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ASYMPTOTICS OF TWISTED ALEXANDER POLYNOMIALS

AND HYPERBOLIC VOLUME

LÉO BÉNARD, JÉRÔME DUBOIS, MICHAEL HEUSENER, AND JOAN PORTI

Abstract. For a hyperbolic knot and a natural number n, we consider the
Alexander polynomial twisted by the n-th symmetric power of a lift of the
holonomy. We establish the asymptotic behavior of these twisted Alexander
polynomials evaluated at unit complex numbers, yielding the volume of
the knot exterior. More generally, we prove this asymptotic behavior for
cusped hyperbolic manifolds of finite volume. The proof relies on results
of Müller, and Menal-Ferrer and the last author. Using the uniformity of
the convergence, we also deduce a similar asymptotic result for the Mahler
measures of those polynomials.

1. Introduction

Alexander polynomials are Laurent polynomials associated to a free abelian
cover of a three-dimensional manifold M . Classically M is a knot or link exte-
rior in the three-dimensional sphere S3, and the associated free abelian cover
is the maximal one. The Alexander polynomial carries only metabelian infor-
mation on the fundamental group, and the idea behind the twisted Alexander
polynomial is to associate a Laurent polynomial invariant to a free abelian cover
of M together with a linear representation of the fundamental group π1(M).

Twisted Alexander polynomials of knots have been defined by Lin [23] and
Wada [44]. Kitano [21] showed that they are Reidemeister torsions, generalizing
Milnor’s theorem on the (untwisted) Alexander polynomial [30].

In this article we are interested in orientable, hyperbolic three-dimensional
manifolds of finite volume since such a manifold has a natural representation of
its fundamental group into PSL2(C), the hyperbolic holonomy, that is unique
up to conjugation. The holonomy representation lifts to SL2(C) and a lift is
unique up to multiplication with a representation into the center of SL2(C) (see
[8]).

The corresponding twisted Alexander polynomial has been considered, among
others, by Dunfield, Friedl and Jackson in [10]. Here we compose the lift of
the holonomy representation with the irreducible representation of SL2(C) in
SLn(C), the (n− 1)-th symmetric power, and study its asymptotic behavior as
n tends to +∞.

Examples of twisted Alexander polynomials associated to a lift of the holo-
nomy representation into SL2(C) can be found in [10]. More examples, also for
the n-th symmetric power are presented in http://dunfield.info/torsion.
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For illustration we have included in the Appendix A the twisted polynomials
for the figure-eight knot associated for the n-th symmetric power for n ≤ 9
(following our normalisation which is different from [14]).

Before considering non-compact, orientable, hyperbolic three-manifolds of fi-
nite volume in general, we discuss first the case of a hyperbolic knot complement
S3 \K. Let ρn : π1(S3 \K)→ SLn(C) be the composition of a lift of the holo-
nomy with the (n− 1)-th symmetric power SL2(C)→ SLn(C). Let ∆ρn

K denote
the Alexander polynomial of K twisted by ρn, which equals Wada’s definition
for n even, but it is Wada’s polynomial divided by (t − 1) when n is odd, so
that its evaluation at t = 1 does not vanish. The set of unit complex numbers
is denoted by S1 = {ζ ∈ C | |ζ| = 1}. The following is a particular case of the
main result of this paper.

Theorem 1.1. For any ζ ∈ S1,

lim
n→∞

log |∆ρn
K (ζ)|
n2

=
1

4π
vol(S3 \K)

uniformly on ζ.

For a knot exterior there are two lifts ρ of the holonomy, Theorem 1.1 holds
true for both choices of lift. Based on Yamaguchi’s work ([48]), Goda showed
in [14] that |∆ρn

K (1)| is equal to the Reidemeister torsions with coefficients in ρn
and so Theorem 1.1 generalizes results of Müller [35] and of Menal-Ferrer and
the last author [29].

Theorem 1.1 is a particular case of Theorem 1.6 below. To extend the def-
inition of twisted Alexander polynomial to general cusped manifolds (Defini-
tion 2.6), we need to make some assumptions, that are always satisfied for
hyperbolic knot exteriors. Let M be an orientable, non-compact, connected,
finite volume hyperbolic three-manifold. It admits a compactification M by
adding l ≥ 1 peripheral tori, one for each end:

∂M = T 2
1 t · · · t T 2

l .

Let

α : π1(M) � Zr

be an epimorphism.
In this paper we require the two following hypotheses, that are always satis-

fied in the case of a knot complement.

Assumption 1.2. For each peripheral torus T 2
i , α(π1(T 2

i )) ∼= Z.

This assumption is a necessary condition for the acyclicity (over the field of
rational fractions) of the Zr-cover associated with α, so that the twisted Alexan-
der polynomials do not vanish. Assumption 1.2 holds true for the abelianization
map of a knot in a homology sphere, or more generally for the abelianization
map of a link in a homology sphere having the property that the linking number
of pairwise different components vanish. Furthermore, for any cusped, oriented,
hyperbolic 3-manifold M , there exists an epimorphism α : π1(M) � Z satisfy-
ing Assumption 1.2 (compose the abelianization map with a generic surjection
of H1(M,Z) onto Z).
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Let li ∈ π1(T 2
i ) be a generator of ker(α|π1(T 2

i )), we say that li is a longitude

for α, and we use the terminology α-longitude. We choose ρ : π1(M)→ SL2(C)
a lift of the hyperbolic holonomy satisfying the following:

Assumption 1.3. The lift of the holonomy ρ : π1(M)→ SL2(C) satisfies

tr(ρ(li)) = −2.

for each α-longitude li, i = 1, . . . , l.

