Winograd tensor and with:

d = D1 ⊗ D2 ⊗ D3 =
(
z2

0

0 z2

)
×

(
z 0

0 −z3

)
×

(
1 0

0 1

)
, z4 = −1. (19)

Hence, the induced algorithm can benefit from the scheduling and

additive complexity of the classical Winograd algorithm. In fact,

our choice a ⋄ S is equal to (d ◦ w) ⋄ S and thus, according to re-

mark (2.1) the resulting algorithm expressed as the total contraction

{(d ◦ w) ⋄ S, (A ⊗ A⊺ ⊗ C)} = {w ⋄ S,d⊺ ⋄ (A ⊗ A⊺ ⊗ C)} (20)

could be written as a slight modification of Algorithm 1 inputs.

3

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

Precisely, as d’s components are diagonal, the relation d⊺ = d
holds; hence, we could express input modification as:(

D1

−1 · A · D2

)
⊗

(
D2

−1 · A⊺ · D3

)
⊗

(
D3

−1 ·C · D1

)
. (21)

The above expression is trilinear and the matrices Di are scalings

of the identity for i in {1, 3}, hence our modifications are just:(
1

z2
A · D2

)
⊗

(
D2

−1 · A⊺
)
⊗ z2C . (22)

Using notations of Algorithm 1, this is C =W

(
A · D2,D2

−1 · A⊺
)
.

Allowing our isotropies to have determinant different from 1,

we rescale D2 by a factor 1/z to avoid useless 4th root as follows:

Q =
D2

z
=

(
1 0

0 −z2

)
=

(
1 0

0 −y

)
, z4 = −1 (23)

where y designates the expression z2
that is a root of −1. Hence,

our algorithm to compute the symmetric product is:

C =W

(
A ·

D2

z
,

(
D2

z

)−1

· A⊺

)
=W

(
A ·Q,

(
A · (Q−1)

⊺
)⊺)
. (24)

In the next sections, we describe and extend this algorithm to higher-

dimensional symmetric productsA · A⊺ with a 2
ℓm × 2

ℓmmatrixA.

3 FAST 2 × 2-BLOCK RECURSIVE SYRK

The algorithm presented in the previous section is noncommutative

and thus we can extend it to higher-dimensional matrix product by

a divide and conquer approach. To do so, we use in the sequel upper

case letters for coefficients in our algorithms instead of lower case

previously (since these coefficients now represent matrices). Thus,

new properties and results are induced by this shift of perspective.

For example, the coefficient Y introduced in (23) could now be

transposed in (24); that leads to the following definition:

Definition 3.1. An invertible matrix is skew-orthogonal if the

following relation Y ⊺ = −Y−1
holds.

If Y is skew-orthogonal, then of the 7 recursive matrix products

involved in expression (24): 2 can be avoided completely because

they are just transposition of other products, 3 are recursive calls to

syrk and 2 are generic matrix products. This results in Algorithm 2.

Proposition 3.1 (Appendix A.1). Algorithm 2 is correct for any

skew-orthogonal matrix Y .

3.1 Minimality of the number of additions

From Lemma 2.1, we know that 11 additions are minimal to com-

pute A · A⊺ from 7 multiplications in generic 2 × 2 matrices. Here

we are considering matrices over a field, therefore C = A · A⊺ is a

symmetric matrix and the lower left block of the result is exactly

the transpose of the upper right one. Therefore, we can save the ad-

ditions computing one of those blocks, as stated by Proposition 3.2.

Proposition 3.2 (Appendix A.2). 9 block additions are necessary

and sufficient to multiply a 2 × 2 block matrix over a field by its

transpose with a bilinear algorithm that uses 5 multiplications.

Algorithm 2 : Matrix-parameterized Fast Symmetric product

Require: A =
(
A11 A12

A21 A22

)
;

Require: A skew-orthogonal matrix Y .

Ensure: The lower left triangular part ofC = A · A⊺ =
(
C11 C21

⊺

C21 C22

)
.

1: 4 additions and 2 multiplications by Y :

S1 ← (A21 −A11) · Y , S2 ← A22 −A21 · Y ,
S3 ← S1 −A22, S4 ← S3 +A12.

(25)

2: 3 recursive syrk (P1, P2, P5) and 2 generic (P3, P4) products:

P1 ← A11 · A11

⊺, P2 ← A12 · A12

⊺, P3 ← A22 · S4

⊺,
P4 ← S1 · S2

⊺, P5 ← S3 · S3

⊺ .
(26)

3: 2 symmetric additions (half additions);

Low(U1)←Low(P1)+Low(P5), {U1, P1, P5 are symm.}

Low(U3)←Low(P1)+Low(P2), {U3, P1, P2 are symm.}
(27)

4: 2 complete additions (P4 and P3 are not symmetric):

Up(U1) ← Low(U1)
⊺, U2 ← U1 + P4, U4 ← U2 + P3. (28)

5: 1 half addition (U5 = U1 + P4 + P4

⊺
is symmetric):

Low(U5) ← Low(U2) + Low(P4

⊺). (29)

6: return

(
Low(U3)

U4 Low(U5)

)
.

Remark 3.1. The symmetry of blocks C11 and C22 gives a can-

didate minimal number of extra additions for a 5 multiplications

algorithm. Indeed, suppose that C11 (resp. and C22) require 1 (resp. 2)

block addition like in Algorithm 2 (from the proof of Proposition 3.2,

this is the case in all variants with minimal number of block addi-

tions).

The symmetry of each of these blocks gives that only, say, their

lower part needs to be computed. This is 1.5(n + 1)n instead of 3n2

additions, for a total of 4n2 + 2n2 + 1.5(n + 1)n = 7.5n2 + 1.5n addi-

tions, as in Algorithm 2.

To further reduce the number of additions, a promising approach

is that undertaken in [2, 17]. This is however not clear to us how

to adapt our strategy to their recursive transformation of basis.

3.2 Skew orthogonal matrices

Algorithm 2 requires a skew-orthogonal matrix. Unfortunately

there are no skew-orthogonal matrices over R, nor Q. Hence, we re-
port no improvement in these cases. In other domains, the simplest

skew-orthogonal matrices just use a square root of −1.

