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Shape optimization of a weighted two-phase Dirichlet

eigenvalue∗

Idriss Mazari† Grégoire Nadin‡ Yannick Privat§ ¶

Abstract

This article is concerned with a spectral optimization problem: in a smooth bounded do-
main Ω, for a bounded function m and a nonnegative parameter α, consider the first eigenvalue
λα(m) of the operator Lm given by Lm(u) = −div ((1 + αm)∇u) −mu. Assuming uniform
pointwise and integral bounds on m, we investigate the issue of minimizing λα(m) with respect
to m. Such a problem is related to the so-called “two phase extremal eigenvalue problem” and
arises naturally, for instance in population dynamics where it is related to the survival ability
of a species in a domain. We prove that unless the domain is a ball, this problem has no
“regular” solution. We then provide a careful analysis in the case of a ball by: (1) character-
izing the solution among all radially symmetric resources distributions, with the help of a new
method involving a homogenized version of the problem; (2) proving in a more general setting
a stability result for the centered distribution of resources with the help of a monotonicity
principle for second order shape derivatives which significantly simplifies the analysis.

Keywords: shape derivatives, drifted Laplacian, bang-bang functions, spectral optimization, ho-
mogenization, reaction-diffusion equations.
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1 Introduction and main results

In recent decades, much attention has been paid to extremal problems involving eigenvalues, and
in particular to shape optimization problems in which the unknown is the domain where the
eigenvalue problem is solved (see e.g. [32, 33] for a survey). The study of these last problems is
motivated by stability issues of vibrating bodies, wave propagation in composite environments, or
also on conductor thermal insulation.

In this article, we are interested in studying a particular extremal eigenvalues problem, involving
a drift term, and which comes from the study of mathematical biology problems; here, we can show
that the problem then boils down to a ”two-phase” type problem, meaning that the differential
operator whose eigenvalues we are trying to optimise has−∇·(A∇) as a principal part, and that A is
an optimisation variable, see Section 1.3. The influence of drift terms on optimal design problems is
not so well understood. Such problems naturally arise for instance when looking for optimal shape
design for two-phase composite materials [24, 40, 51]. We expand on the bibliography in Section 3.1
of this paper, but let us briefly recall that, for composite materials, a possible formulation reads:
given Ω, a bounded connected open subset of IRn and a set of admissible non-negative densities
M in Ω, solve the optimal design problem

inf
m∈M

λ̂α(m) (P̂α)

where λ̂α(m) denotes the first eigenvalue of the elliptic operator

L̂mα : W 1,2
0 (Ω) 3 u 7→ −∇ · ((1 + αm)∇u) .

Restricting the set of admissible densities to bang-bang ones (in other words to functions taking
only two different values) is known to be relevant for the research of structures optimizing the
compliance. We refer to Section 3 for detailed bibliographical comments.
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Mathematically, the main issues regarding Problem (P̂α) concern the existence of optimal den-
sities in M, possibly the existence of optimal bang-bang densities (i.e characteristic functions). In
this case, it is interesting to try to describe minimizers in a qualitative way.

In what follows, we will consider a refined version of Problem (P̂α), where the operator L̂mα is
replaced with

Lαm : W 1,2
0 (Ω) 3 u 7→ −∇ · ((1 + αm)∇u)−mu. (1)

Besides its intrinsic mathematical interest, the issue of minimizing the first eigenvalue of Lαm with
respect to densities m is motivated by a model of population dynamics (see Section 1.3).

Before providing a precise mathematical frame of the questions we raise in what follows, let us
roughly describe the main results and contributions of this article:

• by adapting the methods developed by Murat and Tartar, [51], and Cox and Lipton, [23], we
show that the first eigenvalue of Lαm has no regular minimizer in M unless Ω is a ball;

• if Ω is a ball, denoting by m∗0 a minimizer of L0
m over M (known to be bang-bang and

radially symmetric), we show the following stationarity result: m∗0 still minimizes Lαm over
radially symmetric distributions of M whenever α is small enough and in small dimension
(n = 1, 2, 3). Such a result appears unexpectedly difficult to prove. Our approach is based
on the use of a well chosen path of quasi-minimizers and on a new type of local argument.

• if Ω is a ball, we investigate the local optimality of ball centered distributions among all
distributions and prove a quantitative estimate on the second order shape derivative by using
a new approach relying on a kind of comparison principle for second order shape derivatives.

Precise statements of these results are given in Section 1.2.

1.1 Mathematical setup

Throughout this article, m0, κ are fixed positive parameters. Since in our work we want to extend
the results of [39], let us define the set of admissible functions

Mm0,κ(Ω) =

{
m ∈ L∞(Ω) , 0 6 m 6 κ ,

 
Ω

m = m0

}
,

where
ffl

Ω
m denotes the average value of m (see Section 1.4) and assume that m0 < κ so that

Mm0,κ(Ω) is non-empty. Given α > 0 and m ∈ Mm0,κ(Ω), the operator Lαm is symmetric and
compact. According to the spectral theorem, it is diagonalizable in L2(Ω). In what follows, let
λα(m) be the first eigenvalue for this problem. According to the Krein-Rutman theorem, λα(m) is
simple and its associated L2(Ω)-normalized eigenfunction uα,m has a constant sign, say uα,m > 0.
Let Rα,m be the associated Rayleigh quotient given by

Rα,m : W 1,2
0 (Ω) 3 u 7→

´
Ω

(1 + αm)|∇u|2 −
´

Ω
mu2´

Ω
u2

. (2)

We recall that λα(m) can also be defined through the variational formulation

λα(m) := inf
u∈W 1,2

0 (Ω) ,u 6=0
Rα,m(u) = Rα,m(uα,m). (3)

and that uα,m solves{
−∇ ·

(
(1 + αm)∇uα,m

)
−muα,m = λα(m)uα,m in Ω,

uα,m = 0 on ∂Ω.
(4)
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in a weak W 1,2
0 (Ω) sense. In this article, we address the optimization problem

inf
m∈Mm0,κ(Ω)

λα(m). (Pα)

This problem is a modified version of the standard two-phase problem studied in [51, 23]; we detail
the bibliography associated with this problem in Subsection 3.1. It is notable that it is relevant
in the framework of population dynamics, when looking for optimal resources configurations in a
heterogeneous environment for species survival, see Section 1.3.

1.2 Main results

Before providing the main results of this article, we state a first fundamental property of the
investigated model, reducing in some sense the research of general minimizers to the one of bang-
bang densities. It is notable that, although the set of bang-bang densities is known to be dense
in the set of all densities for the weak-star topology, such a result is not obvious since it rests
upon continuity properties of λα for this topology. We overcome this difficulty by exploiting a
convexity-like property of λα.

Proposition 1 (weak bang-bang property). Let Ω be a bounded connected subset of IRn with a
Lipschitz boundary and let α > 0 be given. For every m ∈ Mm0,κ(Ω), there exists a bang-bang
function m̃ ∈Mm0,κ(Ω) such that

λα(m) > λα(m̃).

Moreover, if m is not bang-bang, then we can choose m̃ so that the previous inequality is strict.

In other words, given any resources distribution m, it is always possible to construct a bang-bang
function m̃ that improves the criterion.

Non-existence for general domains. In a series of paper, [14, 15, 16], Casado-Diaz proved
that the problem of minimizing the first eigenvalue of the operator u 7→ −∇ · (1 + αm)∇u with
respect to m does not have a solution when ∂Ω is connected. His proof relies on a study of the
regularity for this minimization problem, on homogenization and on a Serrin type argument. The
following result is in the same vein, with two differences: it is weaker than his in the sense that it
needs to assume higher regularity of the optimal set, but stronger in the sense that we do not make
any strong assumption on ∂Ω. For further details regarding this literature, we refer to Section 3.1.

Theorem 1. Let Ω be a bounded connected subset of IRn with a Lipschitz connected boundary,
let α > 0 and n > 2. If the optimization problem (Pα) has a solution m̂ ∈ Mm0,κ(Ω), then

this solution writes m̂ = κ1Ê, where Ê is a measurable subset of Ω. Moreover, if ∂Ê is a C 2

hypersurface and if Ω is connected, then Ω is a ball.

The proof of this Theorem relies on methods developed by Murat and Tartar, [51], Cox and
Lipton, [23], and on a Theorem by Serrin [56].

Analysis of optimal configurations in a ball. According to Theorem 1, existence of regular
solutions fail when Ω is not a ball. This suggest to investigate the case Ω = B(0, R), which is the
main goal of what follows.

Let us stress that proving the existence of a minimizer in this setting and characterizing it is
a hard task. Indeed, to underline the difficulty, notice in particular that none of the usual rear-
rangement techniques (the Schwarz rearrangement or the Alvino-Trombetti one, see Section 3.1),
that enable in general to reduce the research of solutions to radially symmetric densities, and thus
to get compactness properties, can be applied here.
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The case of radially symmetric distributions

Here, we assume that Ω denotes the ball B(0, R) with R > 0. We define r∗0 > 0 as the unique
positive real number such that

κ
|B(0, r∗0)|
|B(0, R)|

= V0.

Let
m∗0 = κ1B(0,r∗0 ) = κ1E∗0 (5)

be the centered distribution known to be the unique minimizer of λ0 inMm0,κ(Ω) (see e.g. [39]).
In what follows, we restrict ourselves to the case of radially symmetric resources distributions.

Theorem 2. Let Ω = B(0, R) and let Mrad be the subset of radially symmetric distributions of
Mm0,κ(Ω). The optimization problem

inf
m∈Mrad

λα(m)

has a solution. Furthermore, when n = 1, 2, 3, there exists α∗ > 0 such that, for any α < α∗, there
holds

min
m∈Mrad

λα(m) = λα(m∗0). (6)

The proof of the existence part of the theorem relies on rearrangement techniques that were
first introduced by Alvino and Trombetti in [3] and then refined in [21]. The stationarity result,
i.e the fact that m∗0 is a minimizer among radially symmetric distributions, was proved in the
one-dimensional case in [17]. To extend this result to higher dimensions, we developed an ap-
proach involving a homogenized version of the problem under consideration. The small dimensions
hypothesis is due to a technical reason, which arises when dealing with elliptic regularity for this
equation.

Restricting ourselves to radially symmetric distributions might appear surprising since one
could expect this result to be true without restriction, inMm0,κ(Ω). For instance, a similar result
has been shown in the framework of two-phase eigenvalues [21], as a consequence of the Alvino-
Trombetti rearrangement. Unfortunately, regarding Problem (Pα), no standard rearrangement
technique leads to the conclusion, because of the specific form of the involved Rayleigh quotient.
A first attempt in the investigation of the ball case is then to consider the case of radially symmetric
distributions. It is notable that, even in this case, the proof appears unexpectedly difficult.

Finally, we note that, as a consequence of the methods developed to prove Theorem 2, when a
small amount of resources is available, the centered distribution m∗0 is optimal among all resources
distributions, regardless of radial symmetry assumptions.

Corollary 1. Let Ω = B(0, R) and m∗0 be defined by (5) There exist m > 0, α > 0 such that, if
m0 6 m and α < α, then the unique solution of (Pα) is m∗0 = κ1E∗0 .

Local stability of the ball distribution with respect to Hadamard perturbations of
resources sets

In what follows, we tackle the issue of the local minimality of m∗0 in Mm0,κ(Ω) with the help of a
shape derivative approach. We obtain partial results in dimension n = 2.

Let Ω be a bounded connected domain with a Lipschitz boundary, and consider a bang-bang
function m ∈Mm0,κ(Ω) writing m = κ1E , for a measurable subset E of Ω such that κ|E| = m0|Ω|.
Let us write λα(E) := λα (1E), with a slight abuse of notation. Let us assume that E has a C 2

boundary. Let V : Ω → IRn be a W 3,∞ vector field with compact support, and define for every
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t small enough, Et := (Id +tV )E. For t small enough, φt := Id +tV is a smooth diffeomorphism
from E to Et, and Et is an open connected set with a C 2 boundary. If F : E 7→ F(E) denotes a
shape functional, the first (resp. second) order shape derivative of F at E in the direction V is

F ′(E)[V ] :=
d

dt

∣∣∣∣
t=0

F(Et)

(
resp.

d2

dt2

∣∣∣∣
t=0

F(Et)

)
whenever these quantities exist.

For further details regarding the notion of shape derivative, we refer to [34, Chapter 5].
It is standard to write optimality conditions in terms of a sort of tangent space for the measure

constraint: indeed, since the volume constraint Vol(Et) = m0 Vol(Ω)/κ is imposed, we will deal
with vector fields V satisfying the linearized volume condition

´
E
∇·V = 0. We thus call admissible

at E such vector fields and introduce

X (E) :=

{
V ∈W 3,∞(IRn; IRn) ,

ˆ
E

∇ · V = 0 , ‖V ‖W 3,∞ 6 1

}
. (7)

A shape E ⊂ Ω with a C 2 boundary such that κ|E| = m0|Ω| is said to be critical if

∀V ∈ X (E), λ′α(E)[V ] = 0. (8)

or equivalently, if there exist a Lagrange multiplier Λα such that
(
λ′α − Λα Vol′

)
(E)[V ] = 0 for all

V ∈ W 1,∞(Ω), where Vol : Ω 7→ |Ω| denotes the volume functional. Furthermore, if E is a local
minimizer for Problem (Pα), then one has

∀V ∈ X (E),
(
λ′′α − Λα Vol′′

)
(E)[V, V ] > 0. (9)

In what follows, we will still assume that Ω denotes the ball B(0, R) with R > 0.