For a knot exterior in a homology sphere and the abelianization map, As-
sumption 1.3 is satisfied for every lift of the holonomy. More generally, it is also
satisfied for every lift of the holonomy for a link exterior in a homology sphere
with the property that the linking number of pairwise different components
vanish. In general, for any M and α satisfying Assumption 1.2, there exists at
least one lift of the holonomy satisfying Assumption 1.3 [29, Proposition 3.2].
In terms of spin structures, this is the condition for a spin structure to extend
along certain Dehn fillings which we will consider in Section 3.

For n ≥ 2, recall that the unique n-dimensional irreducible holomorphic rep-
resentation of SL2(C) is given by the natural action on the (n−1)-th symmetric
power of C2. We denote it by Symn−1 : SL2(C) → SLn(C). For a lift of the
holonomy representation ρ : π1(M)→ SL2(C), we denote the composition with
the (n− 1)-th symmetric power by

ρn : π1(M)
ρ−→ SL2(C)

Symn−1

−−−−−→ SLn(C).

Remark 1.4. This convention follows the notation of [29], but it differs from
[35], it is shifted by 1.

To construct the twisted Alexander polynomial, we consider the polynomial
representation associated to α:

ᾱ : π1(M) → C[t±1
1 , . . . , t±1

r ]

γ 7→ t
α1(γ)
1 · · · tαr(γ)

r

where α = (α1, . . . , αr) are the components of α. We define the twisted Alexan-
der polynomial ∆α,n

M in Definition 2.6 as the inverse of the Reidemeister torsion

of the pair (M, ᾱ ⊗ ρn), after removing some factors (tβ1
1 · · · t

βr
r − 1) when n

is odd (one factor for each peripheral torus). It is a Laurent polynomial with
variables t±1

1 , . . . , t±1
r defined up to sign and up to multiplicative factors t±1

i .

Remark 1.5. We stress out the fact that, for ζ1, . . . , ζr ∈ S1, only the modulus
|∆α,n

M (ζ1, . . . , ζr)| is well defined.

The main result of this paper is:

Theorem 1.6. Let M be an oriented, hyperbolic three-manifold of finite vol-
ume. We suppose that α : π1(M) � Zr is an epimorphism and that ρ : π1(M)→
SL2(C) is a lift of the holonomy representation.

If M is closed, or if the Assumptions 1.2 and 1.3 are satisfied, then for any
ζ1, . . . , ζr ∈ S1,

lim
n→∞

log |∆α,n
M (ζ1, . . . , ζr)|

n2
=

vol(M)

4π
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uniformly on the ζ1, . . . , ζr.

Remark 1.7. Assumptions 1.2 and 1.3 are vacuous for closed manifolds.

The logarithmic Mahler measure of a Laurent polynomial P (t1, . . . , tr) ∈
C[t±1

1 , . . . , t±1
r ] is defined as

m(P ) =
1

(2π)r

∫ 2π

0
· · ·
∫ 2π

0
log |P (eiθ1 , . . . , eiθr)| dθ1 · · · dθr.

With Theorem 1.6, as the convergence is uniform on ζ1, . . . , ζr ∈ S1, we also
prove:

Theorem 1.8. Under Assumptions 1.2 and 1.3,

lim
n→∞

m(∆α,n
M )

n2
=

vol(M)

4π
.

Assume now that M is fibered over the circle and let α : π1(M) → Z be
induced by the fibration M → S1. We chose a representative ∆α,n

M (t) so that
∆α,n
M (t) ∈ C[t] (it is a polynomial in one variable) and ∆α,n

M (0) 6= 0.

Corollary 1.9. We have

lim
n→∞

1

n2

∑
λ∈Spec(∆α,n

M )

∣∣ log |λ|
∣∣ =

1

2π
vol(M),

where Spec(∆α,n
M ) = {λ ∈ C | ∆α,n

M (λ) = 0}.
Moreover, the maximum of the modulus of the roots grows at least exponen-

tially with n.

Proof. If p(t) = a
∏d
i=1(t−αi) ∈ C[t] is a polynomial without zeros on the unit

circle and p(0) 6= 0, then Jensen’s formula implies that

log |a|+
d∑
i=1

log
(

max(|αi|, 1)
)

=
1

2π

∫ 2π

0
log |p(eiθ)| dθ = m(p) .

We aim to apply this formula to the normalized polynomial ∆α,n
M (t). From the

fiberness of M it follows that ∆α,n
M (0) = ±1 6= 0. Moreover, ∆α,n

M (t) is symmet-
ric which implies for all λ ∈ C∗ that ∆α,n

M (λ) = 0 if and only if ∆α,n
M (1/λ) = 0.

Finally, by Theorem 1.11 the Alexander polynomial has no root on the unit
circle. Hence we can apply the above formula for ∆α,n

M (t), and we obtain:∑
λ∈Spec(∆α,n

M )

∣∣ log |λ|
∣∣ = 2 m(∆α,n

M ),

and the first statement follows directly from Theorem 1.8.
Finally notice that deg ∆α,n

M (t) is linear on n, so the second statement follows
directly from the first. �

Remark 1.10. When M is not fibered, it may happen that ∆α,n
M is not monic

and we must take into account |∆α,n
M (0)| in Jensen’s formula.
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Given ζ1, . . . , ζr ∈ S1, we compose α : π1(M) � Zr with the homomorphism

Zr → S1

(n1, . . . , nr) 7→ ζn1
1 · · · ζ

nr
r

and we denote the composition by χ : π1(M) → S1. Namely, we evaluate ᾱ at
tj = ζj : if α = (α1, . . . , αr) are the components of α, then

χ : π1(M)→ S1(1)

γ 7→ ζ
α1(γ)
1 · · · ζαr(γ)

r .