3.2.1 Over the complex field. Therefore Algorithm 2 is directly

usable over Cn×n with Y = i In ∈ C
n×n

. Further, usually, complex

numbers are emulated by a pair of floats so then the multiplications

by Y = i In are essentially free since they just exchange the real

and imaginary parts, with one sign flipping. Even though over the

complex the product zherk of a matrix by its conjugate transpose is

more widely used, zsyrk has some applications, see for instance [1].

3.2.2 Negative one is a square. Over some fields with prime char-

acteristic, square roots of −1 can be elements of the base field,

denoted i in F again. There, Algorithm 2 only requires some pre-

multiplications by this square root (with also Y = i In ∈ F
n×n

), but

4

On fast multiplication of a matrix by its transpose

within the field. Proposition 3.3 thereafter characterizes these fields.

Proposition 3.3 (Appendix A.3). Fields with characteristic two,

or with an odd characteristic p ≡ 1 mod 4, or finite fields that are an

even extension, contain a square root of −1.

3.2.3 Any field with prime characteristic. Finally, we show that Al-

gorithm 2 can also be runwithout any field extension, evenwhen−1

is not a square: form the skew-orthogonal matrices constructed

in Proposition 3.4, thereafter, and use them directly as long as the

dimension ofY is even.Whenever this dimension is odd, it is always

possible to pad with zeroes so that A · A⊺ = (A 0) ·
(A⊺

0

)
.

Proposition 3.4 (Appendix A.4). Let F be a field of characteris-
tic p, there exists (a,b) in F2

such that the matrix:(
a b
−b a

)
⊗ In =

(
a In b In
−b In a In

)
in F2n×2n

(30)

is skew-orthogonal.

Proposition 3.4 shows that skew-orthogonal matrices do exist

for any field with prime characteristic. For Algorithm 2, we need to

build them mostly for p ≡ 3 mod 4 (otherwise use Proposition 3.3).

For this, without the extended Riemann hypothesis (erh), it is

possible to use the decomposition of primes into squares:

(1) Compute first a prime r = 4pk + (3 − 1)p − 1, then the rela-

tions r ≡ 1 mod 4 and r ≡ −1 mod p hold;

(2) Thus, results of [5] allow one to decompose primes into

squares and give a couple (a,b) in Z2
such that a2 + b2 = r .

Finally, we get a2 + b2 ≡ −1 mod p.

By the prime number theorem the first step is polynomial in log(p),
as is the second step (square root modulo a prime, denoted Mod-

SquareRoot, has a cost close to exponentiation and then the rest of

Brillhart’s algorithm is gcd-like). In practice, though, it is faster to

use the following Algorithm 3, even though the latter has a better

asymptotic complexity bound only if the erh is true.

Algorithm 3 : Sum of squares modulo prime

Require: p ∈ P\{2}, k ∈ Z.
Ensure: (a,b) ∈ Z2

, s.t. a2 + b2 ≡ k mod p.

1: if

(
k
p

)
== 1 then {k is a square mod p}

2: return (ModSquareRoot(k,p), 0).
3: else

4: s = 2; while

(
s
p

)
== 1 do {Lowest quadratic non-residue}

5: s = s + 1;

6: end while

7: end if

8: c = ModSquareRoot(s − 1,p); {s − 1 must be a square}

9: r ≡ ks−1
mod p;

10: a = ModSquareRoot(r ,p); {Now k ≡ a2s ≡ a2(1 + c2) mod p}
11: return (a,ac mod p).

Proposition 3.5 (Appendix A.5). Algorithm 3 is correct and,

under the erh, runs in expected time Õ
(
log

3(p)
)
.

Remark 3.2. Another possibility is to use randomization: instead of

using the lowest quadratic non-residue (lqnr), randomly select a non-

residue s , and then decrement it until s − 1 is a quadratic residue (1 is

a square so this will terminate)
1
. Also, when computing t s-o-s modulo

the same prime, one can compute the lqnr only once to get all the sum

of squares with an expected cost bounded by Õ
(
log

3(p) + t log
2(p)

)
.

Remark 3.3. Except in characteristic 2 or in algebraic closures,

where every element is a square anyway, Algorithm 3 is easily ex-

tended over any finite field: compute the lqnr in the base prime field,

then use Tonelli-Shanks or Cipolla-Lehmer algorithm to compute

square roots in the extension field. Denote by FFSoSFq (k) this algo-
rithm decomposing k as a sum of squares within any finite field Fq .
This is not true over infinite fields, but there Algorithm 3 still works

anyway for the special case k = −1: just run it in the prime subfield.

3.3 Conjugate transpose

Note that Algorithm 2 remains valid if transposition is replaced

by conjugate transposition, provided that there exists a matrix Y

such that Y · Y
⊺
= −I. This is not possible anymore over the com-

plex field, but works for any even extension field, thanks to Al-

gorithm 3: if −1 is a square in Fq , then Y =
√
−1 · In still works;

otherwise there exists a square root i of −1 in Fq2 , from Propo-

sition 3.3. In the latter case, thus build (a,b), both in Fq , such

that a2 + b2 = −1, andY = (a + ib) · In in Fq2

n×n
is appropriate: in-

deed, since q ≡ 3 mod 4, we have that a + ib = (a + ib)q = a − ib.

4 ANALYSIS AND IMPLEMENTATION

4.1 Complexity bounds

Theorem 4.1 (Appendix A.6). Given ω such that 3 > ω > 2, if a

generic matrix product algorithm requires less than Cωn
ω + o(nω)

operations then, overC or over a prime characteristic field, Algorithm 2

can require less than
2

2
ω−3

Cωn
ω + o(nω) arithmetic operations.

To our knowledge, the best previously known result was with

a
2

2
ω−4

factor instead, see, e.g. [11, § 6.3.1]. Table 1 summarizes the

arithmetic complexity bound improvements.

Problem Alg. O
(
n3

)
O

(
nlog

2
(7)

)
O (nω)

A · A⊺ ∈ Fn×n
[11] n3 2

3
MM

log
2
(7)(n) 2

2
ω−4

MMω (n)
Alg. 2 0.8n3 1

2
MM

log
2
(7)(n) 2

2
ω−3

MMω (n)

Table 1: Arithmetic complexity bounds leading terms.

Differently, as complex numbers are usually emulated by a pair

of floats, one can use the 3M method (Karatsuba) for generic matrix

multiplication over the complex field to get one complex multipli-

cation in only 3 floating point multiplications [15]. If we denote

by RRω the complexity bound on floating point matrix multiplica-

tion then the generic 3M method requires 3RRω + o(n
ω) floating

point operations.

