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3 ECAM Rennes - Louis de Broglie, 35170 Bruz, France
* Corresponding author: yannick.zoetgnande@univ-rennes1.fr

Abstract

In the context of a localization and tracking application, we devel-
oped a stereo vision system based on cheap low-resolution 80×60 pixels
thermal cameras. We proposed a threefold sub-pixel stereo matching
framework (called ST for Subpixel Thermal): 1) robust features extrac-
tion method based on phase congruency, 2) rough matching of these
features in pixel precision, and 3) refined matching in sub-pixel accu-
racy based on local phase coherence. We performed experiments on
our very low-resolution thermal images (acquired using a stereo sys-
tem we manufactured) as for high-resolution images from a benchmark
dataset. Even if phase congruency computation time is high, it was
able to extract two times more features than state-of-the-art methods
such as ORB or SURF. We proposed a modified version of the phase
correlation applied in the phase congruency feature space for sub-pixel
matching. Using simulated stereo, we investigated how the phase con-
gruency threshold and the sub-image size of sub-pixel matching can
influence the accuracy. We then proved that given our stereo setup
and the resolution of our images, being wrong of 1 pixel leads to a
±500 mm error in the Z position of the point. Finally, we showed that
our method could extract four times more matches than a baseline
method ORB + OpenCV KNN matching on low-resolution images.
Moreover, our matches were more robust. More precisely, when pro-
jecting points of a standing person, ST got a standard deviation of ≈
300 mm when ORB + OpenCV KNN gave more than 1000 mm.

Keywords— Thermal images, Stereo vision, Sub-pixel matching, Robust fea-
ture extraction, Phase correlation, Low-resolution
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1 Introduction

Detection of people is a crucial task in computer vision for security or safety appli-
cations (intrusion detection, pedestrian collision detection, fall detection). In this
context, thermal cameras are often considered because they are robust to illumina-
tion changes, and they ensure the preservation of anonymity [1]. In some of these
applications, the localization and tracking of people in the space is also a crucial
issue. In this case, stereo-vision is often chosen because it produces accurate spatial
information about the tracked people. Some works have already been performed on
thermal stereo-vision based on high-resolution thermal cameras [2, 3], but one of
the obstacles on the democratization of thermal cameras is their cost [4]. Recently,
a few manufacturers proposed very low-cost thermal cameras, e.g., the FLIR Lep-
ton 2 1. The counterpart of these cameras is their low spatial resolution (80 × 60
pixels for the Lepton 2). Such resolution has a direct impact on several steps of
the traditional stereo-vision framework: stereo calibration, information extraction,
information matching between the two views and triangulation. In [5], the authors
proposed a robust low-resolution thermal stereo camera calibration. Matching is
a prior step of 3D vision using a stereo system. The matching can be dense or
sparse. Dense matching works well for textured images; unfortunately, thermal
images are lacking texture. Thus, sparse matching on features extracted from the
images must be considered. But given a thermal image how to characterize
the information it contains?

A feature can be either global or local. Generally, global features are used in
image retrieval, object detection, and classification. They are based on the fact
that humans can easily recognize objects with a single glance [6]. The most com-
mon global features descriptors are Histogram of Oriented Gradient [7, 8], Invariant
moments [9, 10] and Co-occurrence Histograms of Oriented Gradients [11, 12]. The
main drawback of these features is that their extraction is difficult and computation-
ally costly. Unlike global features, local features are easier to extract. The most
common local features methods are Harris corner detector [13], KLT [14], phase
congruency [15, 16], FAST [17] and BRIEF [18]. In the specific context of thermal
images, the features can be sometimes merely extracted by thresholds and template
matching [19], using an improved version of the Harris corner detector [3] or using
the Canny edge detector [20]. However, in [21], the authors compare some features
detectors such as Harris, Canny, Difference-of-Gaussian with the phase congruency.
They prove that, regarding thermal images, phase congruency can extract more
features than the methods as mentioned earlier. But after having extracted
features, how to exploit them in stereo vision?

The idea behind the stereo-vision is to exploit the difference between the two
views, knowing more or less the position of each camera relative to the other
one. Several method families are proposed in the literature for stereo computa-
tion: global methods such as dynamic programming [22], intrinsic curves [23] or
local ones including block matching [24], gradient-based optimization [25] and fea-
tures matching [26]. Among these methods, features matching seems to be the
most adapted to a sparse features situation. If most of the proposed methods have
been developed for visible images, other authors propose an adaptation to thermal
images. In [3], after having extracted Harris corners, the authors perform features
matching by computing correlation within a search window, discarding outliers, and