In fact, Theorem 1.6 is a theorem on Reidemeister torsions, as |∆α,n
M (ζ1, . . . , ζr)|

is the inverse of the modulus of the Reidemeister torsion of M twisted by the
representation χ⊗ ρn (in some cases perhaps up to some factor independent of
n or after the choice of basis in homology), see Section 2.

The definition of twisted Alexander polynomial as a Reidemeister torsion
requires a vanishing theorem in cohomology, Theorem 2.3. Its proof mimics the
classical vanishing theorem on L2-cohomology of Matsushima–Murakami, as we
explain in Appendix C . As a direct consequence of this vanishing theorem, we
obtain that the twisted Alexander polynomials have no roots on the unit circle:

Theorem 1.11. Under Assumptions 1.2 and 1.3, for any ζ1, . . . , ζr ∈ S1,

∆α,n
M (ζ1, . . . , ζr) 6= 0.

We apply this theorem to study the dynamics of a pseudo-Anosov diffeo-
morphism on the variety of representations. Let Σ be a compact orientable
surface, possibly with boundary and with negative Euler characteristic. For
a pseudo-Anosov diffeomorphism φ : Σ → Σ, consider its action on the rela-
tive variety of (conjugacy classes of) representations φ∗ : R(Σ, ∂Σ,SLn(C)) →
R(Σ, ∂Σ,SLn(C)). The mapping torus M(φ) is a hyperbolic manifold of fi-
nite volume and its holonomy restricts to a representation of π1(Σ) in SL2(C)
whose conjugacy class is fixed by φ∗. In particular the conjugacy class of the
composition [ρn] = [Symn−1 ◦hol|π1(Σ)] in R(Σ, ∂Σ,SLn(C)) is fixed by φ∗. In
Appendix D we prove:

Theorem 1.12. The tangent map of φ∗ at [ρn] on R(Σ, ∂Σ,SLn(C)) has no
eigenvalues of norm one.

For n = 2 and ∂Σ = ∅, this was proved by M. Kapovich in [19]. Kapovich
answered thereby a question of McMullen [26], namely, the point [ρ2] is a hy-
perbolic fixed point of φ∗.

The relation with the rest of the paper comes from the formula (Proposi-
tion D.3)

det
(
(dφ∗)[ρn] − t Id

)
=

n−1∏
k=1

∆α,2k+1
M(φ) (t),

where α : π1(M(φ)) � Z is induced by the natural fibration of the mapping
torus over S1 with fiber Σ. Then the result follows from Theorem 1.11.
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Summary of the proof. Most of the paper is devoted to prove Theorem 1.6
for ζ1, . . . , ζr ∈ eiπQ. For that purpose, we consider sequences of closed man-
ifolds Mp/q obtained by Dehn filling, that converge geometrically to M by

Thurston’s hyperbolic Dehn filling theorem. The assumption ζ1, . . . , ζr ∈ eiπQ

allows us to chose the Dehn fillings Mp/q so that the twist χ : π1(M) → S1

in (1) factors through π1(Mp/q). Then the strategy is to apply Müller’s theo-
rem [35] to the asymptotic behavior of the torsion of closed Dehn fillings Mp/q.
Even if in Müller’s paper there is no twist, as χ is unitary we can modify the
proof of Müller’s theorem by considering Ruelle functions twisted by χ. The
key ingredient is a proof of a version of Fried’s theorem (Theorem 4.2) relat-
ing the value of the Ruelle zeta function with the Reidemeister torsion of any
closed manifold. Then we prove our main theorem for ζ1, . . . , ζr ∈ eiπQ by an-
alyzing the behavior of those twisted Ruelle zeta functions and the arguments
of Müller’s proof under limits of Dehn fillings, as in [29]. To conclude the
proof for arbitrary ζ1, . . . , ζr ∈ S1, we establish an intermediary result (Corol-
lary 6.6) where Dehn fillings do not appear anymore. As Corollary 6.6 holds
for ζ1, . . . , ζr ∈ eiπQ, we use continuity and a density argument to extend it to
any unitary ζ1, . . . , ζr ∈ S1.

Organization of the paper. In Section 2 we define (a normalized version
of) the twisted Alexander polynomial ∆α,n

M , in particular we establish the basic
results in cohomology required for that, based on Appendix C and we prove
Theorem 1.11. Section 3 is devoted to construct Dehn fillings that approx-
imate M , so that the character in (1) extends to them, as we assume that
ζ1, . . . , ζr ∈ eiπQ. In Section 4 we prove a twisted version (Theorem 4.2) of
Fried’s Theorem and some properties of the Ruelle zeta functions that will be
used later. Essentially this section extends the results of [35] to the case where a
unitary twist is added. Section 5 discusses the behavior of Reidemeister torsion
and Ruelle zeta functions under sequences of approximating Dehn fillings, and
the proof of the main theorem is completed in Section 6.

The paper contains four appendices. In Appendix A we present for small
values of n the polynomials ∆α,n

41
(t) for the canonical surjection α from the

knot group to the integers. In Appendix B we recall the main properties of
combinatorial torsion. The results in L2-cohomology needed in Section 2 are
established in Appendix C. Finally, in Appendix D we establish Theorem 1.12.

Acknowledgements. The authors warmly thank Nicolas Bergeron for many
enlightening conversations on related topics and also Shu Shen for indicating
them that Müller’s proof of Fried’s theorem should generalize with an additional
unitary twist. They also thank the anonymous referee for his/her careful reading
and meaningful suggestions that contributed to improve the paper.
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2. Reidemeister torsion and twisted Alexander polynomials

In this section we define the twisted Alexander polynomial for a cusped hy-
perbolic manifold M , equipped with an epimorphism α : π1(M) � Zr satisfying
Assumption 1.2, and a lift ρ of the holonomy satisfying Assumption 1.3. Before
defining the polynomial from the Reidemeister torsion of the pair (M, ᾱ⊗ ρn),
we need to consider homology and cohomology of (M,χ⊗ ρn), as the represen-
tation χ⊗ ρn is a specialization of ᾱ⊗ ρn.