Now a 2M symmetric method would use 2 floating point multipli-

cations: computeG = (A + B) · (A⊺ − B⊺) andH = A · B⊺ , then the

1
In practice, the running time seems very close to that of Algorithm 3 anyway, see, e.g.

the implementation in Givaro rev. 7bdefe6, https://github.com/linbox-team/givaro.

5

https://github.com/linbox-team/givaro

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

relation (A + iB) · (A⊺ + iB⊺) = (G − H⊺ + H) + i(H + H⊺) holds.
This method uses therefore 2RRω + o(n

ω) operations.

Algorithm [11, § 6.3.1] applies a divide and conquer approach

directly on the complex field. This would use only the equiva-

lent of
2

2
ω−4

complex floating point n × n products. Using the 3M
method for the generic complex floating point products, this algo-

rithm uses
6

2
ω−4

RRω + o(n
ω) operations.

Finally, our Algorithm 2 would use only
2

2
ω−3

complex floating

point multiplications for a leading term bounded by
6

2
ω−3

RRω ,
better than 2 for ω > log

2
(6) ≈ 2.585.

This is summarized in Table 2, replacing ω by 3 or log
2
(7).

Problem Alg. O
(
n3

)
O

(
nlog

2
(7)

)
O (nω)

A · B ∈ Cn×n
naive 8n3

4 RR
log

2
(7)(n) 4 RRω (n)

3M 6n3
3 RR

log
2
(7)(n) 3 RRω (n)

A · A⊺ ∈ Cn×n
2M 4n3

2 RR
log

2
(7)(n) 2 RRω (n)

[11] 3n3
2 RR

log
2
(7)(n) 6

2
ω−4

RRω (n)
Alg. 2 2.4n3 3

2
RR

log
2
(7)(n) 6

2
ω−3

RRω (n)

Table 2: Complexity bounds leading term over the complex

field, emulated with separate real and imaginary parts.

4.2 Implementation and scheduling

This section reports on an implementation of Algorithm 2 over

prime fields. We propose in Table 3 and Figure 1 a schedule for the

operationC ← A · A⊺ using no more extra storage than the unused

upper triangular part of the result C .

operation loc. # operation loc.

1 S1 = (A21 − A11) · Y C21 9 U1 = P1 + P5 C12

2 S2 = A22 − A21 · Y C12 Up(U1) = Low(U1)
⊺ C12

3 P4

⊺ = S2 · S1

⊺ C22 10 U2 = U1 + P4 C12

4 S3 = S1 − A22 C21 11 U4 = U2 + P3 C21

5 P5 = S3 · S3

⊺ C12 12 U5 = U2 + P4

⊺ C22

6 S4 = S3 + A12 C11 13 P2 = A12 · A12

⊺ C12

7 P3 = A22 · S4

⊺ C21 14 U3 = P1 + P2 C11

8 P1 = A11 · A11

⊺ C11

Table 3: Memory placement and schedule of tasks to com-

pute the lower triangular part ofC ← A · A⊺ when k ≤ n. The
block C12 of the output matrix is the only temporary used.

For the more general operation C ← αA · A⊺ + βC , Table 4 and
Figure 2 propose a schedule requiring only an additional n/2 × n/2
temporary storage. These algorithms have been implemented as the

fsyrk routine in the fflas-ffpack library [14, commit 0a91d61e]

for dense linear algebra over a finite field. The library is linked

with Openblas [24, v0.3.6] and compiled with gcc-9.2 on an Intel

skylake i7-6700 running a Debian gnu/Linux system (v5.2.17).

Figure 3 compares the computation speed in effective Gfops (de-

fined as n3/(10
9 × time)) of this implementation over Z/131071Z

with that of the double precision blas routines dsyrk, the classic
cubic-time routine over a finite field (calling dsyrk and perform-

ing modular reductions on the result), and the classic divide and

C22 C12 C21 C11

S2 S1

P4

⊺ S3

P5 S4

P3

P1

U1

U2

U5 U4

P2

U3

Figure 1: dag of the tasks and their memory location for the

computation of C ← A · A⊺ presented in Table 3.

operation loc. operation loc.

S1 = (A21 − A11) · Y tmp P1 = αA11 · A11

⊺
tmp

S2 = A22 − A21 · Y C12 U1 = P1 + P5 C12

Up(C11) = Low(C22)
⊺ C11 Up(U1) = Low(U1)

⊺ C12

P4

⊺ = αS2 · S1

⊺ C22 U2 = U1 + P4 C12

S3 = S1 − A22 tmp U4 = U2 + P3 C21

P5 = αS3 · S3

⊺ C12 U5 = U2 + P4

⊺ + βUp(C11)
⊺ C22

S4 = S3 + A12 tmp P2 = αA12 · A12

⊺ + βC11 C11

P3 = αA22 · S4

⊺ + βC21 C21 U3 = P1 + P2 C11

Table 4: Memory placement and schedule of tasks to

compute the lower triangular part of C ← αA · A⊺ + βC
when k ≤ n. The block C12 of the output matrix as well as

an n/2 × n/2 block tmp are used as temporary storages.

conquer algorithm [11, § 6.3.1]. The slight overhead of performing

the modular reductions is quickly compensated by the speed-up

of the sub-cubic algorithm (the threshold for a first recursive call

is near n = 2000). The classic divide and conquer approach also

speeds up the classic algorithm, but starting from a larger thresh-

old, and hence at a slower pace. Lastly, we also show that the speed

is merely identical over the field Z/131041Z, having square roots
of −1, thus showing the limited overhead of the preconditioning

by the matrix Y .