1https://flir.netx.net/file/asset/19205/original
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regularizing the matched features spatially. In [2, 20], among several variants, the
authors propose a relatively similar framework for pedestrian detection: after hav-
ing extracted features with the Canny edge detector, they perform matching using
cross-correlation and specialized methods adapted to a human silhouette. Features
matching is also important for thermal image analysis in medical applications [27],
[28]. Most of the time, Thermal images are used to analyze the variation of the
temperature of the skin or an organ. So in such a condition, the extracted features
must be very robust. In [29], the authors propose a framework to correct motion ar-
tifact due to body movement when recovering breast images. While the amplitude
of the Fourier transforms gives the pixel intensity, the phase components represent
the spatial information. Given three consecutive frames I1, I3 and I3, they combine
their phase and amplitude to get a final matched image I ′3. The matching is per-
formed using the method described in [30]. In [21], the authors, extract the features
from thermal images using Log-Gabor filters bank and then perform 1D matching
through epipolar lines using the Lades similarity [31] as a matching criterion. So,
processing thermal images using Fourier-based methods is a common way.

All of these works concern thermal images with a reasonable pixel resolution
(over 80 × 60). In [32], the authors state that the computation time of the phase
congruency can be reduced by down-scaling the original from 320×240 to 160×120
and 80× 60, but they have not explored this solution given the induced loss of effi-
ciency. In our specific case of stereovision, the image resolution has a direct impact
on the 3D reconstruction. Indeed being wrong of 1 pixel in a 4× 4 image is not the
same as being wrong of 1 pixel in a 1000× 1000 image. The information matching
between left and right views of the stereo pair is a critical phase, since small errors
at this step may yield significant errors in the 3D localization as demonstrated be-
low. The distance between a 3D point and the stereo system can be determined as
follows [33]:

z =
ε

b/h
(1)

where b is the baseline of the stereo system (distance between the two cameras),
ε the disparity function and h the distance between the scene and the camera
system. Deriving 1, we have:

dz =
dε

b/h
(2)

The error dε on the disparity has a direct impact on the precision in z, especially
when b/h is small. The influence of the baseline on the depth precision has been well
studied in the literature. In [34], the authors empirically show that to determine
the distance of a point accurately, the latter must not be further away more than
(10 − 15) × baseline. Moreover, in [35], the authors stated that using their stereo
setup, a disparity error larger than 0.1 pixels will result in a relative distance error
of 2.5% for an object located at 60 meters. This is why, most of the time, the
stereo-vision system uses a large baseline [36]. In this application, we chose to use
a small baseline given indoor constraints. Nevertheless, some applications (as our
indoor system) are constrained to use a small baseline. Is it possible to gain in
3D accuracy even in case of small baseline and low image resolution?

Many solutions exist to improve the accuracy of stereo-vision. Among them
we have super-resolution [37] and sub-pixel matching [38]. Considering sub-pixel
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matching, we must first define the disparity map, which ”refers to the apparent
pixel difference or motion between a pair of a stereo image” [39]. In the classical
methods, the difference is expressed in integer precision. Sub-pixel matching pro-
poses to estimate e in floating precision. There are three main methods of sub-pixel
matching: interpolation, fitting, and phase correlation. In interpolation methods,
the sub-pixel disparity is estimated by searching the extreme of interpolated cost
volume. These methods have two main drawbacks. First, the interpolation of the
cost volume is computationally costly. Second, artifacts can be introduced by the
interpolation even if most of the time, the accuracy is satisfactory [40, 41]. The
fitting methods use disparity plane or cost volume to estimate the sub-pixel dispar-
ity. The methods using disparity plane fitting involve segmentation constraints [42].
The cost volume fitting methods search the extreme of a parabola representing this
cost volume. These methods are fast but not accurate. Unlike these two methods,
phase correlation offers both high efficiency and accuracy. It is performed using
fast Fourier transforms and other supplementary approaches [43]. The phase cor-
relation is the normalized cross-power spectrum, so the matching corresponds to a
peak, which has to be estimated [44] in sub-pixel accuracy. In the state of the art,
all of the methods are performed for visible images. We proposed to compute the
sub-pixel disparity for thermal images using phase correlation. To our knowledge, it
is the first time a sub-pixel matching is performed in such a way in thermal images.

The paper is structured as follows: Section 2 presents our framework ST. It
details the implementation of the features extraction method for thermal images
based on phase congruency, the stereo matching method, and the sub-pixel match-
ing method based on phase correlation. In Section 3, we discuss, analyze, and
explain these results. Finally, section 4 concludes the paper and gives perspectives.

2 Materials and method

2.1 Our stereo system

Our indoor acquisition system is composed of a pair of FLIR’s lepton 2 cameras
(Fig. 1). The horizontal field of view is 51◦ and the diagonal field of view is 63.5◦.
The maximum frame rate is eight frames per second. The baseline is set to 16 mm.

As input images, we had a pair of low-resolution thermal images acquired in
stereo condition Il and Ir. The images are rectified, using the output of a robust
calibration method [5]. The rectification step simplifies the stereo reconstruction
step since that a feature lies now on the same line in Il and Ir. The feature
matching (and so the estimation of the disparity) is reduced to only estimate the
translation δx of the feature between the 2 images along the x direction. We have:
δx = di(x) + dd(x) where di(x) and dd(x) are respectively the integer and the
decimal parts of the disparity.