Theorem 3. Let us assume that n = 2 and that Ω = B(0, R). The ball E = B(0, r∗0) = B∗ satisfies
the shape optimality conditions (8)-(9). Furthermore, if Λα is the Lagrange multiplier associated
with the volume constraint, there exist two constants α > 0 and C > 0 such that, for any α ∈ [0, α)
and any vector field V ∈ X (B∗), there holds(

λ′′α − Λα Vol′′
)

(B∗)[V, V ] > C‖V · ν‖2L2(S∗).

Remark 1. The proof requires explicit computation of the shape derivative of the eigenfunction.
We note that in [24] such computations are carried out for the two-phase problem and that in [36]
such an approach is undertaken to investigate the stability of certain configurations for a weighted
Neumann eigenvalue problem.

The main contribution of this result is to shed light on a monotonicity principle that enables
one to lead a careful asymptotic analysis of the second order shape derivative of the functional
as α → 0. It is important to note that, although this allows us to deeply analyze the second
order optimality conditions, it is expected that the optimal coercivity norm in the right-hand side
above is expected to be H

1
2 whenever α > 0, which we do not recover with our method. The

reason why we believe that in this context the optimal coercivity norm is H
1
2 is that in [24],

precise computations for the two-phase problem (P̂α) are carried out and a H
1
2 coercivity norm is

obtained for certain classes of parameters. On the other hand, when α = 0, it was shown in [44]
that the optimal coercivity norm is L2, and a quantitative inequality was then derived.

Remark 2. We believe that our strategy of proof may be used to obtain the same kind of coercivity
norm in the three-dimensional case. However, we believe that such a generalization would be non-
trivial and need technicalities. Since the main contribution is to introduce a methodology to study
the positivity of second-order shape derivative, we simply provide a possible strategy to prove
the result in the three dimensional case in the concluding section of the proof of Theorem 3, see
Section 6.5.
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The rest of this article is dedicated to proofs of the results we have just outlined.

1.3 A biological application of the problem

Equation (4) arises naturally when dealing with simple population dynamics in heterogeneous
spaces.

Let ε > 0 be a parameter of the model. We consider a population density whose flux is given
by

Jε = −∇u+ εu∇m.

Since ∇m might not make sense if m is assumed to be only measurable, we temporarily omit this
difficulty by assuming it smooth enough so that the expression above makes sense. The term u∇m
appears as a drift term and stands for a bias in the population movement, modeling a tendency
of the population to disperse along the gradient of resources and hence move to favorable regions.
The parameter ε quantifies the influence of the resources distribution on the movement of the
species. The complete associated reaction diffusion equation, called “logistic diffusive equation”,
reads

∂u

∂t
= ∇ ·

(
∇u− εu∇m

)
+mu− u2 in Ω,

completed with suitable boundary conditions. In what follows, we will focus on Dirichlet boundary
conditions meaning that the boundary of Ω is lethal for the population living inside. Plugging the
change of variable v = e−εmu in this equation leads to

∂v

∂t
= ∆v + ε∇m · ∇u+mv − eεmv in Ω.

It is known (see e.g. [5, 4, 52]) that the asymptotic behavior of this equation is driven by the
principal eigenvalue of the operator L̃ : u 7→ −∆u − ε∇m · ∇u − mu. The associated principal
eigenfunction ψ satisfies

−∇ · (eεm∇ψ)−meεmψ = λ̃εψe
εm in Ω.

Following the approach developed in [39], optimal configurations of resources correspond to the
ones ensuring the fastest convergence to the steady-states of the PDE above, which comes to
minimizing λ̃ε(m) with respect to m.

By using Proposition 1, which enables us to only deal with bang-bang densities m, one shows
easily that minimizing λ̃ε(m) over Mm0,κ(Ω) is equivalent to minimizing λε(m) over Mm0,κ(Ω),
in other words to Problem (Pα) with α = ε. Theorem 1 can thus be interpreted as follows in this
framework: assuming that the population density moves along the gradient of the resources, it is
not possible to lay the resources in an optimal way. Note that the conclusion is completely different
in the case α = 0 (see [39]) or in the one-dimensional case (i.e. Ω = (0, 1)) with α > 0 (see [17]),
where minimizers exist. In the last case, optimal configurations for three kinds boundary conditions
(Dirichlet, Neumann, Robin) have been obtained, by using a new rearrangement technique. Finally,
let us mention the related result [30, Theorem 2.1], dealing with Faber-Krahn type inequalities for
general operators of the form

K : u 7→ −∇ · (A∇u)− V · ∇u−mu

where A is a positive symmetric matrix. Let us denote the first eigenvalue of K by E(A, V,m). It
is shown, by using new rearrangements, that there exist radially symmetric elements A∗, V ∗,m∗

such that

0 < inf A 6 A∗ 6 ‖A‖∞, ‖A−1‖L1 = ‖(A∗)−1‖L1 , ‖V ∗‖L∞ 6 ‖V ‖L∞
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and E(A, V,m) > E(A∗, V ∗,m∗). We note that applying this result directly to our problem
would not allow us to conclude. Indeed, we would get that for every Ω of volume V1 and every
m ∈ Mm0,κ(Ω), if Ω∗ is the ball of volume V1, there exist two radially symmetric functions m1

and m2 satisfying m1, m2 in Mm0,κ(Ω) such that λα(m) > µα(m1,m2), where µα(m1,m2) is the
first eigenvalue of the operator −∇ · ((1 + αm1)∇) −m2. We note that this result could also be
obtained by using the symmetrization techniques of [3].

Finally, let us mention optimal control problems involving a similar model but a different cost
functional, related to:

• the total size of the population for a logistic diffusive equation in [45, 47, 46].

• optimal harvesting of a marine resource, investigated in the series of articles [10, 11, 19].

1.4 Notations and notational conventions, technical properties of the
eigenfunctions

Let us sum up the notations used throughout this article.

• IR+ is the set of non-negative real numbers. IR∗+ is the set of positive real numbers.

• n is a fixed positive integer and Ω is a bounded connected domain in IRn.

• if E denotes a subset of Ω, the notation 1E stands for the characteristic function of E, equal
to 1 in E and 0 elsewhere.

• the notation ‖ ·‖ used without subscript refers to the standard Euclidean norm in IRn. When
referring to the norm of a Banach space X , we write it ‖ · ‖X .

• The average of every f ∈ L1(Ω) is denoted by
ffl

Ω
f := 1

|Ω|
´

Ω
f .

• ν stands for the outward unit normal vector on ∂Ω.

• if m(·) is a given function in L∞(Ω) and α a positive real number, we will use the notation
σα,m to denote the function 1 + αm. When there is no ambiguity, we sometimes use the
notation σα to alleviate notations.

• If E denotes a subset of Ω with C 2 boundary, we will use the notations

f |int(y) = lim
x∈E,x→y

f(x) and f |ext(y) := lim
x∈(Ω\E),x→y

f(y)

so that JfK = f |ext − f |int denotes the jump of f at x ∈ ∂E.

2 Preliminaries

2.1 Switching function

To derive optimality conditions for Problem (Pα), we introduce the tangent cone to Mm0,κ(Ω) at
any point of this set.

Definition 1. ([34, chapter 7]) For every m ∈Mm0,κ(Ω), the tangent cone to the setMm0,κ(Ω) at
m, also called the admissible cone to the set Mm0,κ(Ω) at m, denoted by Tm is the set of functions
h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a
sequence of functions hn ∈ L∞(Ω) converging to h as n → +∞, and m + εnhn ∈ Mm0,κ(Ω) for
every n ∈ IN.
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Notice that, as a consequence of this definition, any h ∈ Tm satisfies
ffl

Ω
h = 0.

Lemma 1. Let m ∈ Mm0,κ(Ω) and h ∈ Tm. The mapping Mm0,κ(Ω) 3 m 7→ uα,m is twice

differentiable at m in direction h in a strong L2(Ω) sense and in a weak W 1,2
0 (Ω) sense, and the

mapping Mm0,κ(Ω) 3 m 7→ λα is twice differentiable in a strong L2(Ω) sense.

The proof of this lemma is technical and is postponed to Appendix A.
For t small enough, let us introduce the mapping gh : t 7→ λα ([m+ th]). Hence, gh is twice

differentiable. The first and second order derivatives of λα at m in direction h, denoted by λ̇α(m)[h]
and λ̈α(m)[h], are defined by

λ̇α(m)[h] := g′h(0) and λ̈α(m)[h] := g′′h(0).

Lemma 2. Let m ∈ Mm0,κ(Ω) and h ∈ Tm. The mapping m 7→ λα(m) is differentiable at m in
direction h in L2 and its differential reads

λ̇α(m)[h] =

ˆ
Ω

hψα,m, with ψα,m := α|∇uα,m|2 − u2
α,m. (10)

The function ψα,m is called switching function.

Proof. According to Lemma 1, we can differentiate the variational formulation associated to (4)
and get that the differential u̇α,m[h] of m 7→ uα,m at m in direction h satisfies, with σα := 1 +αm,

−∇ ·
(
σα∇u̇α,m[h]

)
− α∇ ·

(
h∇uα,m

)
= λ̇α(m)[h]uα,m + λα(m)u̇α,m[h]

+mu̇α,m[h] + huα,m in Ω,
u̇α,m[h] = 0 on ∂Ω,´

Ω
uα,mu̇α,m[h] = 0.

(11)

Multiplying (11) by uα,m, integrating by parts and using that uα,m is normalized in L2(Ω) leads
to

λ̇α(m)[h] =

ˆ
Ω

σα∇u̇α,m[h] · ∇uα,m − λα(m)

ˆ
Ω

uα,mu̇α,m[h]−
ˆ

Ω

muα,mu̇α,m[h]︸ ︷︷ ︸
=0 according to (4)

+

ˆ
Ω

αh|∇uα,m|2 −
ˆ

Ω

hu2
α,m.

2.2 Proof of Proposition 1

The proof relies on concavity properties of the functional λα. More precisely, let m1,m2 ∈
Mm0,κ(Ω). We will show that the map f : [0, 1] 3 t 7→ λα ((1− t)m1 + tm2) is strictly concave, i.e
that f ′′ < 0 on [0, 1].

Note that the characterization of the concavity in terms of second order derivatives makes
sense, according to Lemma 1, since λα is twice differentiable. Before showing this concavity
property, let us first explain why it implies the conclusion of Proposition 1 (the weak bang-bang
property). Suppose that m ∈ Mm0,κ(Ω) is not bang-bang. The set I = {0 < m < κ} is then
of positive Lebesgue measure and m is therefore not extremal in Mm0,κ(Ω), according to [34,
Prop. 7.2.14]. We then infer the existence of t ∈ (0, 1) as well as two distinct elements m1 and m2

ofMm0,κ(Ω) such that m = (1− t)m1 + tm2. Because of the strict concavity of λα, the solution of
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the optimization problem min{λα((1− t)m1 + tm2)} is either m1 or m2, and moreover, m cannot
solve this problem. Assume that m1 solves this problem without loss of generality. One thus has
λα(m1) < λα(m). Since the subset of bang-bang functions of Mm0,κ(Ω) is dense in Mm0,κ(Ω)
for the weak-star topology of L∞(Ω), there exists a sequence of bang-bang functions (mk)k∈IN of
Mm0,κ(Ω) converging weakly-star to m1 in L∞(Ω). Furthermore, λα is upper semicontinuous for
the weak-star topology of L∞(Ω), since it reads as the infimum of continuous linear functionals for
this topology. Let ε > 0. We infer the existence of kε ∈ IN such that λα(mkε) 6 λα(m1) + ε. By
choosing ε small enough, we get that λα(mkε) < λα(m), whence the result.

It now remains to prove that f is strictly concave. Let m ∈ Mm0,κ(Ω), and set m1 = m,

h = m2 −m1, we observe that f ′′(t) = λ̈α((1 − t)m1 + tm2)[h] for all t ∈ [0, 1]. The differential
u̇α,m[h] of m 7→ uα,m at m in direction h, denoted u̇α,m[h], satisfies (11) and the second order

Gateaux derivatives üα,m[h] and λ̈α(m)[h] solve, with σα := 1 + αm,
−∇ ·

(
σα∇üα,m[h]

)
− 2α∇ ·

(
h∇u̇α,m[h]

)
= λ̈α(m)[h]uα,m + 2λ̇α(m)[h]u̇α,m[h]

+λα(m)üα,m[h] +müα,m[h] + 2hu̇α,m[h] in Ω,
üα,m[h] = 0 on ∂Ω.