5 SYRKWITH BLOCK DIAGONAL SCALING

Symmetric rank k updates are a key building block for symmetric

triangular factorization algorithms, for their efficiency is one of the

bottlenecks. In the most general setting (indefinite factorization),

a block diagonal scaling by a matrix D, with 1 or 2 dimensional

diagonal blocks, has to be inserted within the product, leading to

the operation: C ← C −A · D · A⊺ .
Over finite fields, though, extending the factorization of qua-

dratic non-residues of Algorithm 3, one can actually factor the

6

https://github.com/linbox-team/fflas-ffpack/commit/0a91d61e6518568b006873076df925fcd6fcc112

On fast multiplication of a matrix by its transpose

C11 C22 C12 tmp C21

Up(C11) S2 S1

P4

⊺ S3

P5 S4

P1 P3

U1

U2

U5 U4

P2

U3

Figure 2: dag of the tasks and their memory location for the

computation of C ← αA · A⊺ + βC presented in Table 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000 14000 16000

E
ff

e
ct

iv
e
 G

fo
p

s:
 n

3
/(

1
0

9
 x

 t
im

e
)

n

Fast FSYRK on an i7-6700 @ 3.4 GHz

Classic OpenBLAS DSYRK
Classic FSYRK modulo 131071

Divide & Conquer FSYRK modulo 131071
Fast FSYRK modulo 131071
Fast FSYRK modulo 131041

Figure 3: Speed of an implementation of Algorithm 2

diagonal matrix D into D = ∆ · ∆⊺ , without needing any field exten-
sion, and then compute instead (A · ∆) · (A · ∆)⊺ . This is what we
propose in this section. Indeed, this is better to deal with potential

non-squares and 2 × 2 blocks before launching a recursive algo-

rithm. For instance, a 2 × 2 diagonal blocks might have to be cut

by a recursive cut of dimensions. We will see also in the following

that non-squares in the diagonal need to be dealt with in pairs. In

both cases it might be necessary to add a virtual zero column to

deal with these cases: this is potentially O
(
log

2
(n)

)
extra columns.

Differently, with Algorithm 6, thereafter, one has to deal with

non-squares and 2 × 2 blocks only beforehand, with a maximum of

only 2 additional zero columns overall.

For this algorithm, we then need to ensure the following:

• only perform recursive calls on blocks with even dimensions;

• avoid resorting to field extensions, use instead Section 5.1 to

factor a diagonal matrix in the base field;

• deal with antidiagonal or antitriangular 2 × 2 blocks, depend-

ing on the characteristic, as shown in Sections 5.2.1 and 5.2.2.

5.1 Factoring non-squares within a finite field

Algorithm 4 : Symmetric factorization of a pair of non-residues

Require: (α , β) ∈ Fq
2
, both being quadratic non-residues.

Ensure: Y ∈ Fq
2×2

, s.t. Y · Y ⊺ =
(
α 0

0 β

)
.

1: (a,b) ← FFSoSFq (α); {α = a2 + b2
}

2: d ← a FFSqrtFq (βα
−1); {d2 = a2βα−1

}

3: c ← −bda−1
; {ac + bd = 0}

4: return Y =
(
a b
c d

)
.

Using Algorithm 4, one can then factor any diagonal matrix

within a finite field as a symmetric product with a tridiagonal matrix.

This can then be used to compute efficiently A · D · A⊺ with D a

diagonal matrix: factorD with a tridiagonal matrixD = ∆ · ∆⊺ , then
pre-multiply A by this tridiagonal matrix and run a fast symmetric

product on the resulting matrix. This is shown in Algorithm 5,

where the overhead, compared to simple matrix multiplication, is

only O
(
n2

)
(that is O(n) square roots and O(n) column scalings).

Algorithm 5 : A · D · A⊺ : syrk with a diagonal over a finite field

Require: A ∈ Fq
m×n

and (d1, . . . ,dn) ∈ Fq
n
.

Ensure: A · DiagonalMatrix(d1, . . . ,dn) · A
⊺
in Fq

n×n
.

1: if number of quadratic non-residues in D is odd then

2: Let dℓ be one of the quadratic non-residues;

3: Form D̄=DiagonalMatrix(d1, . . . ,dn ,dℓ) ∈ Fq
(n+1)×(n+1)

4: Ā = (A 0) ∈ Fq
m×(n+1)

{Augment A with a zero column}

5: else

6: D̄ = D = DiagonalMatrix(d1, . . . ,dn) ∈ Fq
n×n

;

7: Ā = A ∈ Fq
m×n

8: end if

9: for all quadratic residues dj in D̄ do

10: Ā∗, j ← FFSqrtFq (dj) · Ā∗, j {Scale column j of Ā by a

square root of dj }
11: end for

12: for all distinct pairs of quadratic non-residues (di ,dj) in D̄ do

13: Let

(
a b
c d

)
be the symmetric factorization of

(
di 0

0 dj

)
{Alg. 4}

14: (Ā∗,i Ā∗, j) ← (Ā∗,i Ā∗, j)
(
a b
c d

)
;

15: end for

16: return Ā · Ā⊺ . {Alg. 2}

5.2 Antidiagonal and antitriangular blocks

In a generic L · D · L⊺ factorization, antitriangular or antidiagonal

blocks can appear in D [12]. In order to use a fast symmetric mul-

tiplication as the main subroutine to this factorization, it is more

efficient to preprocess these blocks in order to deal only with a

diagonal matrix. The next sections are devoted to handling this

point.

5.2.1 Antidiagonal blocks in odd characteristic. In odd character-

istic, the 2-dimensional blocks in a symmetric factorization are

only symmetric antidiagonal blocks i.e. scalings of the antidiagonal

7

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

identity:

(
0 β
β 0

)
. For those blocks, it is possible to factor them sym-

metrically using Equation (31), and therefore reduce to the diagonal

case (note the requirement that 2 is invertible).(
1 1

1 −1

) (
1

2
β 0

0 − 1

2
β

) (
1 1

1 −1

)⊺
=

(
0 β
β 0

)
. (31)

5.2.2 Antitriangular blocks in even characteristic. In even character-

istic, some 2 × 2 symmetric blocks might not be only antidiagonal

anymore, but also antitriangular of the form:

(
0 β
β γ

)
, withγ nonzero.

In even characteristic every element is a square, therefore those

antitriangular blocks can be factored as shown in Equation (32):(
0 β
β γ

)
=

(
β
√
γ

β
√
γ

√
γ 0

) (
β
√
γ

β
√
γ

√
γ 0

)⊺
=((

β
√
γ 0

0

√
γ

) (
1 1

1 0

)) ((
β
√
γ 0

0

√
γ

) (
1 1

1 0

))⊺
. (32)

Therefore the antitriangular blocks also resume to the diagonal case

after adding and swapping two rows, i.e. preprocessing by

(
1 1

1 0

)
.