Our sub-pixel matching framework is composed of three main steps (Fig. 2):
1) robust features extractions method from the low-resolution thermal images, 2)
first rough stereo matching of these features in integer precision (the estimation of
di(x)) and 3) refined sub-pixel matching around the previously matched features
(the estimation of dd(x)).
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Figure 1: The stereo system composed of two lepton 2 cameras placed.

Figure 2: Sub-pixel matching framework: 1) robust features extraction; 2)
rough features matching; 3) refined matching in sub-pixel accuracy.
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2.2 Features extraction

Features extraction was one of the critical points of our framework. Thermal images
are characterized by a lack of texture, noisy, and since the resolution of our images
is low, a robust method is necessary to extract features from such images. Besides
the low-resolution aspect, other characteristics of our images had to be taken into
account. Our cameras are uncooled, and thus, they are influenced by ambient
temperature. The temperature drift is sometimes compensated in the camera by
some corrections which introduce sudden brightness changes. More, this is camera
dependent and is not synchronized, which leads to a time-varying difference in
brightness between the images. For all these reasons, we chose a method based on
phase congruency, which takes into account primitives that are only linked to the
difference of viewpoint between the two cameras.

To extract features, we adapted the phase congruency estimation method pro-
posed by [45] and its variant proposed by [46] to our low-resolution thermal images.
The 1D phase congruency is the ratio [15]:

PhaseCong(x) = max
φ̄

∑
nAn cos(φn(x)− φ̄)∑

nAn
(3)

Where An represents the amplitude or energy of the nth Fourier component
and φn(x) the local phase, which can be calculated using the Hilbert transform.
Unfortunately, this version of the phase congruency was noise sensitive and yielded
inaccurate features localization as proved by [47]. In [48], the authors modified a
bit the equation to circumvent the previous version drawbacks:

PhaseCong2(x) = W (x)
b
∑
nAn [Υn −Ψn]− T c∑

nAn(x)− ε (4)

where Υn =
∣∣cos(φn(x)− ¯φ(x))

∣∣; Ψn = sin(φn(x)− ¯φ(x)), W (x) is the frequency
spread weighting, T is a noise threshold and ε is a small value (eg. 1-e3) to avoid
division by 0.

The equation (4) can be extended to the two-dimensional image domain by
applying it on several orientations θ after filtering the image by a bank of Log-
Gabor filters. To reduce the computation cost due to the number of orientations
and scales of the Log-Gabor filters bank, we implemented the variant proposed
by [46] using a monogenic filter instead of Log-Gabor. The monogenic signal is a
Riesz transform concatenated with a 2D signal. This was possible by constructing
a monogenic filter in the frequency domain [46].

As results of the 2D extension, we get a set of PC(θ), the phase congruency at
orientation θ. The features are then estimated by combining all the PC(θ). This
is done by computing the following values [48]:

a =
∑

(PC(θ)cos(θ))2 (5)

b = 2
∑

(PC(θ)cos(θ))(PC(θ)sin(θ)) (6)

c =
∑

(PC(θ)sin(θ))2 (7)

Combining a, b and c gives a hint of the strength of the feature. More precisely,
the maximum moment M and the minimum moment m can be estimated by:
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M =
1

2
(c+ a+ 2

√
b2 + (a− c)2) (8)

m =
1

2
(c+ a− 2

√
b2 + (a− c)2) (9)

These moments are used to characterize the features. Higher is the maximum
moment more significant will be the feature, and higher is the minimum moment
more probably this feature point will be a corner. Because of the lack of information
in images, we only took M into accounts. So a feature was considered significant if
M was higher than a threshold γ.

As a result of this step, we produced two images Ifl and Ifr, which are the
images of the moment M after applying the phase congruency on respectively the
input images Il and Ir (Fig. 2).

2.3 Stereo matching

In rectified image condition, the matching of a feature F l of Ifl to its corresponding
one F r in Ifr is simplified to find the most similar feature along the corresponding
epipolar line. As suggested by [21], we used the Lades similarity [31] performed a
5× 5 window as matching metric:

S(F l, F r) =

∑nbfeat

j f ljf
r
j

2

√∑nbfeat

j f l
2
j

∑nbfeat

j fr2
j

(10)

where nbfeat is the total number of features in the selected window.
However, compared to their work, we took into account more matching con-

straints than only the similarity, epipolar constraints and left-rigth consistency:

• Uniqueness: a feature in the left image was matched with only one feature
in the right image.

• Continuity: the disparity must vary smoothly.

• Ordering: for a couple of matched features f1l ↔ f1r , f2l ↔ f2r (the symbol
↔ represents the matching relationship), if f1l is at the left of f2l we ensured
that f1r was at the is of f2r.