(12)
Multiplying (12) by uα,m, using that uα,m is normalized in L2(Ω) and integrating by parts yields

λ̈α(m)[h] =

ˆ
Ω

σα∇üα,m[h] · ∇uα,m − λα(m)

ˆ
Ω

uα,müα,m[h]−
ˆ

Ω

muα,müα,m[h]︸ ︷︷ ︸
=0 according to (4)

+ 2α

ˆ
Ω

h∇u̇α,m[h],∇uα,m − 2

ˆ
Ω

huα,mu̇α,m[h]

= 2

(
−
ˆ

Ω

σα|∇u̇α,m[h]|2 +

ˆ
Ω

mu̇α,m[h]
2

+ λα(m)

ˆ
Ω

u̇α,m[h]
2

)
+ 2 λ̇α(m)[h]

ˆ
Ω

uα,mu̇α,m[h]︸ ︷︷ ︸
=0 since

´
Ω
uα,mu̇α,m[h] = 0

= 2

ˆ
Ω

u̇α,m[h]
2

(−Rα,m[u̇α,m[h]] + λα(m)) < 0,

where the last inequality comes from the observation that, whenever h 6= 0, one has u̇α,m[h] 6= 0
and u̇α,m[h] is in the orthogonal space to the first eigenfunction uα,m in L2(Ω). Since the first
eigenvalue is simple, the Rayleigh quotient of u̇α,m[h] is greater than λα(m).

3 Proof of Theorem 1

This proof is based on a homogenization argument, inspired from the notions and techniques
introduced in [51]. In the next section, we gather the preliminary tools and material involved in
what follows.

3.1 Background material on homogenization and bibliographical com-
ments

Let us recall several usual definitions and results in homogenization theory we will need hereafter.

Definition 2 (H-convergence). Let (mk)k∈IN ∈ Mm0,κ(Ω)IN and for every k ∈ IN, define respec-
tively σk and uk(f) by σk = 1 + αmk and as the unique solution of{

−∇ · (σk∇uk(f)) = f in Ω
uk(f) = 0 on ∂Ω
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where f ∈ L2(Ω) is given. We say that the sequence (σk)k∈IN H-converges to A : Ω → Mn(IR) if,
for every f ∈ L2(Ω), the sequence (uk(f))k∈IN converges weakly to u∞ in W 1,2

0 (Ω) and the sequence
(σk∇uk)k∈IN converges weakly to A∇u∞ in L2(Ω), where u∞ solves{

−∇ · (A∇u∞) = f in Ω ,
u∞ = 0 on ∂Ω

In that case, we will write σk
H−→

k→∞
A.

Definition 3 (arithmetic and geometric means). Let m ∈Mm0,κ(Ω) and σ = 1 +αm. We define
the arithmetic mean of σ by Λ+(m) = σ, and its harmonic mean by Λ−(m) = 1+ακ

1+α(κ−m) . One has

Λ−(m) 6 Λ+(m), according to the arithmetic-harmonic inequality, with equality if and only if m
is a bang-bang function.

Proposition. [51, Proposition 10] Let (mk)k∈IN ∈ Mm0,κ(Ω)IN and (σk)k∈IN given by σk =
1 + αmk. Up to a subsequence, there exists m ∈ Mm0,κ(Ω) such that (mk)k∈IN ∈ Mm0,κ(Ω)IN

converges to m for the weak-star topology of L∞.
Assume moreover that the sequence (σk)k∈IN H-converges to a matrix A. Then, A is a sym-

metric matrix, its spectrum Σ(A) = {λ1, . . . , λn} is real, and

Λ−(m) 6 min Σ(A) 6 max Σ(A) 6 Λ+(m). (J1)

n∑
j=1

1

λj − 1
6

1

Λ−(m)− 1
+

n− 1

Λ+(m)− 1
, (J2)

n∑
j=1

1

1 + ακ− λj
6

1

1 + ακ− Λ−(m)
+

n− 1

1 + ακ− Λ+(m)
. (J3)

For a given m ∈Mm0,κ(Ω), we introduce

Mα
m = {A : Ω→ Sn(IR) , A satisfies (J1)-(J2)-(J3)}.

For a matrix-valued application A ∈ Mα
m for some m ∈ Mm0,κ(Ω), it is possible to define the

principal eigenvalue of A via Rayleigh quotients as

ζα(m,A) := inf
u∈W 1,2

0 (Ω) ,
´
Ω
u2=1

ˆ
Ω

A∇u · ∇u−
ˆ

Ω

mu2. (13)

Note that the dependence of ζα on the parameter α is implicitly contained in the condition A ∈Mα
m.

We henceforth focus on the following relaxed version of the optimization problem:

inf
m∈Mm0,κ

(Ω) ,A∈Mα
m

ζα(m,A). (14)

for which we have the following result.

Theorem. [51, Proposition 10]

(i) For every m ∈ Mm0,κ(Ω) and A ∈ Mα
m, there exists a sequence (mk)k∈IN ∈ Mm0,κ(Ω) such

that (mk)k∈IN converges to m for the weak-star topology of L∞, and the sequence (σk)k∈IN
defined by σk = 1 + αmk H-converges to A, as k → +∞.

(ii) The mapping (m,A) 7→ λα(m,A) is continuous with respect to the H-convergence (see in
particular [54]).
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(iii) The variational problem (14) has a solution (m̂, Â); by definition, Â ∈Mα
m̂. Furthermore, if

û is the associated eigenfunction, then Â∇û = Λ−(m̂)∇û.

This theorem allows us to solve Problem (14).

Corollary 2. [51] If Problem (Pα) has a solution m̂, then the couple (m̂, 1 + αm̂) solves Prob-
lem (14).

Proof of Corollary 2. Assume that the solution of (14) is (m̂, Â) and that Â 6= 1 + αm̂. Then
there exists a sequence (mk)k∈IN converging weak-star in L∞ to m̂ and such that the sequence
(1 + αmk)k∈IN H-converges to Â. This means that

λα(m̂) = ζα(m̂, 1 + αm̂) > ζα(m̂, Â) = lim
k→∞

λα(mk)

which immediately yields a contradiction.

Let us end this section with several bibliographical comments on such problems.

Bibliographical comments on the two-phase conductors problem. Problem (P̂α) with
M := Mm0,κ(Ω) has drawn a lot of attention in the last decades, since the seminal works by
Murat and Tartar, [50, 51] Roughly speaking, this optimal design problem is, in general, ill-posed
and one needs to introduce a relaxed formulation to get existence. We refer to [1, 23, 51, 54].

Let us provide the main lines strategy to investigate existence issues for Problem (P̂α), according
to [50, 51]. If the solution (m̂, 1 + αm̂) to the relaxed problem (14) is a solution to the original
problem (P̂α), then there exists a measurable subset Ê of Ω such that m̂ = κ1Ê . If furthermore

Ê is assumed to be smooth enough, then, denoting by û the principal eigenfunction associated
with (m̂, λα(m)) = (m̂, ζα(m̂, 1 + αm̂)), we get that û and (1 + αm̂)∂û∂ν must be constant on ∂Ê.
The function 1 + αm̂ being discontinuous across ∂E, the optimality condition above has to be
understood in the following sense: the function (1 + αm̂)∂û∂ν , a priori discontinuous, is in fact
continuous across ∂E and even constant on it. Note that these arguments have been generalized
in [23]. These optimality conditions, combined with Serrin’s Theorem [56], suggest that Problem
(P̂α) could have a solution if, and only if Ω is a ball. The best results known to date are the
following ones.

Theorem. (i) Let Ω be an open set such that ∂Ω is C 2 and connected. Problem (P̂α) has a
solution if and only if Ω is a ball [16].

(ii) If Ω is a ball, then Problem (P̂α) has a solution which is moreover radially symmetric [21].

Regarding the second part of the theorem, the authors used a particular rearrangement coming
to replace 1+αm by its harmonic mean on each level-set of the eigenfunction. Such a rearrangement
has been first introduced by Alvino and Trombetti [3]. This drives the author to reduce the
class of admissible functions to radially symmetric ones, which allow them to conclude thanks
to a compactness argument [2]. These arguments are mimicked to derive the existence part of
Theorem 2.

Finally, let us mention [20, 40], where the optimality of annular configurations in the ball is
investigated. A complete picture of the situation is then depicted in the case where α is small,
which is often referred to as the ”low contrast regime”. We also mention [24] , where a shape
derivative approach is undertaken to characterize minimizers when Ω is a ball.
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3.2 Proof of Theorem 1

Let us assume the existence of a solution to Problem (Pα), denoted m̂. According to Proposition 1,
there exists a measurable subset Ê of Ω such that m̂ = κ1Ê . Let us introduce σ̂ := 1 +αm̂ and û,
the L2-normalized eigenfunction associated to m̂.

Let us now assume that ∂Ê is C 2.

Step 1: derivation of optimality conditions. What follows is an adaptation of [23]. For this
reason, we only recall the main lines. Let us write the optimality condition for the problem

min
m∈Mm0,κ

(Ω)
min
A∈Mα

m

ζα(m,A) = λα(m̂),

where ζα is given by (13). Let h be an admissible perturbation at m̂. In [51] it is is proved that
for every ε > 0 small enough, there exists a matrix-valued application Aε ∈Mm̂+εh such that

Aε∇û = Λ−(m̂+ εh)∇û in Ω,

where Λ− has been introduced in Definition 3. Fix ε as above. Since (m̂, 1 + αm̂) is a solution of
the Problem (14), one has

ˆ
Ω

Aε∇û · ∇û−
ˆ

Ω

(m+ εh)û2 > ζα(m+ εh,Aε)

> ζα(m̂, 1 + αm̂) =

ˆ
Ω

σ̂|∇û|2 −
ˆ

Ω

m̂ û2.

where one used the Rayleigh quotient definition of ζα as well as the minimality of (m̂, 1 + αm̂).
Dividing the last inequality by ε and passing to the limit yields

ˆ
Ω

h
dΛ−(m)

dm

∣∣∣∣
m=m̂

|∇û|2 − hû2 > 0.

Using that dΛ−/dm = αΛ−(m)2/(1+ακ), and that m̂ is a bang-bang function (so that Λ−(m̂) = σ̂),
we infer that the first order optimality conditions read: there exists µ ∈ IR such that

{Ψα < µ} ⊂ Ê ⊂ {Ψα 6 µ} where Ψα :=
α

1 + ακ
σ̂2|∇û|2 − û2. (15)

Since the flux σ̂ ∂û∂ν is continuous across ∂Ê, one has necessarily Ψα = µ on ∂Ê\∂Ω.
Now, let us follow the approach used in [51] and [16] to simplify the writing of the optimality

conditions. Notice first that û and σ̂2
∣∣∣ ∂û∂νÊ ∣∣∣2 are continuous across ∂Ê. Let ∇τ û denote the

tangential gradient of û on ∂Ê. For the sake of clarity, the quantities computed on ∂Ê seen as the
boundary of Ê will be denoted with the subscript int, whereas the ones computed on ∂Ê seen as
part of the boundary of Êc will be denoted with the subscript ext. According to the optimality
conditions (15), one has

α

1 + ακ
σ̂2 |∇τ û|2 +

α

1 + ακ
σ̂2

(
∂û

∂ν

)2

− û2

∣∣∣∣∣
int

6
α

1 + ακ
σ̂2 |∇τ û|2 +

α

1 + ακ
σ̂2

(
∂û

∂ν

)2

− û2

∣∣∣∣∣
ext

on ∂Ê\∂Ω. By continuity of the flux σ̂ ∂û∂ν , we infer that ασ̂2 |∇τ û|2
∣∣∣
int

6 ασ̂2 |∇τ û|2
∣∣∣
ext

which

comes to (1 + ακ) |∇τ û|2
∣∣∣
int

6 |∇τ û|2
∣∣∣
ext

. Since |∇τ û|2
∣∣∣
int

= |∇τ û|2
∣∣∣
ext

, we have ∇τ û|∂Ê = 0.
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Therefore, û is constant on ∂Ê\∂Ω and since Ψα is constant on ∂Ê\∂Ω, it follows that
∣∣∂û
∂ν

∣∣2
int

is

constant as well on ∂Ê\∂Ω.
To sum up, the first order necessary conditions drive to the following condition:

The functions û and |∇û| are constant on ∂Ê\∂Ω. (16)

Step 2: proof that Ω is necessarily a ball. To prove that Ω is a ball, we will use Serrin’s
Theorem, that we recall hereafter.

Theorem. [56, Theorem 2] Let E be a connected domain with a C 2 boundary, h a C 1(IR; IR)
function and let f ∈ C 2

(
E
)

be a function satisfying

−∆f = h(f) , f > 0 in E , f = 0 on ∂E ,
∂f

∂ν
is constant on ∂E .

Then E is a ball and f is radially symmetric.

According to (16), let us introduce µ̂ = û|∂Ê . One has µ̂ > 0 by using the maximum principle.

Let us set f = û − µ̂, h(z) = (λα(m̂) + κ) z and call E a given connected component of Ê. By
assumption, Ê is a C 2 set, and, according to (16), the function ∂ (û− µ̂) /∂ν is constant on ∂Ê.

The next result allows us to verify the last assumption of Serrin’s theorem.

Lemma 3. There holds û > µ̂ in Ê.

For the sake of clarity, the proof of this lemma is postponed to the end of this section.