In Subsection 2.1 we study (co)-homology of (M,χ ⊗ ρn) and (M, ᾱ ⊗ ρn).
In Subsection 2.1.3 we consider the Reidemeister torsion of (M,χ⊗ ρn). Then
we define the twisted Alexander polynomial in Subsection 2.2 from the Reide-
meister torsion of (M, ᾱ⊗ρn). We express evaluations of the twisted Alexander
polynomial at unit complex numbers as Reidemeister torsions of the represen-
tations χ⊗ ρn and we prove Theorem 1.11.

Preliminary constructions and results on homology, cohomology and Reide-
meister torsion are gathered in Appendix B, where we also recall some prop-
erties of Symn−1. This section also relies on results on L2-cohomology from
Appendix C.

2.1. Cohomology of (M,χ ⊗ ρn) and (M, ᾱ ⊗ ρn). When χ is trivial, the
results of this subsection on cohomology twisted by χ⊗ ρn = ρn can be found
in [29, Section 4].

In Corollary C.7 (in Appendix C) we prove that the inclusion ∂M ↪→ M
induces a monomorphism

(2) 0→ H1(M,χ⊗ ρn)→ H1(∂M,χ⊗ ρn).

Thus to understand the cohomology of M we need to understand the cohomol-
ogy of the peripheral tori T 2

i , i = 1, . . . , l, where

∂M = T 2
1 t · · · t T 2

l

is the decomposition in connected components. In particular l is the number of
cusps of M .

2.1.1. Peripheral cohomology.

Lemma 2.1. If Assumptions 1.2 and 1.3 hold, then for any peripheral torus T 2
i

(a) dimCH
0(T 2

i , χ⊗ ρn) =

{
0 if n even or χ(π1(T 2

i )) 6= {1},
1 if n odd and χ(π1(T 2

i )) = {1}.
(b) dimCH

0(T 2
i , χ⊗ ρn) = dimCH

2(T 2
i , χ⊗ ρn) = 1

2 dimCH
1(T 2

i , χ⊗ ρn).

Proof. (a) To compute its dimension, we view H0(T 2
i , χ ⊗ ρn) as the space of

invariants (Cn)χ⊗ρn(π1(T 2
i )). For any non-trivial element γ in π1(T 2

i ) its image
ρ(γ) by the holonomy is parabolic, with trace 2εγ , for some εγ = ±1. Hence
χ(γ) ρn(γ) has only one eigenspace, with dimension one and eigenvalue χ(γ)εn−1

γ

(see Remark B.7 in Appendix B).
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By Assumptions 1.2 and 1.3, when n is even or when χ(π1(T 2
i )) 6= {1},

there is always an element γ ∈ π1(T 2
i ) that satisfies χ(γ)(εγ)n−1 6= 1, thus

dimC(H0(T 2
i , χ ⊗ ρn)) = 0. In case n is odd and χ(π1(T 2

i )) = {1}, then
χ(γ)(εγ)n−1 = 1 for every γ ∈ π1(T 2

i ).
(b) Poincaré duality induces a nondegenerate pairing, see Remark B.6:

H0(T 2
i , χ⊗ ρn)×H2(T 2

i , χ⊗ ρn)→ C.
Notice that we use χ and its inverse χ (its complex conjugate). Hence by (a):

dimC(H0(T 2
i , χ⊗ ρn)) = dimC(H0(T 2

i , χ̄⊗ ρn)) = dimC(H2(T 2
i , χ⊗ ρn)).

Then the assertion follows from these computations and vanishing of the Euler
characteristic of T 2. �

To compute further cohomology groups, we discuss L2-forms, in particu-
lar de Rham cohomology. Let Eχ⊗ρn denote the flat bundle on M (or on
any submanifold) twisted by the representation χ⊗ ρn, see Appendix C. For
each peripheral torus T 2

i , let T 2
i × [0,∞) ⊂ M denote the cusp, which is an

end of M , and consider the space of forms on the cusp valued on the bun-
dle Eχ⊗ρn , Ω∗(T 2

i × [0,∞), Eχ⊗ρn). It is equipped with a metric as in Ap-
pendix C, in particular we may talk about L2-forms, as forms with a finite
norm. A cohomology class is called L2 if represented by an L2-form, and the
subspace of L2-cohomology classes in H i(T 2

j × [0,+∞), Eχ⊗ρn) is denoted by

H i(T 2
j × [0,+∞), Eχ⊗ρn)L2 .

Lemma 2.2. Assume that n is odd and that the restriction of the character
χ(π1(T 2

j )) is trivial. Then:

(a) Every class in H i(T 2
j × [0,+∞), Eρn)L2 is represented by a form v ⊗ ω,

where ω is an i-form on T 2 and v ∈ (Cn)ρ(π1(T 2)).
(b) dimCH

0(T 2 × [0,+∞), Eρn)L2 = dimCH
1(T 2 × [0,+∞), Eρn)L2 = 1 and

H2(T 2 × [0,+∞), Eρn)L2 = 0.

Proof. In [27, Lemma 3.3] the same statement is proved for the composition with
the adjoint representation on the Lie algebra sln(C), Ad ◦ Symn−1. Recall that

from Lemma 2.1 the space of invariants (Cn)ρn(π1(T 2
i )) is one-dimensional, for n

odd. Then the lemma follows from Clebsch-Gordan formula, see Equation (33)
in Appendix B. �

2.1.2. Cohomology of M. In this paragraph we prove the properties of the co-
homology of M required for our definition of twisted Alexander polynomial.