We also took into account the type of features and their orientation in the
matching process.

We tried to reduce the computation time using a disparity range of d. This range
can be obtained if there is prior knowledge about the scene or it can be deduced
by the disparities values of the previous frame in a frame by frame framework.

2.4 Sub-pixel matching

Phase correlation is a well-known method allowing to get the translation of a signal.
The translation between two images in the spatial domain is expressed in the fre-
quency domain using the Fourier transform. Let I1 and I2 be two M ×N images,
M and N odd for mathematical simplicity. These images can be expressed like
I1 = I(x, y) and I2 = I(x+ δx, y + δy) with the translation (δx, δy). Let m and n
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defined as M = 2m + 1 and N = 2n + 1. By computing their respective Fourier
transform F1(u, v) and F2(u, v), the normalized cross-power spectrum is given by:

R(u, v) =
F1(u, v)F ?2 (u, v)

|F1(u, v)F ?2 (u, v)|
(11)

where u = −m, ...,m, v = −n, ..., n and F ?2 is the complex conjugate of F2.
Given that the most relevant components in the phase correlation matrix are

the low-frequency ones, certain authors propose to filter R by a rectangular low-
pass function of size U [44]. They also proved that the ratio of U

M = 0.5 is the one
that gives the best accuracy.

The Phase-only correlation is the inverse discrete Fourier transform of R and
is defined as follows:

r(x, y) =
1

N ·M

u=m∑
u=−m

v=n∑
v=−n

R(u, v)

exp(−2πiux/M) exp(−2πivy/N)

(12)

where u = −m, ...,m and v = −n, ..., n.
The peak position, in r, corresponds to the translation along x and y directions,

but this position is in integer precision.
Some authors propose to recover the displacement in sub-pixel precision from

the information contained in r. There are globally three ways to estimate the sub-
pixel displacement accurately: the detection of the peak by local least square fitting
on selected spectral components in R [43], by fitting a closed-form analytic model
to the correlation peak [44], or directly from the data of r using a peak detection
formula assuming a peak model [49, 50]. We implemented this last principle.

The correlation peak was modeled as a cardinal sine affected by the low pass
filter:

PeakModelxy = r(x, y) ≈ α
sin( VM π(x+ δx))

π(x+ δx)

×
sin( VN π(y + δy))

π(y + δy)

(13)

where δx,δy are respectively the displacements along x and y axis, α is the peak
value ( 0 ≤ α ≤ 1) and V = 2U + 1.

Given that we used stereo cameras, by rectifying the images, we were able to
neglect δy. So the phase correlation function became:

PeakModelx = r(x) ' α
sin( VM π(x+ δx))

π(x+ δx)
(14)

The main idea was then to recover δx, the max peak in sub-pixel accuracy, from
the sample values in r. A robust solution has been described in [50]. Let consider
the case in Fig. 3, the peak model max is close to the sample x = p which has the
highest values α. We also considered two other measurements located at ±d pixels
away from p at x = p+ d and x = p− d.

Using the model, the three points can be rewritten as:
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Figure 3: Peak model. In the vertical axis, the value of the phase correlation
value at the point in the horizontal axis.


PeakModelx(p− d) = r(p− d) ' α sin( V

M π(p−d+δx))

π(p−d+δx)

PeakModelx(p) = r(p) ' α sin( V
M π(p+δx))

π(p+δx)

PeakModelx(p+ d) = r(p+ d) ' α sin( V
M π(p+d+δx))

π(p+d+δx)

(15)

By combining these equations, it can be proved that:

(p− d+ δx) r (p− d) + (p+ d+ δx) r (p+ d)

−2 (p+ δx) cos

(
V

N
πd

)
r (p) = 0

which can be rewritten as

v(p, d) = δxu(p, d) (16)

with

u(p, d) = r(p− d) + r(p+ d)− 2 cos

(
V

N
πd

)
r (p)

and

v (p, d) = 2p cos

(
V

N
πd

)
r (p)

− (p− d) r (p− d)− (p+ d) r (p+ d)

This allows us to estimate δx = u (p, d)
−1
v (p, d).

However, in order to minimize the impact of noise, several observations with
different values of p and d around the highest peak in r can be used. So it is possible
to select χ values of pi and di and then get χ equations v (pi, di) = δxu (pi, di) where
i ∈ {1, 2, ..., χ}. Resolving these equations is equivalent to minimize δx in:
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δx =

χ∑
i=1

|v (pi, di)− u (pi, di)|2 (17)

This equation can be solved using Singular Value Decomposition (SVD) [51].
The existing phase correlation-based sub-pixel matching methods are applied

on high resolution visible images (around 3000× 3000 pixels [52]) using large sub-
windows (41×41 pixels) for the phase correlation estimation. We had to adapt this
class of methods to our low-resolution problem. Let consider two matched points
Fl with coordinate (xl, yl) and Fr with coordinate (xr, yr) respectively in Ifl and in
the shifted image Ifr. We knew that yl = yr and di(x) = xr − xl. Then we defined
two sub-images Isl(xl, yl) and Isr(xr, yr) with the same windows size W around
Fl and Fr (Fig. 2) and performed the refined phase correlation-based matching in
these sub-images.