Let us now come back to the proof that Ω is necessarily a ball. Take x ∈ ∂Ω. Then x belongs
either to the closure of Ω\Ê or to the closure of Ê. In the first case, there exists a connected
component Γ of ∂

(
Ω\Ê

)
which contains x.

Let us assume by contradiction that this connected component also intersects Ω, then according
to (16), one has û constant on Γ ∩ Ω and according to the Dirichlet boundary conditions, one has
û = 0 on Γ, and hence û reaches its minimal value in the open set Ω. According to the strong
maximum principle, one gets that û(·) = 0, and we have reached a contradiction.

Hence, Γ ⊂ ∂Ω and Γ is connected. Similarly, if x belongs to the closure of Ê, then there exists
a connected component of ∂Ê containing x, which is included in ∂Ω. Hence, ∂Ω is the union of
closed connected components of the boundaries of Ê and Ω\Ê. As ∂Ω is connected by hypothesis,
there only exists one such connected component, that we denote Γ. This implies in particular that
if ∂Ê ∩ ∂Ω 6= ∅, then ∂(Ω\Ê) ∩ ∂Ω = ∅, and conversely, if ∂Êc ∩ ∂Ω 6= ∅, then ∂Ê ∩ ∂Ω = ∅.

Assume first that the closure of Ω\Ê meets ∂Ω. As Ê does not intersect ∂Ω in this case, one
has û and |∇û| constant over the whole boundary of Ê by (16) and thus Serrin’s theorem applies:
any connected component of Ê is a ball and û is radially symmetric over it. We can hence fix a
ball B(x0; a1) ⊂ Ê such that û is radially symmetric in it.

Let us now consider the largest ball B(x0; a) ⊂ Ω such that û is radially symmetric in B(x0; a).
If ∂B(x0; a) ∩ ∂Ω 6= ∅, then û = 0 on ∂B(x0; a) which, by the maximum principle, implies that
Ω = B(x0; a). We can hence assume that û > 0 on ∂B(x0; a). Let us define

µa :=
α

1 + ακ
σ̂2|∇û|2 − û2

∣∣∣∣
∂B(x0;a)

.

If µa < µ then by continuity of α
1+ακ σ̂

2|∇û|2−û2, it follows that m = 0 on B(x0; a+δ)\B(x0; a−δ).
Thus, applying the Cauchy-Kovalevskaya theorem to all the tangential derivatives of û yields that
û is radially symmetric in B(x0; a+δ) which is a contradiction with the definition of a. Indeed, the
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same arguments as [39, Proof of Theorem 1, Part 2] would yield that if one writes û(x) = U(r),
with r := |x− x0|, then there exists δ > 0 such that U ′(r) = 0 for all r ∈ [a, a+ δ). Hence u would
remain constant on the annulus {a < |x− x0 < a+ δ}, yielding a contradiction.

The same reasoning yields the same contradiction if µa > µ, in which case m = κ on
B(x0; a + δ)\B(x0; a − δ). Finally, if µa = µ then if follows from Lemma 3 that either m = 0
in B(x0; a)\B(x0; a − δ) and m = κ in B(x0; a + δ)\B(x0; a) or m = κ in B(x0; a)\B(x0; a − δ)
and m = 0 in B(x0; a + δ)\B(x0; a). In both case, one can apply Carleman’s unique continuation
Theorem as done in [16, Proof of Theorem 2.1, Step 3] to conclude that û is radially symmetryc
in B(x0; δ).

In the case where ∂Ê meets ∂Ω, then the boundary of Ω\Ê does not, and we conclude by
using the same reasoning on Ω\Ê instead of Ê, showing that û < µ̂ on Ω\Ê and applying Serrin’s
theorem to µ̂− û.

Proof of Lemma 3. Let us set v = û− µ̂, hence v solves{
−∆v = (λα(m̂) + κ) v + (λα(m̂) + κ) µ̂ in Ê,

v = 0 on ∂Ê.
(17)

and we are led to show that v > 0 in Ê. Let λD(Ω) be the first Dirichlet eigenvalue1 of the Laplace
operator in E. By using the Rayleigh quotient (3) we have

λα(m̂) = min
u∈W 1,2

0 (Ω) ,u 6=0
Rα,m(u) > min

u∈W 1,2
0 (Ω) ,u6=0

1
2

´
Ω
|∇u|2 − κ

´
Ω
u2´

Ω
u2

= λD(Ω)− κ,

so that λα(m̂) +κ > λD(Ω) > 0. Now, since v = 0 on ∂Ê and that Ê is a C 2 open subset of Ω, the
extension ṽ of v by zero outside Ê belongs to W 1,2

0 (Ω). Since (λα(m̂) +κ) and µ̂ are non-negative,
we get

−∆ṽ > (λα(m̂) + κ)ṽ in Ê

Splitting ṽ into its positive and negative parts as ṽ = ṽ+− ṽ− and multiplying the equation by ṽ−
we get after an integration by parts

−
ˆ

Ω

|∇ṽ−|2 = −
ˆ
Ê

|∇ṽ−|2 > −(λα(m̂) + κ)

ˆ
Ê

ṽ2
− = −(λα(m̂) + κ)

ˆ
Ω

ṽ2
−.

Using that λα(m̂) + κ > λD(Ω) > 0, we get

ˆ
Ω

|∇ṽ−|2 6 (λα(m̂) + κ)

ˆ
Ω

ṽ2
− < λD(Ω)

ˆ
Ω

ṽ2
−,

which, combined with the Rayleigh quotient formulation of λD(Ω) yields ṽ− = 0. Hence v is
nonnegative in Ê. Using moreover that (λα(m̂) + κ) > 0 and µ̂ > 0 yields that −∆v > 0 in Ê
Notice that v does not vanish identically in Ê. Indeed, u would otherwise be constant in Ê which
cannot arise because of (4). According to the strong maximum principle, we infer that v > 0 in
Ê.

Remark 3. Following the arguments by Casado-Diaz in [16], it would be possible to weaken the
regularity assumption on E provided that we assume the stronger hypothesis that ∂Ω is simply
connected. Indeed, in that case, assuming that E is only of class C 1 leads to the same conclusion.

1In other words

λD(Ω) = inf
u∈W1,2

0 (Ω) ,
´
Ω u

2=1

ˆ
Ω
|∇u|2 > 0. (18)
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4 Proof of Theorem 2

Throughout this section, Ω will denote the ball B(0, R), which will also be denoted B for the sake
of simplicity. Let r∗0 ∈ (0, R) be chosen in such a way that m∗0 = κ1B(0,r∗0 ) belongs to Mm0,κ(Ω).
Let us introduce the notation E∗0 = B(0, r∗0).

The existence part of Theorem 2 follows from a straightforward adaptation of [21]. In what
follows, we focus on the second part of this theorem, that is, the stationarity of minimizers provided
α is small enough.

4.1 Steps of the proof for the stationarity

We argue by contradiction, assuming that, for any α > 0, there exists a radially symmetric
distribution m̃α such that λα(m̃α) < λα(m∗0). Consider the resulting sequence {m̃α}α>0.

• Step 1: we prove that {m̃α}α→0 converges strongly to m∗0 in L1, as α → 0. Regarding the
associated eigenfunction, we prove that {uα,mα}α>0 converges strongly to u0,m∗0

in C 0 and
that α∇uα,mα converges to 0 in L∞(B), as α→ 0.

• Step 2: by adapting [40, Theorem 3.7], we prove that we can restrict ourselves to considering
bang-bang radially symmetric distributions of resources m̃α = κ1Ẽ such that the Hausdorff

distance dH(Ẽ, E∗0 ) is arbitrarily small.

• Step 3: this is the main innovation of the proof. Introduce hα = m̃α−m∗0, and consider the
path {mt}t∈[0,1] from mα to m∗0 defined by mt = m∗0 + thα. We then consider the mapping

fα : t 7→ ζα(mt,Λ−(mt))

where ζα and Λ−(mt) are respectively given by equation (13) and definition 3. Notice that,
since m∗0 and m̃α are bang-bang, fα(0) = λα(m∗0) and fα(1) = λα(mα) according to Def.
3. Let ut be a L2 normalized eigenfunction associated with (mt,Λ−(mt)), in other words a
solution to the equation −∇ · (Λ−(mt)∇ut) = ζα(mt,Λ−(mt))ut +mtut in B

ut = 0 on ∂B´
B u

2
t = 1.

(19)

According to the proof of the optimality conditions (15), one has

f ′α(t) =

ˆ
B
hα

(
α

1 + ακ
Λ−(mt)

2|∇ut|2 − u2
t

)
.

Applying the mean value theorem yields the existence of t1 ∈ (0, 1) such that λα(m̃α) −
λα(m∗0) = f ′α(t1). This enables us to show that, for t ∈ [0, 1] and α small enough, one has

f ′α(t) > C

ˆ
B
|hα|dist(·,S(0, r∗0))

for some C > 0, giving in turn λα(mα)−λα(m∗0) > C
´
B |hα|dist(·,S(0, r∗0)). (we note that the

same quantity is obtained in [40]. Nevertheless, we obtain it in a more straightforward manner
which bypasses the exact decomposition of eigenfunctions and eigenvalues used there.).

Let us now provide the details of each step.
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4.2 Step 1: convergence of quasi-minimizers and of sequences of eigen-
functions

We first investigate the convergence of quasi-minimizers.

Lemma 4. Let {mα}α>0 be a sequence in Mm0,κ(Ω) such that,

∀α > 0, λα(mα) 6 λα(m∗0). (20)

Then, {mα}α>0 converges strongly to m∗0 in L1(Ω).

Proof of Lemma 4. The sequence (λα(mα))α>0 is bounded from above. Indeed, choosing any test
function ψ ∈ W 1,2

0 (Ω) such that
´

Ω
ψ2 = 1, it follows from (3) that λα(mα) 6 (1 + ακ)‖∇ψ‖22 +

κ‖ψ‖22. Similarly, using once again (3), we get that if ξα is the first eigenvalue associated to the
operator −(1 + ακ)∆ − κ, then λα(mα) > ξα. Since (ξα)α>0 converges to the first eigenvalue
of −∆ − κ as α → 0, (ξα)α>0 is bounded from below whenever α is small enough. Combining
these facts yields that the sequence (λα(mα))α>0 is bounded by some positive constant M and
converges, up to a subfamily, to λ̃. For any α > 0, let us denote by uα the associated L2-
normalized eigenfunction associated to λα(mα). From the weak formulation of equation (4) and
the normalization condition

´
Ω
u2
α = 1, we infer that

‖∇uα‖22 =

ˆ
Ω

|∇uα|2 6
ˆ

Ω

(1 + αm)|∇uα|2 =

ˆ
Ω

mαu
2
α + λα(mα)

ˆ
Ω

u2
α 6 (M + κ).

According to the Poincaré inequality and the Rellich-Kondrachov Theorem, the sequence (uα)α>0

is uniformly bounded in W 1,2
0 (Ω) and converges, up to subfamily, to ũ ∈ W 1,2

0 (Ω) weakly in
W 1,2

0 (Ω) and strongly in L2(Ω), and moreover ũ is also normalized in L2(Ω).
Furthermore, since L2 convergence implies pointwise convergence (up to a subfamily), ũ is

necessarily nonnegative in Ω. Let m̃ be a closure point of (mα)α>0 for the weak-star topology
of L∞. Passing to the weak limit in the weak formulation of the equation solved by uα, namely
Eq. (4), one gets

−∆ũ− m̃ũ = λ̃ũ in Ω.

Since ũ > 0 and
´
B(0,R)

ũ2 = 1, it follows that ũ is the principal eigenfunction of −∆− m̃, so that

λ̃ = λ0(m∗0).
Mimicking this reasoning enables us to show in a similar way that, up to a subfamily, (λα(m∗0))α>0

converges to λ0(m∗0) and (uα,m∗0 )α>0 converges to u0,m∗0
as α → 0. Passing to the limit in the in-

equality (20) and since m∗0 is the only minimizer of λ0 inMm0,κ(Ω) according to the Faber-Krahn
inequality, we infer that necessarily, m̃ = m∗0. Moreover, m∗0 being an extreme point ofMm0,κ(Ω),
the subfamily (mα)α>0 converges to m̃ = m∗0 (see [34, Proposition 2.2.1]), strongly in L1(Ω).

A straightforward adaptation of the proof of Lemma 4 yields that both sets {λα(m)}m∈Mm0,κ(Ω)

and {‖uα,m‖W 1,2(Ω)}m∈Mm0,κ
(Ω) are uniformly bounded whenever α 6 1. Let us hence introduce

M0 > 0 such that
∀α ∈ [0, 1], max{|λα(m)|, ‖uα,m‖W 1,2

0 (Ω)} 6M0. (21)

The next result is the only ingredient of the proof of Theorem 2 where the low dimension
assumption on n is needed.

Lemma 5. Let us assume that n = 1, 2, 3. There exists M1 > 0 such that, for every radially
symmetric distribution m ∈Mm0,κ(Ω) and every α ∈ [0, 1], there holds

‖uα,m‖W 1,∞(B) 6M1.

17



Furthermore, define σ̃α,m, m̃ and ϕα,m : (0, R)→ IR by

∀x ∈ B, uα,m(x) = ϕα,m (|x|) , σα,m(x) = σ̃α,m(|x|), m(x) = m̃(|x|),

then σ̃α,m(ϕα,m)′ belongs to W 1,∞(0, R).