Theorem 2.3. Let M , ρ, and α satisfy Assumptions 1.2 and 1.3.

(a) If n is even or if χ is non trivial on every peripheral subgroup, then H∗(M,χ⊗
ρn) = 0.

(b) If n is odd, then dimCH
1(M ;χ⊗ ρn) = dimCH

2(M ;χ⊗ ρn) is the number
of peripheral subgroups to which the restriction of χ is trivial.

Proof. For both (a) and (b), first notice that M has the homotopy type of a
2–complex, hence H i(M,χ ⊗ ρn) = 0 for any i ≥ 3. In addition, the space of

invariants H0(M,χ⊗ρn) ∼= (Cn)χ⊗ρn(π1(M)) also vanishes since ρn is irreducible.
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To prove (a), the vanishing of H1(M,χ⊗ ρn) is a consequence of Lemma 2.1
and the monomorphism in (2). We conclude that H2(M,χ ⊗ ρn) = 0 because
the Euler characteristic χ(M) is zero.

For (b) assume that n is odd. We use that H1(M,χ⊗ ρn) has no L2-forms,
by Theorem C.1, hence by Lemmas 2.1 and 2.2, the map

H1(M,χ⊗ ρn)→ H1(T 2
i , ρn)

has rank at most one if χ|π1(T 2
i ) is trivial, and 0 otherwise. Thus, if s is the

number of peripheral tori T 2
i where χ restricts trivially, by (2),

dimCH
1(M ;χ⊗ ρn) ≤ s.

On the other hand, using duality twice (Poincaré and homology/cohomology)
H3(M,∂M ;χ⊗ρn) = 0 and, by the long exact sequence of the pair, H2(M,χ⊗
ρn) � H2(∂M,χ⊗ ρn) is a surjection. Hence by Lemma 2.1:

dimCH
2(M ;χ⊗ ρn) ≥ s.

Finally, as χ(M) = 0, dimCH
1(M ;χ⊗ ρn) = dimCH

2(M ;χ⊗ ρn) = s. �

We need to precise the bases for the cohomology groups. It is easier to
describe them for the homology groups. For a torus T 2

i such that χ(π1(T 2
i ))

is trivial, if hi ∈ Cn is invariant by π1(T 2
i ), then the class of hi ⊗ T 2

i is a well
defined element in H2(T 2

i , χ⊗ ρn), and so is hi ⊗ li in H1(T 2
i , χ⊗ ρn).

Lemma 2.4. Assume that χ is trivial precisely on π1(T 2
1 ), . . . , π1(T 2

s ). Let
hi ∈ Cn be non-zero and invariant by π1(T 2

i ), for i = 1, . . . , s. Let i∗ denote
the map induced by inclusion in homology. Then:

(a) {i∗(h1 ⊗ T 2
1 ), . . . , i∗(hs ⊗ T 2

s )} is a basis for H2(M,χ⊗ ρn).
(b) {i∗(h1 ⊗ l1), . . . , i∗(hs ⊗ ls)} is a basis for H1(M,χ⊗ ρn).

Proof. For i = 1, . . . , s, since χ is trivial on T 2
i , (a) follows from the isomor-

phisms

H2(T 2
i , ρn) ∼= H0(T 2

i , ρn) ∼= (Cn)ρn(π1(T 2)),

and from the isomorphism

0→ H2(T 2
1 , ρn)⊕ · · · ⊕H2(T 2

s , ρn)
i∗→ H2(M,χ⊗ ρn)→ 0

coming from the long exact sequence in homology.
For (b) we claim first that hj ⊗ lj is non-zero in H1(T 2

j , ρn), for j = 1, . . . , s.
We prove the claim by computing cellular homology explicitly. For this pur-
pose, chose a cell decomposition of the torus with one 0-cell, one 2-cell and two
1-cells, that are loops, and assume that one of these loops represents lj . Fur-
thermore, using the description of ρn(π1(T 2

j )), a straightforward computation

shows that hj ⊗ lj is not a boundary, see (7) below. Alternatively, as in the
proof of Lemma 2.2, an equivalent statement is proved in [27, Lemma 3.4] for
Ad ◦ Symn−1, and our claim follows from Clebsch-Gordan formula (33).

From the proof of Theorem 2.3 we have an injection

0→ H1(M,χ⊗ ρn))
i∗→ H1(T 2

1 , ρn)⊕ · · · ⊕H1(T 2
s , ρn)
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and a surjection

H1(T 2
1 , ρn)⊕ · · · ⊕H1(T 2

s , ρn)
i∗→ H1(M,χ⊗ ρn)→ 0.

We also have naturality with the pairing between homology and cohomology
(see Appendix B):

〈i∗(−),−〉 = 〈−, i∗(−)〉
where the pairing on ∂M is understood to be the sum of pairings on each
component T 2

i . Thus, by Poincaré duality,

(3) ker(i∗) = im(i∗)⊥.

By Remark B.7, hj ∈ (Cn)ρn(π1(T 2
i )) is isotropic for the ρn-invariant bilinear

form. Hence by Lemma 2.2(a), the pairing between hj ⊗ lj and any L2-class in
H1(T 2

j × [0,∞), ρn) vanishes. Thus, by dimension considerations:

(4) 〈h1 ⊗ l1, . . . , hs ⊗ ls〉 =
(
H1(∂M × [0,∞), χ⊗ ρn)L2

)⊥
.

Furthermore, by Theorem C.1:

im(i∗) ∩H1(∂M × [0,∞), χ⊗ ρn)L2 = 0.

As dim im(i∗) = dimH1(∂M × [0,∞), χ⊗ ρn)L2 = 1
2 dimH1(∂M,χ⊗ ρn) = s,

(5) im(i∗)⊕H1(∂M × [0,∞), χ⊗ ρn)L2 = H1(∂M,χ⊗ ρn).