5.2.3 Antidiagonal blocks in even characteristic. In the antidiagonal

case this is more complicated: the symmetric factorization might

require an extra row or column [19]. This is shown in Equation (33):(
1 0

0 β

) (
1 0 1

0 1 1

) ((
1 0

0 β

) (
1 0 1

0 1 1

))⊺
=

(
0 β
β 0

)
mod 2. (33)

One could thus add one row and one column to A at each antidi-

agonal block and then replace it with the 2×3 symmetric factor-

ization of Equation (33). It is however more efficient to combine

a diagonal element, say x , and an antidiagonal block with Equa-

tion (34) instead. For this, consider the diagonal matrix D√x,1,β

with coefficients

√
x , 1, β , the transformationM =

(
1 1 1

1 0 1

0 1 1

)
and com-

pute D√x,1,β ·M ·M
⊺ · D√x,1,β

⊺
that is:(√

x
√
x
√
x

1 0 1

0 β β

) (√
x
√
x
√
x

1 0 1

0 β β

)⊺
=

(x 0 0

0 0 β
0 β 0

)
mod 2. (34)

With Equation (34), we thus can just combine any antidiagonal

block with any 1×1 block in order to factor them.

There remains the case when there are no 1×1 blocks. Then, one

needs to use Equation (33) once, on the first antidiagonal block,

and add a single row and column to A. This indeed extracts the

antidiagonal elements and creates a 3×3 identity block in themiddle.

Any one of its three ones can then be used afterwards as x in any

further combination with the next antidiagonal blocks.

Algorithm 6 summarizes the use of Equations (31) to (34).

REFERENCES

[1] M. Baboulin, L. Giraud, and S. Gratton. A parallel distributed solver for large dense

symmetric systems: Applications to geodesy and electromagnetism problems. The

International Journal of High Performance Computing Applications, 19(4):353–363,

2005. doi:10.1177/1094342005056134.
[2] G. Beniamini and O. Schwartz. Faster matrix multiplication via sparse decompo-

sition. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA’19, pages 11–22. ACM, 2019. doi:10.1145/3323165.3323188.
[3] M. Bodrato. A Strassen-like matrix multiplication suited for squaring and higher

power computation. In W. Koepf, editor, ISSAC’2010, Munich, Germany, pages

273–280, July 2010. doi:10.1145/1837934.1837987.
[4] R. P. Brent. Algorithms for matrix multiplication. Technical Report STAN-CS-

70-157, Computer Science Departement. Standford university, Mar. 1970. URL:

http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf.

Algorithm 6 : A · B · A⊺ with block-diagonal scaling

Require: A ∈ Fq
m××n

;

Require: A block diagonal matrix B, formed by 1-dimensional

scalar blocks or 2-dimensional symmetric antitriangular blocks.

Ensure: A · B · A⊺ in Fq
n×n

.

1: Form Ā = A ∈ Fq
m×n

and let D̄ = IdentityMatrix(n);
2: for all scalar blocks in B at position j do D̄ j ← Bj, j end for

3: if q is odd then {Use Eq. (31)}

4: for all symmetric antidiagonal blocks in B at (j, j + 1) do

5: Let β = Bj, j+1 = Bj+1, j ;

6: D̄ j ←
1

2
β and D̄ j+1 ← −

1

2
β ;

7: (Ā∗,i Ā∗, j) ← (Ā∗,i Ā∗, j)
(

1 1

1 −1

)
;

8: end for

9: else

10: for all antitriangular blocks in B at position (j, j + 1) do

11: Let β = Bj, j+1 = Bj+1, j and let δ = FFSqrtFq (Bj+1, j+1);

12: Ā∗, j ← βδ−1 · Ā∗, j {Scale column j of Ā}
13: Ā∗, j+1 ← δ · Ā∗, j {Scale column j + 1 of Ā}
14: Ā∗, j+1 ← Ā∗, j+1 + Ā∗, j ; {Use Eq. (32)}

15: Swap columns j and j + 1 of Ā;
16: end for

17: if there are n/2 antidiagonal blocks in B then {Use Eq. (33)}

18: Let β = B1,2 = B2,1;

19: Ā∗,2 ← β · Ā∗,2 and Ā← (Ā Ā∗,1+Ā∗,2) ∈ Fq
m×(n+1)

20: Let ℓ = 1 and let δ = 1;

21: else

22: Let ℓ be the index of a non antidiagonal block in B;
23: Let δ = FFSqrtFq (D̄ℓ,ℓ);

24: end if

25: for all remaining antidiagonal blocks in B at (j, j + 1) do

26: Let β = Bj, j+1 = Bj+1, j ; {Use Eq. (34)}

27: Ā∗, ℓ ← δ · Ā∗, ℓ and Ā∗, j+1 ← β · Ā∗, j+1

28: (Ā∗, ℓ Ā∗, j Ā∗, j+1) ← (Ā∗, ℓ Ā∗, j Ā∗, j+1)M ;and δ ← 1;

29: end for

30: end if

31: return Ā · D̄ · Ā⊺ . {Alg. 5}

[5] J. Brillhart. Note on representing a prime as a sum of two squares.Math. of Compu-

tation, 26(120):1011–1013, 1972. doi:10.1090/S0025-5718-1972-0314745-6.
[6] N. H. Bshouty. On the additive complexity of 2 × 2 matrix multiplication. Inf. Pro-

cessing Letters, 56(6):329–335, Dec. 1995. doi:10.1016/0020-0190(95)00176-X.
[7] P. Chatelin. On transformations of algorithms to multiply 2 × 2 matrices. Inf.

processing letters, 22(1):1–5, Jan. 1986. doi:10.1016/0020-0190(86)90033-5.
[8] H. F. de Groot. On varieties of optimal algorithms for the computation of bilinear

mappings I. The isotropy group of a bilinear mapping. Theoretical Computer

Science, 7(2):1–24, 1978. doi:10.1016/0304-3975(78)90038-5.
[9] H. F. de Groot. On varieties of optimal algorithms for the computation of bilinear

mappings II. Optimal algorithms for 2 × 2-matrix multiplication. Theoretical

Computer Science, 7(2):127–148, 1978. doi:10.1016/0304-3975(78)90045-2.
[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A Set of Level 3 Basic

Linear Algebra Subprograms. ACM Trans. on Math. Soft., 16(1):1–17, Mar. 1990.

doi:10.1145/77626.79170.
[11] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over prime fields. ACM

Trans. on Math. Soft., 35(3):1–42, Nov. 2008. doi:10.1145/1391989.1391992.
[12] J.-G. Dumas and C. Pernet. Symmetric indefinite elimination revealing the rank

profile matrix. In C. Arreche, editor, ISSAC’2018, New York, USA, pages 151–158,

July 2018. doi:10.1145/3208976.3209019.
[13] J.-C. Faugère. FGb: A Library for Computing Gröbner Bases. In K. Fukuda,

J. Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS

2010, volume 6327 of Lecture Notes in Computer Science, pages 84–87. Springer

Berlin / Heidelberg, Sept. 2010. doi:10.1007/978-3-642-15582-6_17.