Proof of Lemma 5. This proof is inspired by [40, Proof of Theorem 3.3]. It is standard that for
every α ∈ [0, 1] and every radially symmetric distribution m ∈ Mm0,κ(Ω), the eigenfunction uα,m
is itself radially symmetric. By rewriting the equation (4) on uα,m in spherical coordinates, on sees
that ϕα,m solves{

− d
dr

(
rn−1σ̃α,m

d
drϕα,m

)
= (λα(m)ϕα,m + m̃ϕα,m) rn−1 in (0, R)

ϕα,m(R) = 0.
(22)

By applying the Hardy Inequality2 to f = ϕα,m, we get

ˆ R

0

ϕ2
α,m(r) dr 6 4

ˆ R

0

r2ϕ′α,m(r)2 dr

6 4R2

ˆ R

0

( r

R2

)n−1

ϕ′α,m(r)2dr = 4R4−2n‖∇uα,m‖2L2(B) 6M,

since n ∈ {1, 2, 3}. Hence, there exists C > 0 such that

‖ϕα,m‖2L2(0,R) 6 C. (23)

We will successively prove that ϕα,m is uniformly bounded in W 1,2
0 (0, R), then in L∞(0, R) to

infer that ϕ′α,m is bounded in L∞(0, R). This proves in particular that σα,mϕ
′
α,m ∈ L∞(0, R). We

will then conclude that σα,mϕ
′
α,m ∈ W 1,∞(0, R) by using that it is a continuous function whose

derivative is uniformly bounded in L∞ by the equation on ϕα,m.

According to (21), one sees that ‖r n−1
2 ϕ′α,m‖L2(0,R) = ‖∇uα,m‖L2(B) is bounded and therefore,

rn−1ϕ′α,m(r) converges to 0 as r → 0. If n = 1, such a convergence holds since ϕ′α,m(0) = 0 by
radial symmetry. Hence, integrating Eq. (22) between 0 and r > 0 yields

σ̃α,m(r)ϕ′α,m(r) = − 1

rn−1

ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt.

By using the Cauchy-Schwarz inequality and (23), we get the existence of M̃ > 0 such that

‖ϕ′α,m‖2L2(0,R) 6
ˆ 1

0

(
σ̃α,mϕ

′
α,m

)2
(r) dr

=

ˆ 1

0

1

r2(n−1)

(ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt

)2

dr

6
ˆ 1

0

1

r2(n−1)
(λα(m) + κ)2‖ϕα,m‖2L2(0,R)‖t 7→ tn−1‖2L2(0,r) dr

6
M̃

4n− 2
‖ϕα,m‖2L2(0,R) 6 M̃‖ϕα,m‖2L2(0,R) 6 M̃C,

2This inequality reads (see e.g. [55, Lemma 1.3] or [31]): for any non-negative f ,ˆ ∞
0

f(x)2dx 6 4

ˆ ∞
0

x2f ′(x)2dx.
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Hence, ϕα,m is uniformly bounded in W 1,2
0 (0, R).

It follows from standard Sobolev embedding’s theorems that there exists a constant M2 > 0,
such that ‖ϕα,m‖L∞(0,R) 6M2.

Finally, plugging this estimate in the equality

σ̃α,m(r)ϕ′α,m(r) = − 1

rn−1

ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt

and since tn−1 6 rn−1 on (0, r), we get that ϕ′α,m is uniformly bounded in L∞(0, R).

The next lemma is a direct corollary of Lemma 4, Lemma 5 and the Arzela-Ascoli Theorem.

Lemma 6. Let (mα)α>0 be a sequence of radially symmetric functions of Mm0,κ(Ω) such that,
for every α ∈ [0, 1], λα(mα) 6 λα(m∗0). Then, up to a subfamily, uα,mα converges to u0,m∗0

for the

strong topology of C 0(Ω) as α→ 0.

4.3 Step 2: reduction to particular resource distributions close to m∗0

Let us consider a sequence of radially symmetric distributions (mα)α>0 such that, for every α ∈
[0, 1], λα(mα) 6 λα(m∗0). According to Proposition 1, we can assume that each mα is a bang-bang,
in other words that mα = κ1Eα where Eα is a measurable subset of B(0, R). For every α ∈ [0, 1],
one introduces dα = dH(Eα, E

∗
0 ), the Hausdorff distance of Eα to E∗0 .

Lemma 7. For every ε > 0 small enough, there exists α > 0 such that, for every α ∈ [0, α], there
exists a radially symmetric measurable subset Ẽα of Ω such that

λα(κ1Eα) > λα(κ1Ẽα), |Eα| = |Ẽα| and dH(Ẽα, E
∗
0 ) 6 ε.

Proof of Lemma 7. Let α ∈ [0, 1]. Observe first that λα(m) =
´
B |∇uα,m|

2 + α
´
Bm|∇uα,m|

2 −´
Bmu

2
α,m =

´
B |∇uα,m|

2 +
´
Bmψα,m, where ψα,m has been introduced in Lemma 2. We will first

construct m̃α in such a way that

λα(mα) >
ˆ
B
|∇uα,mα |2 +

ˆ
Ω

ψα,mαm̃α > λα(m̃α),

and, to this aim, we will define m̃α as a suitable level set of ψα,mα . Thus, we will evaluate
the Hausdorff distance of these level sets to E∗0 . The main difficulty here rests upon the lack of
regularity of the switching function ψα,mα , which is not even continuous (see Figure (4.3)).

According to Lemmas 5 and 6, ψα,mα converges to −u2
0,m∗0

for the strong topology of L∞(B).

Recall that m∗0 = κ1B(0,r∗0 ) and let V0 be defined by V0 = |B(0, r∗0)|. Let us define µ∗α by dichotomy,
as the only real number such that

|ωα| 6 V0 6 |ωα|,

where ωα = {ψα,mα < µ∗α} and ωα = {ψα,mα 6 µ∗α}.
Since

∣∣∣{ψ0,m∗0
< −ϕ2

0,m∗0
(r∗0)}

∣∣∣ = V0, we deduce that (µ∗α) converges to −ϕ2
0,m∗0

(r∗0) as α → 0.

Since ϕ0,m∗0
is decreasing, we infer that for any ε > 0 small enough, there exists α > 0 such that:

for every α ∈ [0, α], B(0, r∗0 − ε) ⊂ ωα ⊂ ωα ⊂ B(0, r∗0 + ε). Therefore, there exists a radially
symmetric set Bαε such that

ωα ⊂ Bαε ⊂ ωα, |Bαε | = V0, dH(Bαε , E
∗
0 ) 6 ε.
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Since Eα and Bαε have the same measure, one has |(Eα)c ∩ Bαε | = |Eα ∩ (Bαε )c|, we introduce
m̃α = κ1Bαε so that m̃α belongs to Mm0,κ(Ω).

Figure 1: Possible graph of the discontinuous function ψα,mα . The bold intervals on the x axis
correspond to {mα = 0}.

By construction, one has

λα(mα) =

ˆ
B
(1 + αmα)|∇uα,mα |2 −

ˆ
B
mαu

2
α,m =

ˆ
B
|∇uα,mα |2 +

ˆ
B
ψα,mαmα

=

ˆ
B
|∇uα,mα |2 + κ

ˆ
Eα

ψα,mα =

ˆ
B
|∇uα,mα |2 + κ

ˆ
Eα∩(Bαε )c

ψα,mα + κ

ˆ
Eα∩Bαε

ψα,mα

>
ˆ
B
|∇uα,mα |2 + κµ∗α|Eα ∩ (Bαε )c|+ κ

ˆ
Eα∩Bαε

ψα,mα

=

ˆ
B
|∇uα,mα |2 + κµ∗α|(Eα)c ∩Bαε |+ κ

ˆ
Eα∩Bαε

ψα,mα

>
ˆ
B
|∇uα,mα |2 + κ

ˆ
(Eα)c∩Bαε

ψα,mα + κ

ˆ
Eα∩Bαε

ψα,mα =

ˆ
B
|∇uα,mα |2 +

ˆ
B
m̃αψα,mα

=

ˆ
B
σα,m̃α |∇uα,mα |2 −

ˆ
B
m̃αu

2
α,m > λα(m̃α),

the last inequality coming from the variational formulation (3). The expected conclusion thus
follows by taking Ẽα := Bαε .

From now on we will replace mα by κ1Ẽα and still denote this function by mα with a slight
abuse of notation.

4.4 Step 3: conclusion, by the mean value theorem

Recall that, according to Section 4.1, for every α ∈ [0, 1], the mapping fα is defined by fα(t) :=
ζα(mt,Λ−(mt)) for all t ∈ [0, 1] We claim that fα belongs to C 1. This follows from similar
arguments to those of the L2 differentiability of m 7→ λα(m) in Appendix A. Following the proof
of (15), it is also straightforward that for every t ∈ [0, 1], one has

f ′α(t) =

ˆ
B

(
α

1 + ακ
Λ−(mt)

2|∇ut|2 − u2
t

)
hα. (24)
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Finally, since m∗0 and mα are bang-bang, it follows from Definition 3 that fα(0) = λα(m∗0) and
fα(1) = λα(mα).

Since mα is assumed to be radially symmetric, so is mt for every t ∈ [0, 1] thanks to a standard
reasoning, and, therefore, so is ut. With a slight abuse of notation, we identify mt, ut and Λ−(mt)
with their radially symmetric part m̃t, ũt, Λ̃−(mt) defined on [0, R] by

ut(x) = ũt(|x|), mt(x) = m̃t(|x|), Λ−(mt)(x) = Λ̃−(m̃t)(|x|).

Then the function ut (defined on [0, R]) solves the equation
− d
dr

(
rn−1Λ−(mt)

dut
dr

)
= (ζα(mt,Λ−(mt))ut +mtut) r

n−1 r ∈ [0, R]
ut(R) = 0´ R

0
rn−1ut(r)

2dr = 1
cn
,

(25)

where cn = |S(0, 1)|. As a consequence, an immediate adaptation of the proof of Lemma 5 yields:

Lemma 8. There exists M > 0 such that

max
{
‖ut‖W 1,∞ ,

∥∥∥Λ−(mt)u
′
t

∥∥∥
W 1,∞

}
6M.

Furthermore, Λ−(mt)u
′
t converges to u′0,m∗0 in L∞(0, R) and uniformly with respect to t ∈ [0, 1], as

α→ 0.

According to the mean value theorem, there exists t1 = t1(α) ∈ [0, 1] such that

λα(mα)− λα(m∗0) = fα(1)− fα(0) = f ′α(t1)

and by using Eq. (24), one has

f ′α(t1) =

ˆ
B

(
α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1

)
hα,

where hα = mα −m∗0. Let us introduce I±α as the two subsets of [0, R] given by I±α = {hα = ±1}.
Let ε > 0. According to Lemma 7, we have, for α small enough, I+

α ⊂ [r∗0 , r
∗
0 + ε] and I−α ⊂

[r∗0 − ε; r∗0 ]. Finally, let us introduce

F1 :=
α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1 .

According to Lemma 8, F1 belongs to W 1,∞ and F1 +u2
α,m∗0

converges to 0 as α→ 0, for the strong

topology of W 1,∞(0, R). Moreover, there exists M > 0 independent of α such that for ε > 0 small
enough,

−M 6 2uα,m∗0
duα,m∗0
dr

6 −M in [r∗0 − ε; r∗0 + ε]

and it follows that
M

2
6
dF1

dr
6 2M in [r∗0 − ε; r∗0 + ε]

for α small enough. Hence, since F1 is Lipschitz continuous and thus absolutely continuous, one
has for every y ∈ [0, ε],

F1(r∗0 + y) = F1(r∗0) +

ˆ r∗0+y

r∗0

F′1(s) ds > F1(r∗0) +
M

2
y

21



and F1(r∗0 − y) = F1(r∗0) +

ˆ r∗0

r∗0−y
(−F′1(s)) ds 6 F1(r∗0)− M

2
y.

Since hα 6 0 in [r∗0 − ε; r∗0 ] and hα > 0 in [r∗0 , r
∗
0 + ε], we have

hα(r∗0 + y)F1(r∗0 + y) > hα(r∗0 + y)F1(r∗) +
|hα|(r∗0 + y)M

2
y

and hα(r∗0 − y)F1(r∗0 − y) > hα(r∗0 − y)F1(r∗) +
|hα|(r∗0 − y)M

2
y.

for every y ∈ [0, ε]. Hence, using that
´
B hα = 0, we infer that

f ′α(t1) =

ˆ
B

(
α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1

)
hα = cn

ˆ R

0

hα(s)F1(s)sn−1 ds

= cn

(ˆ r∗0

r∗0−ε
hαF1(s)sn−1ds+

ˆ r∗0+ε

r∗0

hαF1(s)sn−1 ds

)

> cn

(ˆ r∗0

r∗0−ε
hα(s)F1(r∗)sn−1ds+

ˆ r∗0+ε

r∗0

hα(s)F1(r∗)sn−1 ds

)

+
cnM

2

(ˆ r∗0

r∗0−ε
|hα|(s)|r∗0 − s|sn−1ds+

ˆ r∗0+ε

r∗0

|hα|(s)|r∗0 − s|sn−1 ds

)

=
cnM

2

ˆ
B
|hα|dist(·,S(0, r∗0)),

which concludes Step 3. Theorem 2 is thus proved.