Finally, (5), (3) and (4) yield

ker(i∗)⊕ 〈h1 ⊗ l1, . . . , hs ⊗ ls〉 = H1(∂M,χ⊗ ρn),

in particular 〈h1⊗l1, . . . , hs⊗ls〉∩ker(i∗) = 0. Thus {i∗(h1⊗l1), . . . , i∗(hs⊗ls)}
are linearly independent, hence a basis. �

When χ is trivial, Lemma 2.4 is [29, Proposition 4.6].

2.1.3. Reidemeister torsion. We use the convention of [31] and [43] for Rei-
demeister torsion, so that it is compatible with the standard convention for
analytic torsion but it is the reciprocal to the twisted Alexander polynomial.
See Appendix B.

As a consequence of Theorem 2.3, we have that

| tor(M,χ⊗ ρn)| ∈ R>0

is well defined when n is even or when n is odd and the restriction of χ to
every peripheral torus is nontrivial. The absolute value in | tor(M,χ ⊗ ρn)| is
needed, because χ introduces an indeterminacy of the argument, more precisely
tor(M,χ⊗ ρn) is only defined up to multiplication by a unit complex number.

In the non-acyclic case we shall consider

| tor(M,χ⊗ ρn; b1, b2)|,
where b1 and b2 are the basis of the homology provided by Lemma 2.4. Notice
that | tor(M,χ⊗ρn; b1, b2)| is independent on the vectors hi in Lemma 2.4. This

follows since (Cn)π1(Ti) is one-dimensional and | tor(M,χ⊗ ρn; b1, b2)| does not
change if we replace the vector hi in Lemma 2.4 by a multiple, since in the
formula for the torsion the additional factors cancel out.
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2.2. Twisted Alexander polynomials. In this subsection we introduce the
twisted Alexander polynomial for a finite volume 3-manifold M (connected and
orientable) and an epimorphism α : π1(M) � Zr as in the introduction. We
define it as the inverse of a Reidemeister torsion of ᾱ ⊗ ρn, where ᾱ(γ) =

t
α1(γ)
1 · · · tαr(γ)

r , ∀γ ∈ π1(M).

We use the notation C[t±1] = C[t±1
1 , . . . , t±1

r ] for the ring of Laurent polyno-
mials and C(t) = C(t1, . . . , tr) for its field of fractions.

Lemma 2.5. If Assumptions 1.2 and 1.3 hold, then H∗(M, ᾱ⊗ρn) = H∗(M, ᾱ⊗
ρn) = 0.

Proof. Choose ζ1, . . . ζr ∈ S1 generic so that the corresponding homomorphism
χ : π1(M) → S1 in (1) has non trivial restriction on each peripheral subgroup
π1(T 2

i ). Then by Theorem 2.3 we have H∗(M,χ ⊗ ρn) = 0. Using combina-
torial cohomology, notice that the matrices used to compute H∗(M,χ ⊗ ρn)
are the evaluation at (t1, . . . , tr) = (ζ1, . . . , ζr) of the matrices used to compute
H∗(M, ᾱ⊗ρn). In addition, the C(t)-rank of a matrix with coefficients in C[t±1]
is larger than or equal to its C-rank after evaluation at (t1, . . . , tr) = (ζ1, . . . , ζr).
Thus, by acyclicity of χ⊗ρn, the C-rank of the matrices used to compute coho-
mology is maximal, hence the C(t)-rank of these matrices before evaluation at
(t1, . . . , tr) = (ζ1, . . . , ζr) is also maximal, and therefore ᾱ⊗ ρn is acyclic. �

For each peripheral torus T 2
i chose mi so that π1(T 2

i ) = 〈li,mi〉 ∼= Z2, where
li is an α-longitude. Writing α(mi) = (α1(mi), . . . , αr(mi)) ∈ Zr, we denote

tα(mi) = ᾱ(mi) = t
α1(mi)
1 · · · tαr(mi)r .

Definition 2.6. The twisted Alexander polynomial of (M, ᾱ⊗ ρn) is

∆α,n
M (t1, . . . , tr) :=


1

tor(M, ᾱ⊗ ρn)
for n even,

1

tor(M, ᾱ⊗ ρn)(tα(m1) − 1) · · · (tα(ml) − 1)
for n odd.

It is an element of C(t) = C(t1, . . . , tr), a quotient of polynomials in the
variables t1, . . . , tr, defined up to sign and up to multiplication by monomials
tn1
1 · · · tnrr . In Corollary 2.9 we prove that it is a Laurent poynomial, an element

of C[t±1] = C[t±1
1 , . . . , t±1

r ].

Remark 2.7. For even dimensional representations, this is the same as Wada’s
polynomial [44], using Kitano’s Theorem [21]. For odd dimensional representa-
tions, it is a normalization of the latter.

We view C[t±1]n ∼= C[t±1] ⊗ Cn as a π1(M)-module via ᾱ ⊗ ρn, and denote
it by C[t±1]nᾱ⊗ρn . For the definition of the order of a C[t±1]-module, see [43].

Lemma 2.8. (a) Up to units in C[t±1]:

1

tor(M, ᾱ⊗ ρn)
= orderC[t±1]H1(M,C[t±1]nᾱ⊗ρn) .

(b) For n odd, orderC[t±1]H1(M,C[t±1]nᾱ⊗ρn) ∈ (tα(m1)−1) · · · (tα(ml)−1)C[t±1].
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Corollary 2.9. The twisted Alexander polynomial is a Laurent polynomial:

∆α,n
M ∈ C[t±1].