The main parameters of this method are the sub-images windows size W and
the number χ of observations used for the least square estimation of the sub-pixel
displacement (17). Because of our low resolution we limited the number of obser-
vations χ to 6: pi = p± 1 and di ∈ {1, 2}.

3 Results and discussion

3.1 Datasets

In this paper, we used two datasets: a thermal infrared video benchmark for visual
analysis with high-resolution infrared images [53] and an own dataset (called Tvvlgo
in the rest of the paper) with images acquired by our system. Tvvlgo was created
by placing the stereo system in the ceil of a room, and we collected 1000, 80 pixels
images pair of a person moving in a room. We also used another third image where
a person is sitting in from of the cameras. The dataset we used is available online
[54].

3.2 Feature extraction

In [16], the author proposes to use a threshold on the phase congruency moments of
γ = 0.3. Because of our low-resolution images context, we feared that this threshold
could not extract enough features. We tried other smaller thresholds at γ = 0.1
and γ = 0.01.

3.2.1 Evaluation of the number of extracted features

To validate our choice of the features extraction method, we compared the im-
plemented phase congruency to other standard features extraction methods using
a low-resolution image given by a FLIR lepton 2 (Fig. 4-a). The authors in [32]
have already made such comparison, but they only compared the phase congru-
ency method to Harris corner detector, SIFT, Canny, and KLT. We wanted to go
further. So we have compared our approach with the three thresholds (PhaseC-
ong(0.01), PhaseCong(0.1) and PhaseCong(0.3)) to the OpenCV [55] implementa-
tions of ORB, BRISK, FAST, Shi Tomasi, SURF, AGAST, GFTT, and KAZE.
Our framework was implemented using C++ compiled with GCC 7. We com-
pared the methods according to 2 criteria: the number of extracted features and
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Feature extractions methods Number of features Execution time (us)

ORB (Oriented fast and Rotated Brief) 117 245± 20

BRISK (BinaryRobust Invariant Scalable Keypoints) 34 373474± 350

FAST 77 90± 7

Shi Tomasi 120 189± 15

SURF (min Hessian = 300) (Speeded Up Robust Features) 14 1436± 100

AGAST (Adaptive and generic corner detection
based on the accelerated segment test)

84 202± 29

GFTT (Good Features to track) 120 350± 32

KAZE 33 13217± 123

PhaseCong(0.01) 1734 5224± 480

PhaseCong(0.01) 777 5224± 480

PhaseCong(0.01) 275 5224± 480

Table 1: Comparison between feature extractor methods ORB, BRISK,
FAST, Shi Tomasi, SURF, AGAST, GFTT, KAZE and Phase congruency

the execution time. For this later measurement, all the codes were executed on
an Intel Core i7-3687U CPU. To get the execution time we used the C++ API
std::chrono::high resolution clock::now. For each feature detector, the fea-
ture extraction process was completed 1000 times, and we computed the mean and
the standard deviation of all computation times.

The extracted features can be seen in Fig. 4 and measurements are sampled in
Table 1.

As illustrated by Table 1 Phase congruency can extract more features than other
methods. Even using a high threshold, we could extract two times more features
than Shi-Tomasi and GFTT. The counterpart of this advantage is a relatively high
computation time compared to techniques such as FAST. Fortunately, the feature
extraction for a pair of images took approximately 10 ms with Phase congruency,
which is compatible with the 8 frames per second rate of our cameras.

These results are visually confirmed by Figure 4, where we extracted features
from a low-resolution image using different feature extractors. It is noticeable that
while most of the feature extractors try to extract robust features, phase congruency
does the same by focusing on edges. Using the threshold γ, we could control the
number of features returned by phase congruency. γ = 0.1 seemed to give a good
trade-off between the sparsity and redundancy of features.

To conclude, even if Phase congruency is slower to compute than the other clas-
sical method, it gave a higher number of features and so seemed to be unavoidable
in processing our low resolution and texture-less images.

3.2.2 Robustness to illumination change

One particularity of our cameras is that we sometimes noticed a sudden change in
the brightness. It is probably a re-calibration of the sensor. The feature extraction
method should so be robust to brightness changes. We evaluated this robustness
using a simulated brightness change as defined by Szelinski [56, Chapter 3]:
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(a) Original image (b) ORB (c) BRISK

(d) FAST (e) Shi and Tomasi (f) SURF

(g) KAZE (h) AGAST (i) GFTT

(j) PhaseCong(0.01) (k) PhaseCong(0.1) (l) PhaseCong(0.3)

Figure 4: Features (colored dots) extracted by several feature extractor methods.
The color of feature is generated randomly.
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g(x) = αf(x) + β (18)

where f(x) and g(x) are the pixel values, and α, β control respectively the
contrast and the brightness.