Remark 4. Regarding the proof of Theorem 2, it would have been more natural to consider the
path t 7→ (λα(mt),mt) rather than t 7→ (ζα(mt,Λ−(mt)),mt). However, we would have been
led to consider G1 = ακ|∇uα,mt1 |

2 − u2
α,mt1

instead of F1. Unfortunately, this would have been

more intricate because of the regularity of G1, which is discontinuous and thus, no longer a W 1,∞

function, so that a Lemma analogous to Lemma 8 would not be true. Adapting step by step the
arguments of [40] would nevertheless be possible although much more technical.

5 Sketch of the proof of Corollary 1

We do not give all details since the proof is then very similar to the ones written previously. We
only underline the slight differences in every step.

To prove this result, we consider the following relaxation of our problem, which is reminiscent
of the problems considered in [30]. Let us consider, for any pair (m1,m2) ∈ Mm0,κ(Ω)2, the first
eigenvalue of the operator N : u 7→ −∇ · ((1 + αm1)∇u) − m2u, and write it ηα(m1,m2). Let
m∗0 := κ1B(0,R). By using the results of [30] or alternatively, applying the rearrangement of Alvino
and Trombetti, [3] as it has been done in [21], one proves the existence of a radially symmetric
function m̃1 such that

ηα(m1,m2) > ηα(m̃1,m
∗
0),

so that we are done if we can prove that, for any m ∈M(Ω) there holds

ηα(m,m∗0) > ηα(m∗0,m
∗
0). (26)

We claim that (26) holds for any m ∈ Mm0,κ, provided that m0 and α be small enough. Let us
describe the main steps of the proof:
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• Step 1: mimicking the compactness argument used in [21], one shows that there exists a
solution mα to the problem

inf
m∈Mm0,κ

(Ω)
ηα(m,m∗0),

which is radially symmetric and bang-bang. We write it mα = κ1Eα .

• Step 2: let µ0 and r∗0 be the unique real numbers such that∣∣{|∇u0,m∗0
|2 6 µ0

}∣∣ = V0 = |B(0, r∗0)|.

Introducing E0 =
{
|∇u0,m∗0

|2 6 µ0

}
, we prove that mα converges in L1(Ω) to κ1E0

as α→ 0.

• Step 3: we establish that if m0 is small enough, then E0 = B(0, r∗0). This is done by proving
that u0,m∗0

converges in C 1 to the first Dirichlet eigenfunction of the ball as r∗0 → 0 and by
determining the level-sets of this first eigenfunction, as done in [20, Section 2.2].

• Step 4: once this limit identified, we mimick the steps of the proof of Theorem 2 (reduction
to a small Hausdorff distance and mean value theorem for a well-chosen auxiliary function)
to conclude that one necessarily has mα = m∗0 for α small enough.

6 Proof of Theorem 3

Throughout this section, we will denote by B∗ the ball B(0, r∗0), where r∗0 is chosen so that m∗0 =
κ1B∗ belongs to Mm0,κ(Ω).

When it makes sense, we will write f |int(y) = limx∈B∗,x→y f(x), f |ext(y) := limx∈(B∗)c,x→y f(y),
so that JfK = f |ext − f |int denotes the jump of f at the boundary S(0, r∗0).

6.1 Preliminaries

For ε > 0, let us introduce B∗ε := (Id +εV )B∗ and define uε as the L2-normalized first eigenfunction
associated with mε = κ1B∗ε .

It is well known (see e.g. [32, 34]) that uε expands as

uε = u0,α + εu1,α + ε2u2,α

2
+ o
ε→0

(ε2) in H1(B∗) and in H1(Ω\B∗), (27)

where, in particular, u0,α = uα,m∗0 , whereas λα(B∗ε) expands as

λα(B∗ε) = λ0,α + ελ′α(B∗)[V ] +
ε2

2
λ′′α(B∗)[V ] + o

ε→0
(ε2)

= λ0,α + ελ1,α +
ε2

2
λ2,α + o

ε→0
(ε2). (28)

By mimicking the proof of Lemma 5, one shows the following symmetry result.

Lemma 9. The function uα,m∗0 is radially symmetric. Let ϕα,m∗0 , m̃ and σ̃α,m̃ be such that
uα,m∗0 = ϕα,m∗0 (| · |), m∗0 = m̃(| · |) and σ̃α,m̃ = 1 + αm̃. Then ϕα,m∗0 satisfies the ODE{

− d
dr

(
rn−1σ̃α,m̃ϕ

′
α,m∗0

)
= (λα(m∗0) + m̃)ϕα,m∗0r

n−1 in (0, R)

ϕα,m∗0 (R) = 0
(29)

complemented by the following jump conditions

Jϕα,m∗0 K(r∗0) = Jσ̃α,m∗0ϕ
′
α,m∗0

K(r∗0) = 0, Jσ̃α,m̃ϕ′′α,m∗0 K(r∗0) = κϕα,m∗0 (r∗0). (30)

Furthermore, ϕα,m∗0 converges to ϕ0,m∗0
for the strong topology of C 1 as α→ 0.
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6.2 Computation of the first and second order shape derivatives

A remark on the type of vector fields we consider Hadamard’s structure theorem (see for
instance [34, Theorem 5.9.2 and the remark below]) ensures that the first order derivative in the
direction of a vector field V only depends on the normal trace of V . This allows us to work with
only normal vector fields V to compute the first order derivative.

Once it is established that B∗ is a critical shape, we can use Hadamard’s structure theorem [34,
Theorem 5.9.2 and the remark below] which states that the second order shape derivative, when
computed at a critical shape only depends on the normal trace, hence we will also, for second order
shape derivatives, work with normal vector fields.

Since we are working in two dimensions, this means that one can deal with vector fields V given
in polar coordinates by

V (r∗0 , θ) = g(θ)

(
cos θ
sin θ

)
.

The proof of the shape differentiability at the first and second order of λα, based on an implicit
function argument according to the method of [49], is exactly similar to [24, Proof of Theorem
2.2]. For this reason, we admit it. Nevertheless, in what follows, we provide some details on the
computation of these derivatives for the sake of completeness, since some steps differ a bit from
those done in the references above.

Computation and analysis of the first order shape derivative. Let us prove that B∗ is a
critical shape in the sense of (8).

Lemma 10. The first order shape derivative of λα at B∗ in direction V reads

λ1,α = λ′α(B∗)[V ] =

ˆ
S(0,r∗0 )

V · ν. (31)

For all V ∈ X (B∗) (defined by (7)), one has λ1,α = 0 meaning that B∗ satisfies (8).

Proof of Lemma 10. First, elementary computations show that u1,α solves
−∇ ·

(
σα∇u1,α

)
= λ1,αu0,α + λ0,αu1,α +m∗0u1,α in B(0, R),

r
σα

∂u1,α

∂ν

z
(r∗0 cos θ, r∗0 sin θ) = −κg(θ)u0,α,

Ju1,αK (r∗0 cos θ, r∗0 sin θ) = −g(θ)
r
∂u0,α

∂r

z
(r∗0 cos θ, r∗0 sin θ),

(32)

where σα = 1 + αm∗0 and the notation J·K denote the jumps of the functions at S(0, r∗0). The
derivation of the main equation of (32) is an adaptation of the computations in [24]. To derive
the jump on u1,α, we follow [24] and differentiate the continuity equation JuεK∂B∗ε = 0. Formally
plugging (27) in this equation yields

u1,α|int(r∗0 , θ) + g(θ)
∂u0,α

∂r

∣∣∣∣
int

= u1,α|ext(r∗0 , θ) + g(θ)
∂u0,α

∂r

∣∣∣∣
ext

,

and hence

Ju1,αK = u1,α|ext − u1,α|int = −g(θ)

s
∂u0,α

∂r

{
.

Note that the same goes for the normal derivative: we differentiate the continuity equation
s

(1 + αmε)
∂uε,α
∂ν

{

∂B∗ε
= 0,
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yielding s
σα
∂u1,α

∂r

{
= −g(θ)

s
σα
∂2u0,α

∂r2

{
.

According to the equation −σα∆u0,α = λα(m∗0)u0,α +m∗0u0,α in B∗, this rewrites

s
σα
∂u1,α

∂r

{
= −κg(θ)u0,α. (33)

Now, using u0,α as a test function in (32), we get

λ1,α = −
ˆ
B(0,R)

u0,α∇ · (σα∇u1,α)−
ˆ
B(0,R)

m∗0u1,αu0,α

= −
ˆ
B(0,R)

u0,α∇ · (σα∇u1,α) +

ˆ
B(0,R)

u1,α∇ · (σαu0,α)

=

ˆ
S(0,r∗0 )

u0,α

s
σα
∂u1,α

∂ν

{
−
ˆ
S(0,r∗0 )

s
σα
∂u0,α

∂r
u1,α

{

= −r∗0
ˆ 2π

0

κg(θ)u0,α(r∗0)2 dθ + r∗0

ˆ 2π

0

g(θ)

(
σα
∂u0,α

∂r

)s
∂u0,α

∂r

{
dθ

= r∗0

ˆ 2π

0

g(θ)

(
−κu0,α(r∗0)2 +

t

σα

(
∂u0,α

∂r

)2
|)

dθ.

by using that
´
B(0,R)

u2
ε = 1, so that

´
B(0,R)

u0,αu1,α = 0 by differentiation.

Since u0,α is radially symmetric according to Lemma 9, we introduce the two real numbers

ηα := −κu0,α(r∗0)2 +

t

σα

(
∂u0,α

∂r

)2
|

and λ1,α := r∗0ηα

ˆ 2π

0

g(θ) dθ. (34)

It is easy to see that V belongs to X (B∗) if, and only if
´ 2π

0
g = 0 so that we finally have

λ1,α = 0.

Computation of the Lagrange multiplier. The existence of a Lagrange multiplier Λα ∈ IR
related to the volume constraint Vol(E) = m0 Vol(Ω)/κ is standard, and one has

∀V ∈ X (B∗),
(
λ′α − Λα Vol′

)
(B∗)[V ] = 0.

Since

Vol′(B∗)[V ] =

ˆ
S(0,r∗0 )

V · ν = r∗0

ˆ 2π

0

g(θ)dθ.

(see e.g. [34, chapitre 5]) and since

λ′α(B∗)[V ] = r∗0ηα

ˆ 2π

0

g(θ)dθ,

where ηα is defined by (34), the Lagrange multiplier reads

Λα = ηα = −κu0,α(r∗0)2 +

t

σα

(
∂u0,α

∂r

)2
|

.
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Computation of the second order derivative and second order optimality conditions.
Let us compute the second order derivative of λα. By using the Hadamard structure Theorem
(see [34, Theorem 5.9.2 and the following remark]), since B∗ is a critical shape in the sense of (8),
it is not restrictive to deal with vector fields that are normal to the ∂B∗ = S∗, according to the
so-called structure theorem which provides the generic structure of second order shape derivatives.
This allow us to identify any such V ∈ X (B∗) with a periodic function g : [0, 2π]→ IR such that

V (r∗0 cos θ, r∗0 sin θ) = g(θ)

(
cos θ
sin θ

)
.

Lemma 11. For every V ∈ X (B∗), one has for the coefficient λ2,α = λ′′α(B∗)[V, V ] introduced in
(28) the expression

λ2,α = 2

ˆ
S(0,r∗0 )

σα∂ru1,α|int
s
∂u0,α

∂r

{
V · ν − 2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0

q
σα|∇u0,α|2

y
− κ

r∗0
u2

0,α

)
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

Proof of Lemma 11. In the computations below, we do not need to make the equation satisfied by
u2,α explicit, but we nevertheless will need several times the knowledge of Ju2,αK at S(0, r∗0). In
the same fashion that we obtained the jump conditions on u1,α Let us differentiate two times the
continuity equation JuεK∂B∗ε = 0. We obtain

Ju2,αK∂B∗ε = −2g(θ)

s
∂u1,α

∂r

{
− g(θ)2

s
∂2u0,α

∂r2

{
. (35)

Now, according to Hadamard second variation formula (see [34, Chapitre 5, page 227] for a proof),
if Ω is a C 2 domain and f is two times differentiable at 0 and taking values in W 2,2(Ω), then one
has

d2

dt2

∣∣∣∣
t=0

ˆ
(Id +tV )Ω

f(t) =

ˆ
Ω

f ′′(0) + 2

ˆ
∂Ω

f ′(0)V · ν +

ˆ
∂Ω

(
Hf(0) +

∂f(0)

∂ν

)
(V · ν)2, (36)

where H denotes the mean curvature. We apply it to f(ε) = σα,ε|∇uε|2 −mεu
2
ε on B(0, R), since

λα(mε) =
´
B(0,R)

f(ε). Let us distinguish between the two subdomains B∗ε and (B∗ε)c. We introduce

D1 =
d2

dε2

∣∣∣∣
ε=0

ˆ
B∗ε

(
σα,ε|∇uε|2 − κu2

ε

)
and D2 =

d2

dε2

∣∣∣∣
ε=0

ˆ
(B∗ε)c

(
σα,ε|∇uε|2

)
,

so that λ′′α(B∗)[V, V ] = D1 +D2.
One has

D1 =

ˆ
B∗

2(1 + ακ)∇u2,α · ∇u1,α + 2

ˆ
B∗ε

(1 + ακ)|∇u1,α|2

−2κ

ˆ
B∗
u2,αu0,α − 2κ

ˆ
B∗
u1,αu0,α

+4

ˆ
S(0,r∗0 )

(1 + ακ)(∇u1,α|int · ∇u0,α|int)V · ν − 4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
1

r∗0
(1 + ακ)|∇u0,α|2int −

κ

r∗
u2

0,α + 2(1 + ακ)
∂u0,α

∂r

∣∣∣∣
int

∂2u0,α

∂r2

∣∣∣∣
int
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−2κu0,α
∂u0,α

∂r

∣∣∣∣
int

)
(V · ν)2,

and taking into account that the mean curvature has a sign on (B∗ε)c, one has

D2 =

ˆ
(B∗)c

2∇u2,α · ∇u1,α + 2

ˆ
(B∗)c

|∇u1,α|2

−4

ˆ
S(0,r∗0 )

(∇u1,α|ext · ∇u0,α|ext)V · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0
|∇u0,α|2ext − 2

∂u0,α

∂r

∣∣∣∣
ext

∂2u0,α

∂r2

∣∣∣∣
ext

)
(V · ν)2.