Before proving Lemma 2.8 we need the following lemma:

Lemma 2.10. Assume that n is odd.

(a) For each peripheral torus T 2
j ,

H1(T 2
j ,C[t±1]nᾱ⊗ρn) ∼= C[t±1]/(tα(mj) − 1).

In addition, it is generated by the image of hj ⊗ lj via the natural map

(Cn)ρn(lj) ⊗H1(S1
j ;Z)→ H1(T 2

j ,C[t±1]nᾱ⊗ρn),

where (Cn)ρn(lj) is the (1-dimensional) subspace invariant by ρn(lj), 0 6=
hj ∈ (Cn)ρn(lj), and S1

j is a circle representing lj.

(b) The inclusion induces a monomorphism

H1(∂M,C[t±1]nᾱ⊗ρn) ↪→ H1(M,C[t±1]nᾱ⊗ρn).

Proof. To prove (a) consider S1
j×R→ T 2

j the infinite cyclic covering correspond-

ing to ᾱ with deck transformation group Z generated by τ : S1
j × R→ S1

j × R.

There is a long exact sequence in homology [32, 38]

· · · → Hi(S
1
j × R,C[t±1]nᾱ⊗ρn)

τ∗−1−→ Hi(S
1
j × R,C[t±1]nᾱ⊗ρn)

→ Hi(T
2
j ,C[t±1]nᾱ⊗ρn)→ · · ·

As ᾱ(π1(S1
j )) = 1, Hi(S

1
j × R,C[t±1]nᾱ⊗ρn) ∼= C[t±1] ⊗ Hi(S

1
j ,Cnρn) and the

action of τ∗ on C[t±1] corresponds to multiplication by tα(mj). Furthermore

Hi(S
1
j ,Cnρn) = 0 for i 6= 0, 1 and H1(S1

j ,Cnρn) ∼= H0(S1
j ,Cnρn) ∼= (Cn)ρn(lj). Then

(a) follows from these considerations.
In the proof of (b), we need two preliminary steps. The first one is to show

that

(6) H1(∂M,C[t±1]n)⊗χ C→ H1(M,C[t±1]n)⊗χ C
is injective for every χ ∈ Hom(Zr,S1). By Lemma 2.4 (b) and Assertion (a) in
this lemma, the composition

H1(∂M,C[t±1]nᾱ⊗ρn)⊗χ C→ H1(M,C[t±1]nᾱ⊗ρn)⊗χ C→ H1(M,χ⊗ ρn)

is an isomorphism, hence (6) is a monomorphism.
The second step is to show that, if we consider the algebraic subvariety

Vj ⊂ (C∗)r defined by tα(mj) = 1, then Vj ∩ (S1)r is Zariski dense in Vj . To
prove this, by the action of SL(r,Z) we may assume α(mj) = (k, 0, . . . , 0) for

some k ∈ Z \ {0}. Then the subvariety Vj ⊂ (C∗)r is defined by tk1 = 1 and the
assertion is clear.

After these preliminary claims, we prove (b): let

a ∈ ker(H1(∂M,C[t±1]nᾱ⊗ρn)→ H1(M,C[t±1]nᾱ⊗ρn))

be an element of the kernel, consider

aj ∈ H1(T 2
j ,C[t±1]nᾱ⊗ρn) ∼= C[t±1]/(tα(mj) − 1)
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its projection to the j-th component. Viewing C[t±1]/(tα(mj)−1) as the function
ring of Vj ⊂ (C∗)r, injectivity of (6) implies that aj vanishes when evaluated
on Vj ∩ (S1)r. By Zariski density of Vj ∩ (S1)r in Vj , aj vanishes on the whole
Vj , hence aj = 0. �

Proof of Lemma 2.8. By Turaev [43] we have an equality (up to units in C[t±1]):

1

tor(M, ᾱ⊗ ρn)
=

order(H1(M,C[t±1]nᾱ⊗ρn))

order(H0(M,C[t±1]nᾱ⊗ρn)) order(H2(M,C[t±1]nᾱ⊗ρn))

As the manifold M has the simple homotopy type of a 2-dimensional com-
plex, we have that order(H2(M,C[t±1]nᾱ⊗ρn)) = 1. Hence it suffices to prove

that order(H0(M,C[t±1]nᾱ⊗ρn)) = 1. So, looking for a contradiction, assume

order(H0(M,C[t±1]nᾱ⊗ρn)) 6= 1 and pick λ = (λ1, . . . , λr) ∈ (C∗)r a root of

the polynomial order(H0(M,C[t±1]nᾱ⊗ρn)) (this polynomial defines a hypersur-

face in Cr, and since the order is defined up to factors t±1
i , it intersects (C∗)r

non trivially). Evaluation at (t1, . . . , tr) = (λ1, . . . , λr) defines a morphism

Λ: π1(M) → C∗, by Λ(γ) = λ
α1(γ)
1 · · ·λαr(γ)

r . Since λ is a root of the poly-
nomial order(H0(M,C[t±1]nᾱ⊗ρn)), H0(M,Λ ⊗ ρn) 6= 0. This means that Cn
has non-zero coinvariants for the action of Λ ⊗ ρn. By duality, Cn has non-
zero invariants by the action of Λ⊗ ρn, in particular Cn has a proper subspace
preserved by ρn. By Zariski density of the holonomy representation, this con-
tradicts irreducibility of Symn−1. This proves (a).

For (b) construct the twisted chain complex from a CW–complex K, with
|K| = M :

C∗(K,C[t±1]nᾱ⊗ρn) = C[t±1]n ⊗ᾱ⊗ρn C∗(K̃,Z).