So we took 1000 images (80x60) acquired using lepton 2, then we simulated
brightness changes by varying the parameter β from 0 to 100. For each image, we
computed the number of features detected for each β. Let Ωβ be the number of
matches for a value of brightness control β. The Figure 5 represents the variation
of the Ωβ according to β.

We also needed to evaluate the features extraction method in terms of re-
detection.

For this, first, we computed the features at β=0. Then by increasing β, we
estimated this robustness by counting the percentage of features still detected at
the same location as for β=0. We called this percentage features a re-detection
rate. Figure 6 shows the Features re-detection rate vs. brightness change for one
image of the Tvvlgo dataset [54].

We compared PhaseCong(0.1) with other feature extractors such as ORB,
FAST, SURF, AGAST, and GFTT. Our results also confirmed those of Hajebi
et al [57] assessing that the features detected by phase congruency from thermal
images present the advantage to be more stable than the others to illumination
changes (Fig. 5 and 6). Figure 5 shows that given different values of illumination,
phase congruency is the feature extraction method that can extract the highest
number of features. Figure 6 shows that phase congruency is the method with the
best re-detection rate. While detecting more features, phase congruency is also
more robust to brightness changes than the other classical methods.

3.3 Stereo matching

To evaluate our stereo matching method, we have performed a stereo matching
on 15 low-resolution 80 × 60 stereo pairs provided by our cameras (Tvvglo [54]).
The stereo matching method explained in the section 2 was applied. To verify the
accuracy of the method, we manually counted the number of mismatches given
the number of matches. For each feature extracted in Il, we visually verified if
the matched feature in Ir was inside a 5 × 5 window centered on the estimated
disparity. The results showed that we had a percentage of mismatches of less than
1% through all of the 15 image pairs.

3.4 Sub-pixel matching

As mentioned in section 2.4, one of the key parameters is the size W of the sub-
images windows in which the phase correlation is computed. In the state of the
art, the sizes of sub-images vary a lot. For images with good resolution such as
4000× 4000, a W of 41× 41 can be chosen [52]. But these window sizes must not
only be set regarding the size of the images but also depends on the type of the
scene and how the disparity varies through the whole image. Nevertheless, it would
be unreasonable to use a W of 41× 41 when the image size is 80× 60.

In fact, we set 2 experiments, one on good resolution images in order to esti-
mate the sole impact of W on the accuracy of sub-pixel matching and one on our
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Figure 5: Average number of features detected for each image by some
features extractors
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Figure 6: Features re-detection rate

Figure 7: Box plots of the root-mean-square deviation (RMSD) of the match-
ing error (in pixel) vs. sub-images window size
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(a) Percentage of matching with an er-
ror less than 0.5 pixels

(b) Percentage of matching with an er-
ror less than 0.25 pixels

(c) Percentage of matching with an er-
ror less than 0.1 pixels

(d) Percentage of matching with an er-
ror less than 0.05 pixels

Figure 8: Impact of the sub-images window size (abscissa) on the rate of good
matching (ordinate in %) respects to a specific level of precision
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(a) Percentage of matching with an er-
ror less than 0.5 pixels

(b) Percentage of matching with an er-
ror less than 0.25 pixels

(c) Percentage of matching with an er-
ror less than 0.1 pixels

(d) Percentage of matching with an er-
ror less than 0.05 pixels

Figure 9: Percentage of correct matches (ordinate in %) with a given level precision
τ according to the sub-images window size (abscissa) and the phase congruency
moments threshold (PC threshold)
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low resolution images to prove the validity of our method according to the end ap-
plication and to estimate the combined impact of the phase congruency threshold
γ and W on the sub-pixel matching accuracy. We designed the following experi-
ment to estimate the sub-pixel matching accuracy: for a specific thermal image I1,
we created a second image I2 by shifting the information of I1 by ∆ pixels along
the x-axis. The accuracy can be determined according to the distance between
an estimated sub-pixel disparity to ∆ (the true disparity). We called it matching
error. We also created a matching precision rate measurement. For this, we set a
precision threshold of τ . Given an estimated disparity δ if |δ −∆| ≤ τ the match is
considered as correct else as a mismatch. The matching precision rate is the ratio
between the number of correct matches (relative to a level of precision τ) to the
total number of features.

For the good resolution thermal images, we used a 512 × 512 image of people
coming from [53]. We shifted these images by ∆ ∈ {20, 20.125, 20.250, ..., 25} pixels.
The matching errors were computed on all the features for all the set of ∆. Fig. 7
shows the box plot of the root-mean-square deviation (RMSD) of the matching
errors as a function of the window size W , with W ∈ {7, 9, . . . , 41}. The impact
of the window size on the rate of good matching respects to a specific level of
precision τ can be seen in Fig. 8. We drew this curves for 4 levels of precision:
τ = {0.05, 0.01, 0.025, 0.5} pixels.