8

http://dx.doi.org/10.1177/1094342005056134
http://dx.doi.org/10.1145/3323165.3323188
http://dx.doi.org/10.1145/1837934.1837987
http://i.stanford.edu/pub/cstr/reports/cs/tr/70/157/CS-TR-70-157.pdf
http://dx.doi.org/10.1090/S0025-5718-1972-0314745-6
http://dx.doi.org/10.1016/0020-0190(95)00176-X
http://dx.doi.org/10.1016/0020-0190(86)90033-5
http://dx.doi.org/10.1016/0304-3975(78)90038-5
http://dx.doi.org/10.1016/0304-3975(78)90045-2
http://dx.doi.org/10.1145/77626.79170
http://dx.doi.org/10.1145/1391989.1391992
http://dx.doi.org/10.1145/3208976.3209019
http://dx.doi.org/10.1007/978-3-642-15582-6_17

On fast multiplication of a matrix by its transpose

[14] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines

/ Package, 2019. v2.4.1. URL: http://github.com/linbox-team/fflas-ffpack.

[15] N. J. Higham. Stability of a method for multiplying complex matrices with three

real matrix multiplications. SIAM Journal on Matrix Analysis and Applications,

13(3):681–687, 1992. doi:10.1137/0613043.
[16] M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for

matrix and transposed matrix products. Journal of Algorithms, 9(3):354–364, 1988.

doi:10.1016/0196-6774(88)90026-0.
[17] E. Karstadt and O. Schwartz. Matrix multiplication, a little faster. In Proceedings of

the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’17,

pages 101–110. ACM, 2017. doi:10.1145/3087556.3087579.
[18] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, ed-

itor, ISSAC’2014, Kobe, Japan, pages 296–303, July 2014. doi:10.1145/2608628.
2608664.

[19] A. Lempel. Matrix factorization over GF (2) and trace-orthogonal bases

of GF (2n). SIAM J. on Computing, 4(2):175–186, 1975. doi:10.1137/0204014.
[20] G. Seroussi and A. Lempel. Factorization of symmetric matrices and trace-

orthogonal bases in finite fields. SIAM Journal on Computing, 9(4):758–767, 1980.

doi:10.1137/0209059.
[21] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–

356, 1969. doi:10.1007/BF02165411.
[22] S. Wedeniwski. Primality tests on commutator curves. PhD U. Tübingen, 2001.

[23] S. Winograd. La complexité des calculs numériques. La Recherche, 8:956–963,

1977.

[24] Z. Xianyi, M. Kroeker, et al. OpenBLAS, an Optimized BLAS library, 2019. http:

//www.openblas.net/.

A APPENDIX

A.1 Proof of Proposition 3.1

Proposition 3.1 (Appendix A.1). Algorithm 2 is correct for any

skew-orthogonal matrix Y .

Proof. If Y is skew-orthogonal, then Y · Y ⊺ = −I. First,

U3 = P1 + P2 = A11 · A11

⊺ +A12 · A12

⊺ = C11. (35)

Denote by R1 the product:

R1 = A11 · Y · S2

⊺ = A11 · Y · (A22

⊺ − Y ⊺ · A21

⊺)

= A11 · (Y · A22

⊺ +A21

⊺).
(36)

Thus, as S3 = S1 −A22 = (A21 −A11) · Y −A22 = −S2 −A11 · Y :

U1 = P1 + P5 = A11 · A11

⊺ + S3 · S3

⊺

= A11 · A11

⊺ + (S2 +A11 · Y) · (S2

⊺ + Y ⊺ · A11

⊺)

= S2 · S2

⊺ + R1

⊺ + R1.

(37)

And denote R2 = A21 · Y · A22

⊺
, so that:

S2 · S2

⊺ = (A22 −A21 · Y) · (A22

⊺ − Y ⊺ · A21

⊺)

= A22 · A22

⊺ −A21 · A21

⊺ − R2 − R2

⊺ .
(38)

Furthermore, from Equation (36):

R1 + P4 = R1 + S1 · S2

⊺

= R1 + (A21 −A11) · Y · (A22

⊺ − Y ⊺ · A21

⊺)

= A11 · (Y · A22

⊺ +A21

⊺) + S1 · S2

⊺

= A21 · Y · A22

⊺ +A21 · A21

⊺ = R2 +A21 · A21

⊺ .

(39)

Therefore, from Equations (37), (38) and (39):

U5 = U1 + P4 + P4

⊺ = S2 · S2

⊺ + R1 + R1

⊺ + P4 + P4

⊺

= A22 · A22

⊺ + (−1 + 2)A21 · A21

⊺ = C22.
(40)

And the last coefficient U4 of the result is obtained from Equa-

tions (39) and (40):

U4 = U2 + P3 = U5 − P4

⊺ + P3

= U2 +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺ −A22

⊺)

= A21 · A21

⊺ − P4

⊺ +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺)

= R1

⊺ − R2

⊺ +A22 · (A12

⊺ + Y ⊺ · A21

⊺ − Y ⊺ · A11

⊺)

= R1

⊺ +A22 · (A12

⊺ − Y ⊺ · A11

⊺)

= A21 · A11

⊺ +A22 · A12

⊺ = C21.

(41)

Finally, P1 = A11 · A11

⊺
, P2 = A12 · A12

⊺
, and P5 = S3 · S3

⊺
are sym-

metric by construction. So are therefore,U1 = P1 + P5,U3 = P1 + P2

andU5 = U1 + (P4 + P4

⊺). □

A.2 Proof of Proposition 3.2

To prove Proposition 3.2 we need the result of the following Lemma,

stating that in dimension larger than 2 it is impossible to compute

any coefficient of the result with a single multiplication.

Lemma A.1. The dot-product of two vectors of dimension larger

than 2 over a field cannot be computed by a bilinear algorithm with

a single multiplication.