Summing these two quantities, we get

λ2,α = 2

ˆ
B(0,R)

σα∇u0,α · ∇u2,α − 2

ˆ
B(0,R)

m∗0u0,αu2,α + 2

ˆ
B(0,R)

σα|∇u1,α|2 − 2

ˆ
B(0,R)

m∗0u
2
1,α

−4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂u1,α

∂r

{
V · ν − 4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0

q
σα|∇u0,α|2

y
− κ

r∗0
u2

0,α

)
(V · ν)2

−2

ˆ
S(0,r∗0 )

s
σα
∂u0,α

∂r

∂2u0,α

∂r2

{
(V · ν)2 − 2κu0,α

∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

To simplify this expression, let us use Eq. (30). Introducing

D3 =

ˆ
B(0,R)

σα∇u0,α · ∇u2,α −
ˆ
B(0,R)

u0,αu2,α − λα(B∗)
ˆ
B(0,R)

u0,αu2,α,

one has

D3 =

ˆ
S(0,r∗0 )

Ju2,αKσα
∂u0,α

∂r
,

and hence, by using Equation (35), one has

D3 = −2

ˆ
S(0,r∗0 )

Ju2,αKσα
∂u0,α

∂r

= 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂u1,α

∂r

{
V · ν + 2

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂2u0,α

∂r2

{
(V · ν)2.

Similarly, let

D4 =

ˆ
B(0,R)

σα|∇u1,α|2 −
ˆ
B(0,R)

m∗0u
2
1,α.

By using Eq. (32) and the fact that λ1,α = 0, one has

D4 = λα(B∗)
ˆ
B(0,R)

u2
1,α −

ˆ
S(0,r∗0 )

s
u1,ασα

∂u1,α

∂r

{

= λα(B∗)
ˆ
B(0,R)

u2
1,α −

ˆ
S(0,r∗0 )

Ju1,αK
(
σα
∂u1,α

∂r

)∣∣∣∣
ext

−
ˆ
S(0,r∗0 )

u1,α|int
s
σα
∂u1,α

∂r

{
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= λα(B∗)
ˆ
B(0,R)

u2
1,α +

ˆ
S(0,r∗0 )

(
σα∂ru1,α|ext

s
∂u0,α

∂r

{
+ κu1,α|intu0,α

)
V · ν.

Finally, by differentiating the normalization condition
´
B(0,R)

u2
ε = 1, we get

ˆ
B(0,R)

u0,αu2,α +

ˆ
B(0,R)

u2
1,α = 0. (37)

Combining the equalities above, one gets

λ2,α = 2λα(B∗)

(ˆ
B(0,R)

u0,αu2,α +

ˆ
B(0,R)

u2
1,α

)
+ 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂u1,α

∂r

{
V · ν

+2

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂2u0,α

∂r2

{
(V · ν)2 + 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
s
∂u0,α

∂r

{
V · ν

+2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν − 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

s
∂u1,α

∂r

{
V · ν

−4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν −
ˆ
S(0,r∗0 )

(
1

r∗0

q
σα|∇u0,α|2

y
+
κ

r∗0
u2

0,α

)
(V · ν)2

−2

ˆ
S(0,r∗0 )

[
σα
∂u0,α

∂r

∂2u0,α

∂r2

]
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

= 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
s
∂u0,α

∂r

{
V · ν − 2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

−
ˆ
S(0,r∗0 )

(
1

r∗0

[
σα|∇u0,α|2

]
+
κ

r∗0
u2

0,α

)
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

We have then obtained the desired expression.

Strong stability. Recall here that, as mentioned before, since we are dealing with a critical
point of the functional λα, it is enough to consider perturbation V normal to the boundary of B∗,
in other words such that V = (V · ν)ν. Under such an assumption, the second derivative of the
volume is known to be (see e.g. [34, Section 5.9.6])

Vol′′(B∗)[V, V ] =

ˆ
S(0,r∗0 )

H(V · ν)2. (38)

Hence, introducing D5 = (λ′′α − ηα Vol′′)(B∗)[V, V ] and taking into account Lemma 11, (34) and
(38), we have

D5 = 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
s
∂u0,α

∂r

{
V · ν − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

−2κ

ˆ
S(0,r∗0 )

u1,α|extu0,αV · ν +

ˆ
S(0,r∗0 )

(
− 1

r∗0

[
σα|∇u0,α|2

]
− κ

r∗0
u2

0,α

)
(V · ν)2

+κ

ˆ
S(0,r∗0 )

1

r∗0
u2

0,α(V · ν)2 −
ˆ
S(0,r∗0 )

1

r∗0

[
σα|∇u0,α|2

]
(V · ν)2

= 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
s
∂u0,α

∂r

{
V · ν − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2
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−2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν −
ˆ
S(0,r∗0 )

2

r∗0

[
σα|∇u0,α|2

]
(V · ν)2.

We are then led to determine the signature of the quadratic form

Fα[V, V ] =
1

2
(λ′′α − Λα Vol′′)(B∗)[V, V ] (39)

=

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
s
∂u0,α

∂r

{
V · ν − κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 2

r∗
q
σα|∇u0,α|2

y)
(V · ν)2 −

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

6.3 Analysis of the quadratic form Fα
Separation of variables and first simplification. Each perturbation g ∈ L2(0, 2π) such that´ 2π

0
g = 0 expands as

g =

∞∑
k=1

(γk cos(k·) + βk sin(k·)) , with γ0 = 0.

For every k ∈ IN∗, let us introduce gk := cos(k·) and g̃k := sin(k·). For any k ∈ IN∗, let u
(k)
1,α be the

solution of Eq. (32) associated with the perturbation gk. It is readily checked that there exists a
function ϕk,α : [0, R]→ IR such that

∀(r, θ) ∈ [0, R]× [0, 2π], u
(k)
1,α(r, θ) = gk(θ)zk,α(r).

Furthermore, ϕk,α solves the ODE
−σαz′′k,α −

σα
r z
′
k,α(r) =

(
λ0,α − k2

r2

)
zk,α +m∗0zk,α in (0, r∗0) ∪ (r∗0 , R),

r
σαz

′
k,α

z
(r∗0) = −κu0,α(r∗0)

Jzk,αK (r∗0) = −
r
∂u0,α

∂r

z
(r∗0),

z′k,α(0) = zk,α(R) = 0.

(40)

Regarding g̃k, if we define ũ
(k)
1,α in a similar fashion, it is readily checked that

∀(r, θ) ∈ [0, R]× [0, 2π] , ũ
(k)
1,α(r, θ) = g̃k(θ)zk,α(r).

Therefore, any admissible perturbation g writes

g =
∞∑
k=1

{γkgk + βkg̃k} with γ0 = 0,

and the solution u1,α associated with g writes

u1,α =

∞∑
k=1

{
γku

(k)
1,α + βkũ

(k)
1,α

}
.

Using the orthogonality properties of the family {gk}k∈IN∗∪{g̃k}k∈IN, it follows that Fα[V, V ] given
by (39) reads

Fα[V, V ] =
r∗0
2

∞∑
k=1

(
σαz

′
k,α(r∗0)|ext

s
∂u0,α

∂r

{
− κzk,α|intu0,α(r∗0)

)(
γ2
k + β2

k

)
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−r
∗
0

2

∞∑
k=0

κu0,α(r∗0)
∂u0,α

∂r
(r∗0)

(
γ2
k + β2

k

)
−
∞∑
k=1

2
q
σα|∇u0,α|2

y (
γ2
k + β2

k

)
=

r∗0κu0,α(r∗0)

2

∞∑
k=1

(
− ∂u0,α

∂r
(r∗0)

∣∣∣∣
int

− zk,α|int
)(

γ2
k + β2

k

)
+

∞∑
k=1

(
−2
[
σα|∇u0,α|2

]
+ σαz

′
k,α(r∗0)|ext

s
∂u0,α

∂r

{)(
γ2
k + β2

k

)
. (41)

Define, for any k ∈ IN,

ωk,α :=
r∗0κu0,α(r∗0)

2

(
−∂u0,α

∂r
(r∗0)

∣∣∣∣
int

− zk,α|int(r∗0)

)
and

ζk,α := −2
q
σα|∇u0,α|2

y
+ σαz

′
k,α(r∗0)|ext

s
∂u0,α

∂r

{
.

Thus,

Fα[V, V ] =

∞∑
k=1

(ωk,α + ζk,α)
(
γ2
k + β2

k

)
.

The end of the proof is devoted to proving the local shape minimality of the centered ball, which
relies on an asymptotic analysis of the sequences {ωk,α}k∈IN and {ζk,α}k∈IN as α converges to 0.

Proposition 2. There exists C > 0 and α > 0, there exists M ∈ IR such that for any α 6 α and
any k ∈ IN, one has

ωk,α > C > 0, and ζk,α > −Mα. (42)

The last claim of Theorem 3 is then an easy consequence of this proposition. The rest of the
proof is devoted to the proof of Proposition 2, which follows from the combination of the following
series of lemmas.

Lemma 12. There exists α > 0 such that, for every α ∈ [0, α], z1,α is nonnegative on (0, R).

Proof of Lemma 12. For the sake of notational simplicity, we temporarily drop the dependence on
α and denote z1,α by zα. The function zα solves the ODE

−σαz′′α − σα
r z
′
α(r) =

(
λ0,α − 1

r2

)
zα +m∗zα in (0, r∗0) ∪ (r∗0 , R),

Jσαz′αK (r∗0) = −κu0,α(r∗0)

JzαK (r∗0) = −
r
∂u0,α

∂r

z
(r∗0),

zα(R) = 0.

Let us introduce pα = zα/u0,α. One checks easily that pα solves the ODE

−σαp′′α −
σα
r
p′α = − 1

r2
pα − 2p′α

u′0,α
u0,α

in (0, R).

Furthermore, pα satisfies the jump conditions

JpαK(r∗0) = −J∂ru0,αK (r∗0)

u0,α(r∗0)
=
−ακ∂ru0,α|int

u0,α(r∗0)
> 0 and Jσαp′αK(r∗0) = −κ+

σα∂ru0,α

u0,α(r∗0)2

s
∂u0,α

∂r

{
.
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To show that zα is nonnegative, we argue by contradiction and consider first the case where a
negative minimum is reached at an interior point r− 6= r∗0 . Then, pα is C 2 in a neighborhood of
r− and we have

0 > −p′′α(r−) = −pα(r−)

σαr2
−

> 0,

whence the contradiction.
To exclude the case r− = R, let us notice that, according to L’Hospital’s rule, one has pα(R) =

z′α(R)/u′0,α(R). According to the Hopf lemma applied to u0,α, this quotient is well-defined. If
pα(R) < 0 then it follows that z′α(R) > 0. However, one has p′α(r) ∼ z′α(r)/(2u0,α(r)) > 0 as
r → R, which contradicts the fact that a minimum is reached at R.

Let us finally exclude the case where r− = r∗0 . Mimicking the elliptic regularity arguments used
in the proofs of Lemmas 5 and 6, we get that pα converges to p0 as α→ 0 for the strong topologies
of C 0([0, r∗0 ]) and C 0([r∗0 , R]).

To conclude, it suffices hence to prove that p0 is positive in a neighborhood of r∗0 . We once again
argue by contradiction and assume that p0 reaches a negative minimum at r− ∈ [0, R]. Notice that
r− 6= r∗0 since Jp0K(r∗0) = 0 and Jp′0K(r∗0) = −κ < 0.

If r− ∈ (0, R), since r− 6= r∗0 , we claim that p0 is C 2 in a neighborhood of r− and, if p0(r−) < 0,
the contradiction follows from

0 > −p′′0(r−) = −p0(r−)

(r−)2
> 0.