The low resolution (80×60 pixels) images were acquired with our FLIR Lepton 2
camera system ([54]). For each image we shifted them by ∆ ∈ {0, 0.125, .., 30}pixels
with a stride of 0.125 pixels. The size of our sub-images was in the range W ∈
{7× 7; 9× 9; 11× 11}. The Figure 9 shows the impact of the window size W and
the phase congruency moments threshold γ on the rate of good matching respects to
a specific level of precision τ , τ ∈ {0.5, 0.25, 0.1, 0.05} pixels in our case. The value
of the phase congruency moments threshold γ is directly related to the number of
features extracted on the images (Table 1). However, we had to find a good tradeoff
between the number and significance of the extracted features.

We studied the impact of the sub-images window size in which the phase cor-
relation is estimated on the accuracy of the sub-pixel localization. As shown in
Fig. 7, using a wide sub-images window allowed us to get better precision. From
7 × 7 to 29 × 29, the precision was increased progressively, but from 31 × 31, the
gain in precision was no more very noticeable. The phase congruency magnitude
represents the filtered information of the image, so using a wider window does not
help necessary to get better precision. This result is also confirmed in Fig. 8 and 9
on the cases were low precision was sufficient. These Figures showed the percentage
of correct matches at a certain precision using different sizes of window size. For
low precision (errors below τ = 0.5 or τ = 0.25 pixels), the matching rate was
increased with higher sub-images window size. This behavior was shared on both
high and low-resolution images. The only difference between these 2 cases is that,
for the matching of low-resolution images, we had to limit the sub-images window
size to 13× 13, which is already large compared to the 80× 60 image size.

More surprisingly, by analyzing the three Figures accurately, it can be noticed
that a window 9 × 9 offered better precision than an 11 × 11 one. This is even
more visible on the high precision matching rates (errors below τ = 0.1 or τ = 0.05
pixels) curves (Fig. 8-c and d and 9-c and d). One explanation could be that
the precision of the match did not only depend on the size of the window size
but overall by the ratio between noise and relevant information in this window.
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In our framework, they are 2 processes that handle the image noise: 1) the phase
congruency magnitude represents filtered information of the image and 2) a low pass
filter the phase correlation. In this latter case, the filter bandwidth was directly set
proportional to the sub-images window size (U = 0.5W in (11)). It seemed like that
for W = 9×9, the ratio between the useful information (on low spatial frequency in
the cross-power spectrum (11)) and noise (on the high spatial frequency) reached a
local maxima. If this hypothesis is confirmed, more noise is included in the phase
correlation for higher W , degrading so its shape.

The expected precision also had a direct impact on the matching rate. We can
see in Fig. 8 that for the high-resolution image, almost all the features (more than
99%) are matched with a precision lower than 0.5 pixels regardless of the window
size. This matching rate decreased to around 90%, 55%, and 33% for respectively
a precision lower than 0.25, 0.1, and 0.05 pixels. We can notice the same behavior
for the low-resolution image with matching rates (in the case of the best phase
congruency threshold) around 97%, 83%, 55% and 34% for respectively a precision
lower than 0.5, 0.25, 0.1 and 0.05 pixels. Moreover, we noticed the same matching
rate (≈ 33%), whatever the resolution of the images when a high matching precision
is expected.

The choice of the phase congruency moments threshold also had an impact
on the matching rates. Because of the low resolution of our images, we wanted
to increase the number of features using the lower phase congruency moments
threshold. This was the case, as shown in Table 1. The number of extracted
features increased from 275 to 1793 when we decreased the threshold of γ from 0.3
(as recommended in [48]) to 0.01. Unfortunately, the matching rates for a specific
precision, also decreased when we decreased the threshold, as we can see in Fig. 9.
Decreasing the threshold brought less stable features to match. Depending on the
application, a good tradeoff has to find between the number of matched features
and their reliability.

To summarize, in our specific low resolution stereo thermal camera case, a sub-
images window size window of 9 × 9 can be a good tradeoff between the accuracy
and the phase correlation computation time. With this configuration, we were able
to match around 97% of the features with a precision of at least 0.5 pixels. If a
higher sub-pixel matching accuracy is needed, this rate falls to 55% or 34% for a
respectively a precision less than 0.1 or 0.05 pixels. In this case, an external outlier
rejection process based on the image or the 3D scene content should be added
during or after the matching [58].