9

http://github.com/linbox-team/fflas-ffpack
http://dx.doi.org/10.1137/0613043
http://dx.doi.org/10.1016/0196-6774(88)90026-0
http://dx.doi.org/10.1145/3087556.3087579
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1137/0204014
http://dx.doi.org/10.1137/0209059
http://dx.doi.org/10.1007/BF02165411
http://www.openblas.net/
http://www.openblas.net/

Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic

Proof. Let (ai)i=1...n and (bj)j=1...n bet the given two vectors.

Consider any linear combinations

∑
λiai and

∑
µ jaj with the λi

and µ j as indeterminates. Suppose their product produces the dot-

product

∑
k=1...n akbk . By monomial identification, it would then

mean that the following system is satisfied:

λk µk = 1, ∀k = 1 . . .n, λi µ j = 0, ∀i , j . (42)

Over a field, the first set of equations implies that none of the λk
and µk can be zero, while the second set of equations requires that

some of them are. The equations are thus mutually incompatible

and the lemma is proven. □

Proposition 3.2 (Appendix A.2). 9 block additions are necessary

and sufficient to multiply a 2 × 2 block matrix over a field by its

transpose with a bilinear algorithm that uses 5 multiplications.

Proof. From [16, Theorem 2], the minimal number of post-

additions to get C is 7. So the respective number of block post-

additions to getC11,C12,C21 andC22 are among the sets of four non-

negative integers (i, j,k, ℓ)which sum to 7. Further, from LemmaA.1,

there exists no combination that can provide either of the blocks

of C without addition of multiplicative terms, so the four inte-

gers are actually strictly positive. This leaves (4, 1, 1, 1), (3, 2, 1, 1)

and (2, 2, 2, 1)’s permutations as candidates.

By symmetry, C12 is C21

⊺
, thus a minimal realization must have

an equal number of additions for C12 and C21 (otherwise compute

one with the smallest and transpose it to obtain the other).

Then the maximal savings from the candidates is when that

number of additions is 2. Therefore at least 2 + 2 + 1 = 5 block

post-additions are necessary to compute C from the products. As 4

additions are a minimum for the pre-additions [6, Lemma 9], we

get a minimum of 9 block additions.

The sufficient condition is given by our Algorithm 2. □

A.3 Proof of Proposition 3.3

Proposition 3.3 (Appendix A.3). Fields with characteristic two,

or with an odd characteristic p ≡ 1 mod 4, or finite fields that are an

even extension, contain a square root of −1.

Proof. • If p = 2, then 1 = 1
2 = −1.

• If p ≡ 1 mod 4, then half of the non-zero elements x in the

base field of size p satisfy x
p−1

4 , ±1 and then the square of

the latter must be −1.

• If the finite field F is of cardinality p2k
, then, similarly, there

exists elements x
pk −1

2

pk +1

2 different from ±1 and then the

square of the latter must be −1. □

A.4 Proof of Proposition 3.4

Proposition 3.4 (Appendix A.4). Let F be a field of characteris-
tic p, there exists (a,b) in F2

such that the matrix:(
a b
−b a

)
⊗ In =

(
a In b In
−b In a In

)
in F2n×2n

(30)

is skew-orthogonal.

Proof. First, remark that the following relation holds:(
a In b In
−b In a In

) (
a In b In
−b In a In

)⊺
= (a2 + b2) I2n . (43)

Second, if the characteristic is even, then 1
2 + 0

2 = −1.

Third, if the characteristic is odd, then, in the base prime field,

there are
p+1

2
distinct square elements xi

2
. Therefore, there are

p+1

2

distinct elements −1 − xi
2
. But there are only p distinct elements

in the base field, thus there exists a couple (i, j) such that −1 − xi
2

is equal to x j
2
[20, Lemma 6].

Finally, let e.g. a be xi and b be x j , then we have the skew-

orthogonal matrix: Y =
(
xi x j
−x j xi

)
⊗ In . □

A.5 Proof of Proposition 3.5

Proposition 3.5 (Appendix A.5). Algorithm 3 is correct and,

under the erh, runs in expected time Õ
(
log

3(p)
)
.

Proof. if k is square then the square of one of its square roots

added to the square of zero is a solution. Otherwise, the lowest qua-

dratic non-residue (lqnr) modulo p is one plus a square b2
(1 is al-

ways a square so the lqnr is larger than 2). For any generator of Zp ,
quadratic non-residues, as well as their inverses (s is invertible as it
is non-zero and p is prime), have an odd discrete logarithm. There-

fore the multiplication of k and the inverse of the lqnr must be a

square a2
. This means that the relation k = a2

(
1 + b2

)
= a2 + (ab)2

holds. Now for the running time, under erh, the lqnr should be

lower than 3 log
2(p)/2 − 44 log(p)/5 + 13 [22, Theorem 6.35]. Thus

the expected number of Legendre symbol computations is bounded

by O
(
log

2(p)
)
and this dominates the modular square root compu-

tations. □

A.6 Proof of Theorem 4.1

Theorem 4.1 (Appendix A.6). Given ω such that 3 > ω > 2, if a

generic matrix product algorithm requires less than Cωn
ω + o(nω)

operations then, overC or over a prime characteristic field, Algorithm 2

can require less than
2

2
ω−3

Cωn
ω + o(nω) arithmetic operations.

Proof. finite Suppose that a generic matrix multiplication algo-

rithm requires less than Cωn
ω + o(nω) operations with 3 > ω > 2.

Then, on the one hand, use this algorithm to compute P4 and P5,

and on the other hand, recursively compute P1, P2 and P7.

If the field satisfies the conditions of Proposition 3.3, then with

a random square root i of −1, let Y be i In/2. Multiplication by Y

requires n2
multiplications by i , and let y be 1.

Over the complex numbers, multiplications by i are just exchang-
ing the real and imaginary parts and flipping one sign, so let y = 0.

Otherwise, in characteristic p ≡ 3 mod 4, let the couple (a,b)

be as in Proposition 3.4 and let Y be

(
a b
−b a

)
⊗ In/2. By the law of

quadratic reciprocity,

(
2

p

)
= (−1)

p2−1

8 . Therefore, if p ≡ 3 mod 4

then

(
2

p

)
= −1 if and only if p ≡ 3 mod 8. Now, if p ≡ 3 mod 4,

then

(
−1

p

)
= −1. Thus, if p ≡ 3 mod 8, then

(
−2

p

)
= (−1)·(−1) = 1.