For the same reason, a negative minimum cannot be reached at r = 0.
If r− = R, we observe that p0(R) = z′0(R)/u′0,0(R). According to the Hopf lemma applied

to u0,0, this quantity is well-defined. If p0(R) < 0, then it follows that z′0(R) > 0. However,
p′0(r) ∼ z′0(r)/(2u(r)) > 0 as r → R, which contradicts the fact that R is a minimizer.

Therefore p0 is positive in a neighborhood of r∗0 and we infer that pα is non-negative, so that,
in turn, zα > 0 in [0, R].

Lemma 13. Let α be defined as in Lemma 12. Then, for every α ∈ [0, α] and every k ∈ IN,

zk,α 6 z1,α. (43)

As a consequence, for any α 6 α and any k ∈ IN, there holds ωk,α > ω1,α.

Proof of Lemma 13. Since ωk,α − ω1,α =
r∗0κu0,α(r∗0 )

2 (−zk,α|int(r∗0) + z1,α|int(r∗0)), and since we

further have
r∗0κu0,α(r∗0 )

2 > 0, the fact that ωk,α > ω1,α will follow from (43), on which we now
focus. Let us set Ψk = z1,α− zk,α. From the jump conditions on z1,α and zk,α, one has JΨkK(r0) =
JσαΨ′kK(r0) = 0. The function Ψk satisfies

−σαΨ′′k − σα
Ψ′k
r

= −
(
λ0,α −

k2

r2

)
zk,α −m∗0zk,α +

(
λ0,α −

1

r2

)
z1,α +m∗0ψ1,α

>

(
λ0,α −

k2

r2

)
zk,α −m∗0zk,α +

(
λ0,α −

k2

r2

)
z1,α +m∗0ψ1,α

>

(
λ0,α −

k2

r2

)
Ψk +m∗0Ψk.

since z1,α > 0, according to Lemma 12. Since Ψk satisfies Dirichlet boundary conditions, Ψk > 0
in (0, R).

Lemma 14. There exists C > 0 such that, for every α ∈ [0, α], where α is introduced on
Lemma (12), one has ω1,α > C.
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Proof of Lemma 14. Let us introduce Ψ = −∂u0,α/∂r − z1,α. Since

ω1,α =
r∗0κu0,α(r∗0)

2
Ψ(r∗0)

and since
r∗0κu0,α(r∗0 )

2 converges, as α→ 0, to
r∗0κu0,0(r∗0 )

2 > 0, it suffices to prove that Ψ(r∗0) > C > 0
for some C when α → 0. According to (29), we have JΨK(r∗0) = JΨ′K(r∗0) = 0. Furthermore,

Ψ(R) = −∂u0,α

∂r (R) > 0 according to the Hopf Lemma and Ψ(0) = 0. Finally, since Ψ solves the
ODE, one has

−1

r
(σαΨ′)′ =

(
λ0,α −

1

r2

)
Ψ +m∗Ψ in (0, R),

it follows that Ψ is positive in (0, R]. Furthermore, Ψ converges to Ψ0 for the strong topology of
C 0([0, R]) and Ψ0 solves the ODE{

− 1
r (Ψ′0)′ =

(
λ0,0 − 1

r2

)
Ψ0 +m∗0Ψ0 in (0, R)

Ψ0(R) = −∂u0,0

∂r (R) > 0.

Hence there exists C > 0 such that, for every α ∈ [0, α], one has Ψ(r∗0) > C > 0.

It remains to prove the second inequality of(42). As a consequence of the convergence result
stated in Lemma 9, one has

q
σα|∇u0,α|2

y
= O(α),

s
∂u0,α

∂r

{
= ακ

∂u0,α

∂r

∣∣∣∣
int

< 0. (44)

It follows that we only need to prove that there exists a constant M > 0 such that, for any
α ∈ [0, α], and any k ∈ IN∗,

M > σαz
′
k,α|ext(r∗0) (45)

so that

ζk,α = O(α) + σαz
′
k,α|ext(r∗0) ακ

∂u0,α

∂r
(r∗0)

∣∣∣∣
int

> O(α)−Mακ

∣∣∣∣ ∂u0,α

∂r
(r∗0)

∣∣∣∣
int

∣∣∣∣
To show the estimate (45), let us distinguish between small and large values of k. To this aim,

we introduce N ∈ IN as he smallest integer such that

λ0,α +m∗0 −
k2

r2
< 0 in (0, R) (46)

for every k > N and α ∈ [0, α]. The existence of such an integer follows immediately from the
convergence of (λ0,α)α>0 to λ0(m∗0) as α→ 0.

First, we will prove that, for every k > N ,

z′k,α(r∗0)|ext < 0 (47)

and that there exists M > 0 such that, for every k 6 N ,

|z′k,α(r∗0)|ext| 6M (48)

which will lead to (45) and thus yield the desired conclusion.
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To show (47), let us argue by contradiction, assuming that z′k,α(r∗0)|ext > 0. Since the jump
Jσαz′k,αK = −κu0,α(r∗0) is negative, it follows that

(1 + ακ)z′k,α(r∗0)|int = z′k,α(r∗0)|ext − Jσαz′k,αK > 0.

By mimicking the reasonings in the proof of Lemma 12, zk,α cannot reach a negative minimum on
(0, r∗0) since (46) holds true. Therefore, since zk,α(0) = 0 and z′k,α(r∗0)|int > 0, one has necessarily

zk,α(r∗0)|int > 0, which in turn gives zk,α(r∗0)|ext > 0 since Jzk,αK = −ακ∂u0,α

∂r > 0.
Furthermore, zk,α(R) = 0. Since zk,α(r∗0)|ext > 0 and z′k,α(r∗0)|ext > 0, it follows that zk,α

reaches a positive maximum at some interior point r1, satisfying hence

0 6 −z′′k,α(r−) =

(
λ0,α +m∗ − k2

r2

)
zk,α(r−) < 0,

leading to a contradiction.

Let us now deal with small values of k, by assuming k 6 N . We will prove that (48) holds true.
To this aim, we will compute zk,α. Let Jk (resp. Yk) be the k-th Bessel function of the first (resp.
the second) kind. One has

zk,α(r) =

{
Ak,αJk(

√
λ0,α+κ
1+ακ

r
R ) if r 6 r∗0 ,

Bk,αJk(
√
λ0,α

r
R ) + Ck,αYk(

√
λ0,α

r
R ) if r∗0 6 r 6 R,

where Xk,α = (Bk,α, Ck,α, Ak,α) solves the linear system

Ak,αXk,α = bα

where

bα =

 0
−κu0,α(r∗0)
− [∂Ru0,α]


and

Ak,α =


Jk
(√
λ0

)
Yk
(√
λ0

)
0√

λ0,αJ
′
k(
√
λ0,α + κ

r∗0
R )

√
λ0,αY

′
k(
√
λ0,α + κ

r∗0
R ) −

√
λ0,α+κ
1+ακ J

′
k(
√

λ0,α+κ
1+ακ

r∗0
R )

Jk(
√
λ0,α

r∗0
R ) Yk(

√
λ0,α

r∗0
R ) −Jk(

√
λ0,α+κ
1+ακ

r∗0
R )

 .

It is easy to check that
‖Ak,α −Ak,0‖ 6Mα

where M only depends3 on N . Hence it is enough to prove that |ψ′k,0(r∗0)| 6 M for some M > 0
depending only on N , which is straightforward since the set of indices is finite. The expected
conclusion follows.

3Indeed, {Jk, Yk}k6N are uniformly bounded in C 2([r∗0/R − ε,R]) for every ε > 0 small enough. Since we
consider a finite number of indices k, there exists δ > 0 (depending only on N) such that

∀k ∈ {0, . . . , N}, det(Ak,α) > δ > 0.

Then, since ‖Xα−X0‖ 6Mα, it follows from the Cramer formula that there exists M (depending only on N) such
that ‖Xk,α −Xk,0‖L∞ 6Mα.
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6.4 Conclusion

From Eq. (42) and Lemma 14, there exists C > 0 and M > 0 such that ωk,α > C > 0 and
ζk,α > −Mα for every α ∈ [0, α] and k ∈ IN, from which we infer that

Fα[V, V ] > (C −Mα)

∞∑
k=1

(
γ2
k + β2

k

)
>
C

2
‖V · ν‖2L2 .

according to Eq. (41).

6.5 Concluding remark: possible extension to higher dimensions

Let us briefly comment on possible extensions of this method to higher dimensions. Indeed, al-
though we do not tackle this issue in this article, we believe that the coercivity norm obtained
in Theorem 3 could also be obtained in the three-dimensional case. Nevertheless, we believe that
such an extension would need tedious and technical computations. Since our objective here was
to introduce a methodology to investigate stability issues for the shape optimization problems we
deal with, we slightly comment on this claim and explain how we believe that our proof can be
adapted to the case d = 3.

Let Ω denote the ball B(0, R) in IR3 and B∗ be the centered three-dimensional ball B(0, R) of
volume m0|Ω|/κ. Let us assume without loss of generality that R = 1, so that ∂B∗ is the euclidean
unit sphere S2.

As a preliminary result, one first has to show that the principal eigenfunction uα,m∗0 is radially
symmetric and that B∗ is a critical shape by the same arguments as in the proof of Theorem 3,
which allows us to compute the Lagrange multiplier Λρ associated to the volume constraint. Let
LΛρ be the associated shape Lagrangian.

For an integer k, we define Hk as the space of spherical harmonics of degree k i.e as the
eigenspace associated with the eigenvalue −k(k+1) of the Laplace-Beltrami operator ∆S2 . Hk has
finite dimension dk, and we furthermore have

L2(S2) =

∞⊕
k=1

Hk.

Let us consider a Hilbert basis {yk,`}`=1,...,dk of Hk.
For an admissible vector field V, one must then expand V ·ν in the basis of spherical harmonics

as

V · ν =

∞∑
k=1

dk∑
`=1

αk,`(V · ν)yk,`. (49)

Then, one has to diagonalise the second-order shape derivative of LΛρ and prove that there
exists a sequence of coefficients {ωk,`,ρ}k∈IN ,06`6dk such that for every V ·ν expanding as (49), the
second order derivative of the shape Lagrangian in direction V reads

L′′Λρ =

∞∑
k=1

dk∑
`=1

(αk,`(V · ν))
2
ωk,`.

We believe this diagonalization can be proved using separation of variables and the orthogonality
properties of the family {yk,`}k∈IN∗,`=1,...,dk .

Using the separation of variables, each coefficient ωk,` can be written in terms of derivatives of
a family of solutions of one dimensional differential equations. The main difference with the proof
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of Theorem 3 comes from the fact that the main part of the ODE is not − 1
r
d
dr (r(1 + αm∗0) ddr )

anymore, but − 1
r2

d
dr (r2(1 + αm∗0) ddr ). The important fact is that maximum principle arguments

may still be used to analyze the diagonalized expression of L′′Λρ and to obtain a uniform bound

from below for the sequence {αk,`}k∈IN∗ ,`=1,...,dk .

A Proof of Lemma 1

We prove hereafter that the mapping m 7→ (uα,m, λα(m)) is twice differentiable (and even C∞)
in the L2 sense, the proof of the differentiability in the weak W 1,2(Ω) sense being similar. Let
m∗ ∈ Mm0,κ(Ω), σα := 1 + αm∗, and (u0, λ0) be the eigenpair associated with m∗. Let h ∈ Tm∗
(see Def. 1). Let m∗h := m∗ + h and σm∗+h := 1 + α(m∗ + h). Let (uh, λh) be the eigenpair
associated with m∗h. Let us introduce the mapping G defined by

G :

{
Tm∗ ×W 1,2

0 (Ω)× IR→W−1,2(Ω)× IR,
(h, v, λ) 7→

(
−∇ · (σm∗+h∇v))− λv −m∗hv,

´
Ω
v2 − 1

)
.

From the definition of the eigenvalue, one has G(0, u0, λ0) = 0. Moreover, G is C∞ in Tm∗ ∩B ×
W 1,2

0 (Ω)× IR, where B is an open ball centered at 0. The differential of G at (0, u0, λ0) reads

Dv,λG(0, u0, λ0)[w, µ] =

(
−∇ · (σα∇w)− µu0 − λ0w −m∗w,

ˆ
Ω

2u0w

)
.

Let us show that this differential is invertible. We will show that, if (z, k) ∈ W−1,2(Ω) × IR,
then there exists a unique pair (w, µ) such that Dv,λG(0, u0, λ0)[w, µ] = (z, k). According to the
Fredholm alternative, one has necessarily µ = −〈z, u0〉L2(Ω) and for this choice of µ, there exists a
solution w1 to the equation

−∇ · (σα∇w)− µu0 − λ0w −m∗w = z in Ω.

Moreover, since λ0 is simple, any other solution is of the form w = w1 + tu0 with t ∈ IR. From the
equation 2

´
Ω
u0w = k, we get t = k/2 −

´
Ω
w1u0. Hence, the pair (w, µ) is uniquely determined.

According to the implicit function theorem, the mapping h 7→ (uh, λh) is C∞ in a neighbourhood
of ~0.
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