3.5 3D reconstruction

3.5.1 Importance of sub-pixel matching

After matching, an error on the estimation of the disparity can have high conse-
quences for the stereo reconstruction, especially to estimate the distance of a 3D
point to the cameras (Z direction) [35] accurately. In this section, we wanted to
estimate the range of error along the Z direction when we estimated the disparity
with an error of one pixel (in pixel resolution) and also the evolution of this range
using sub-pixel disparity estimation (error of 0.5 or 0.1 pixels). For this, we chose a
pair of matched points, which gave a distance Z=3350 mm after stereo reconstruc-
tion for a disparity d. If we have an error of 1 pixel (a disparity of dnew = d ± 1
pixel), the estimation of Z was spread from Z = 3108 mm to 3590 mm (a range of
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(a) Left image of the 507
th pair of Tvvlgo

(b) Matches re-projected
using ORB (#24)

(c) Matches re-projected
using ST (#80)

(d) Left image of the 547
th pair of Tvvlgo

(e) Matches re-projected
using ORB (#18)

(f) Matches re-projected
using ST (#71)

Figure 10: 3D points projected in the images space with Z as the value of
the pixel.

482 mm). Being wrong in a range of 482 mm in a human body reconstruction can
be severe for many surveillance applications. For an error of dnew = d ± 0.5 the
range was reduced to 270 mm and for dnew = d± 0.1 pixel to 52 mm. Such results
explain why sub-pixel matching is essential in our low-resolution context.

3.5.2 Evaluation of the whole framework

In this section, we tried to compare the whole framework of our method ST versus
a method available in classical computer vision libraries. As a feature extractor,
we chose ORB because this feature extractor has already been proved to be more
robust than other [59]. For the matching, we used KNN because of the sparsity
of the features and also because it estimates the disparity in sub-pixel precision.
We implemented this framework (we called ORB + KNN matching) using the
functions available in OpenCV. For ST, we set γ = 0.1 and for phase correlation
we used a sub-image size of 9× 9.

We applied these methods on two image pairs (Fig. 10a and Fig. 10d) we se-
lected from the Tvvlgo dataset. In these images, the person was approximately
at a distance of 3-4 meters. We compared the results of these methods according
to two criteria: the numbers of matched features and the consistency of the 3D
reconstruction, especially along the Z direction.

The Figure 10 represents the matches projected on the left images when using
ORB + KNN (10b and 10e) and ST (10c and 10f). First of all, we can see that
using ST, we have 4 times more matches than ORB + KNN: 80 vs. 24 and 71
vs. 18 respectively for the 507 th pair and the 547 th pair. It can also be noticed
that the matches are better distributed over the whole human shape than using ST
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Figure 11: Box plot in the value of Z for our method ST and ORB +
OpenCV KNN.

ORB + OpenCV
KNN (Baseline)

ST (Our method)

507 th pair 1523.94 ± 1612.76 3648.10 ± 256.43

547 th pair 1800.85 ± 1538.92 3746.56 ± 391.44

Table 2: Mean value and standard deviation of Z after triangulation. Values
are in millimeters.
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than using ORB + KNN. This is due to the fact that phase congruency can extract
more features from thermal images than ORB, as reported in Table 1.

For all the matches, we performed triangulation to estimate the 3D position
of the point. We made statistics on the estimated depth Z. Figure 11 shows the
boxplot of the distributions of Z for both methods. The mean and the standard
deviation of these distributions are given in Table 2. The results obtained using
ORB + KNN seems to be inconsistent (very wide distribution of Z in a range
of about 5000 mm). On the contrary, for ST, the distribution is more compact.
The median and mean values are around 3500 mm, which is consistent with the
experimental conditions, and the standard deviations (256 mm and 391 mm) are
more reliable concerning human body proportion. The results output by ORB +
KNN can be explained by the fact that the matches are not correct, leading to very
bad triangulation outputs.

4 Conclusion

In this paper, we proposed our method ST which is a sub-pixel stereo matching
method adapted to thermal images. Thermal images have the disadvantages of
being less textured compared to gray-scale or color images. Besides this lack of
texture, low-cost thermal cameras can have a very low resolution (80× 60 pixels in
our case), which is detrimental to an accurate stereo reconstruction. To overcome
these limitations, we proposed a framework composed of a robust feature extraction
method based on phase congruency, a robust rough matching process based on
Lades distance between the extracted features, and a refined sub-pixel matching
process based on phase correlation. When applied to low-resolution thermal images,
our feature extraction method was able to extract more features than state of the
art methods. As well, our sub-pixel matching method was able to match around
97% of extracted features with an (average) error under 0.5 pixels. For about 55% of
the features, the matching error was even below 0.1 pixels. Such a level of accuracy
is necessary for the stereo reconstruction of a 3D scene or the 3D localization of
objects. With our stereo setup, a precision bellow 0.1 pixels corresponds to a
maximal error of ≈ 51 mm in the depth direction. With our framework, such a
level of precision seems now achievable even for very low-resolution thermal stereo
cameras. We also compared ST versus a classical method in state of the art (ORB
+ KNN) for 3D reconstruction. Our method showed more consistent results than
ORB + KNN.

Once the sub-pixel matching is performed, it could be essential to compare our
method in 3D localization using ground truth values. Such evaluation will show us
how sub-pixel matching is improving 3D vision.
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