We thus have two cases:

(1) if p ≡ 7 mod 8, then multiplication by Y requires 3n2
oper-

ations, and let y be 3;

(2) if p ≡ 3 mod 8, then we have shown that −2 is a square, so

let a = 1 and b ≡
√
−2 mod p. Then a2 + b2 = 1 − 2 = −1

10

On fast multiplication of a matrix by its transpose

and multiplying by

(
1 b
−b 1

)
⊗ In/2 requires 2n2

operations,

and let y be 2.

Combining this with Remark 3.1, we get that overall the arith-

metic complexity T (n) of Algorithm 2 with the chosen Y satisfies:

T (n) ≤ 3T (n/2) + 2Cω (n/2)
ω + (7.5 + 2y)(n/2)2 + o

(
n2

)
(44)

and T (4) is a constant. Thus, by the master Theorem:

T (n) ≤
2Cω

2
ω − 3

nω + o
(
nω

)
=

2

2
ω − 3

MMω (n) + o
(
nω

)
. (45)

□

A.7 Threshold in the theoretical number of

operations for dimensions that are a power

of two

Here, we look for a theoretical threshold where our fast symmetric

algorithm performs less arithmetic operations than the classical one.

Below that threshold any recursive call should call a classical algo-

rithm forA · A⊺ . But, depending whether padding or static/dynamic

peeling is used, this threshold varies. For powers of two, however,

no padding nor peeling occurs and we thus have a look in this

section of the thresholds in this case.

n 4 8 16 32 64 128

syrk 70 540 4216 33264 264160 2105280

Rec. SW

Syrk-i

1 0

70 540 4216 33264 264160 2105280

G0-i 81 554 4020 30440 236496 1863584

G1-i 89 586 4148 30952 238544 1871776

G2-i 97 618 4276 31464 240592 1879968

G3-i 105 650 4404 31976 242640 1888160

Syrk-i

2 1

90 604 4344 32752 253920 1998784

G0-i 651 4190 29340 217784 1674096

G1-i 707 4414 30236 221368 1688432

G2-i 763 4638 31132 224952 1702768

G3-i 819 4862 32028 228536 1717104

Syrk-i

3 2

824 5048 34160 248288 1886144

G0-i 4929 30746 210900 1546280

G1-i 5225 31930 215636 1565224

G2-i 5521 33114 220372 1584168

G3-i 5817 34298 225108 1603112

Syrk-i

4 3

6908 40112 260192 1838528

G0-i 36099 221390 1500540

G1-i 37499 226990 1522940

G2-i 38899 232590 1545340

G3-i 40299 238190 1567740

Table 5: Number of arithmetic operations in the multiplica-

tion an n × n matrix by its transpose: blue when Syrk-i (us-

ing Strassen-Winograd with i − 1 recursive levels) is better

than other Syrk; orange/red/violet/green when ours (using

Strassen-Winograd with i − 1 recursive levels, and G0-i for C
/ G1-i if −1 is a square / G2-i or G3-i otherwise, depending

whether −2 is a square or not) is better than others.

First, from Section 3.2, over C, we can choose Y = i In . Then

multiplications by i are just exchanging the real and imaginary

parts. In Equation (44) this is an extra cost of y = 0 arithmetic

operations in usual machine representations of complex numbers.

Overall, for y = 0 (complex case), y = 1 (−1 a square in the finite

field) or y = 3 (any other finite field), the dominant term of the

complexity is anyway unchanged, but there is a small effect on the

threshold. In the following, we denote byG0,G1 andG3 these three

variants.

More precisely, we denote by syrk the classical multiplication of

a matrix by its transpose. Then we denote by Syrk-i the algorithm

making four recursive calls and two calls to a generic matrix multi-

plication via Strassen-Winograd’s algorithm, the latter with i − 1

recursive calls before calling the classical matrix multiplication.

Finally G1-i (resp. G3-i) is our Algorithm 2 when −1 is a square

(resp. not a square), with three recursive calls and two calls to

Strassen-Winograd’s algorithm, the latter with i − 1 recursive calls.

Now, we can see in Table 5 in which range the thresholds live.

For instance, over a field where −1 is a square, Algorithm 2 is better

for n ≥ 16 with 1 recursive level (and thus 0 recursive levels for

Strassen-Winograd), for n ≥ 32 with 2 recursive levels, etc. Over

a field where −1 is not a square, Algorithm 2 is better for n ≥ 32

with 1 recursive level, for n ≥ 64 with 3 recursive levels, etc.

A.8 Proof of Algorithm 4

Proof. Given, α and β quadratic non-residues, (a,b), such that

α = a2 + b2
, are found by the algorithm of Remark 3.3. Second α

and β are quadratic non-residues therefore their quotient is a

residue since:

(
βα−1

) q−1

2 = −1

−1
= 1. Third, if c = −bda−1

, then

c2 + d2
is equal to (−bd/a)2 + d2

and thus to (b2/a2 + 1)d2
; this last

quantity is equal to (α)d2/a2
and toα(a

√
β/α)

2

/a2 = α(a2β/α)/a2 = β .
Fourth, a (or w.l.o.g. b) is invertible. Indeed, α is not a square,

therefore it is non-zero and thus one of a or b must be non-zero.

Then, ac + bd = a(−dba−1) + bd = −db + bd = 0. Finally the ma-

trix product Y · Y ⊺ is
(
a b
c d

) (a c
b d

)
=

(
a2+b2 ac+bd
ac+bd c2+d2

)
=

(
α 0

0 β

)
. □

11

	Abstract
	1 Introduction
	2 Matrix product algorithms encoded by tensors
	2.1 Design of a specific 2x2-matrix product
	2.2 2x2-matrix product by its transpose

	3 Fast 2x2-block recursive syrk
	3.1 Minimality of the number of additions
	3.2 Skew orthogonal matrices
	3.3 Conjugate transpose

	4 Analysis and implementation
	4.1 Complexity bounds
	4.2 Implementation and scheduling

	5 syrk with block diagonal scaling
	5.1 Factoring non-squares within a finite field
	5.2 Antidiagonal and antitriangular blocks

	References
	A Appendix
	A.1 Proof of Proposition 3.1
	A.2 Proof of Proposition 3.2
	A.3 Proof of Proposition 3.3
	A.4 Proof of Proposition 3.4
	A.5 Proof of Proposition 3.5
	A.6 Proof of Theorem 4.1
	A.7 Threshold in the theoretical number of operations for dimensions that are a power of two
	A.8 Proof of Algorithm 4