We may assume furthermore that there are 2-cells of K, denoted by e2
i , repre-

senting T 2
i and 1-cells denoted by e1

i representing li. Chose respective lifts ẽ2
i

of e2
i , and ẽ1

i of e1
i , in the universal cover K̃ that correspond to the same con-

nected component of the lift of the peripheral torus T 2
i in the universal covering.

Moreover, chose ẽ1
i to be adjacent to ẽ2

i , so that

(7) ∂ẽ2
i = (mi − 1)ẽ1

i + (1− li)f̃1
i

for some other 1-cell f1
i . Notice that 〈mi, li〉 ∼= π1(T 2

i ), with ᾱ(li) = 1 and

ᾱ(mi) = tα(mi). Chose also hi ∈ Cn a non-zero element invariant by ρn(π1(T 2
i )).

Let L∗ ⊂ C∗(K,C[t±1]nᾱ⊗ρn) be the C[t±1]-subcomplex generated by the ele-

ments hi ⊗ ẽji , j = 1, 2, i = 1, . . . , l. By the choice of lifts:

(8) ∂(hi ⊗ ẽ2
i ) = (tα(mi) − 1)hi ⊗ ẽ1

i ,

up to sign and up to powers of tα(mi), and ∂(hi⊗ ẽ1
i ) = 0 since e1

i represents li.
Hence L∗ is a subcomplex of C∗(K, ᾱ⊗ ρn). Moreover it follows from (8) that
this complex L∗ is also acyclic as a complex of C(t)-vector spaces. We have a
short exact sequence of acyclic complexes of C(t)-vector spaces:

(9) 0→ L∗ → C∗(K,C[t±1]nᾱ⊗ρn)→ C∗(K,C[t±1]nᾱ⊗ρn)/L∗ → 0.

Furthermore we can construct geometric bases à la Milnor for C∗(K,C[t±1]nᾱ⊗ρn)

that include the elements hi ⊗ ẽji , Definition B.2. Thus there are compatible
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geometric bases in the sequence and the multiplicativity formula for the torsion
[31, Theorem 3.2] provides the equality:

tor(M, ᾱ⊗ ρn) = tor(L∗) tor(C∗(K,C[t±1]nᾱ⊗ρn)/L∗).

From (8) the contribution of tor(L∗) is (tm1 − 1) · · · (tml − 1). Finally, we show
that the zeroth and second homology groups of C∗(K,C[t±1]nᾱ⊗ρn)/L∗ vanish
(hence its torsion is the inverse of a Laurent polynomial). For that purpose,
notice that from Lemma 2.10 (a) and (8) we have a natural isomorphism

H1(L∗) ∼= H1(∂M,C[t±1]nᾱ⊗ρn).

Hence by Lemma 2.10 (b) we have an injection induced by inclusion

H1(L∗) ↪→ H1(M,C[t±1]nᾱ⊗ρn).

Using this monomorphism, the long exact sequence in homology corresponding
to (9), and the vanishing of Hi(M,C[t±1]nᾱ⊗ρn) for i = 0, 2, it follows that zeroth

and second homology groups of C∗(K,C[t±1]nᾱ⊗ρn)/L∗ also vanish. �

Proposition 2.11. For n even,

|∆α,n
M (ζ1, . . . , ζr)| =

1

| tor(M,χ⊗ ρn)|
.

For n odd,

|∆α,n
M (ζ1, . . . , ζr)| =

1

| tor(M,χ⊗ ρn; b1, b2)|
∏

ζα(mi) 6=1

1

|ζα(mi) − 1|
.

In the proposition, b2 and b1 are the basis in homology of Lemma 2.4, accord-
ing to the components where χ(π1(T 2

i )) is trivial, α(mi) ∈ Zr is a generator of

the image of α(π1(T 2
i )). We use the notation ζα(mi) = ζ

α1(mi)
1 · · · ζαr(mi)r . The

product in the odd case runs on the components where χ(π1(T 2
i )) is non trivial.

Proof. In the acyclic case (when n is even or when χ is non-trivial on each
peripheral subgroup) the proposition follows from naturality, cf. [31, § 6].

The proof of the non-acyclic case is very similar to the proof of Lemma 2.8 b),
but the subcomplex L∗ is only constructed from the peripheral tori for which
the restriction of χ is trivial. Namely, assume that n is odd and that χ is trivial
precisely on π1(T 2

1 ), . . . , π1(T 2
s ). Then, choosing a CW-complex K as in the

proof of Lemma 2.8, we take L∗ to be the subcomplex of C∗(K,χ⊗ρn) generated

by elements hi⊗ ẽji , j = 1, 2, i = 1, . . . , s. In this case the boundary operator is
zero in L∗, and a geometric basis for L∗ is precisely a lift of the basis b1 and b2
for H∗(M,χ⊗ ρn), by Lemma 2.4. From the defining short exact sequence and
the previous consideration, it follows that C∗(K,χ ⊗ ρn)/L∗ is acyclic and its
torsion equals | tor(M,χ⊗ ρn; b1, b2)|. Then the lemma follows from naturality
applied to C∗(K,C[t±1]n)/L′∗, where L′∗ is the subcomplex C[t±1]-generated by

the same elements as L∗, hi ⊗ ẽji , j = 1, 2, i = 1, . . . , s. �

For ρ3 = Sym2 ◦ρ = Ad ◦ρ and χ trivial, Proposition 2.11 has been proved
by Yamaguchi in [48] for knot exteriors and by Dubois and Yamaguchi in [9] in
a more general setting.
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Proof of Theorem 1.11. Proposition 2.11 expresses the evaluation of the twisted
Alexander polynomial at unitary complex numbers as a Reidemeister torsion,
which is an element of C∗, up to multiplication by a unit complex number. In
particular it is not zero. �

3. Dehn fillings and rational twists

In this section we consider Dehn fillings on M and sequences of those fillings
that converge geometrically to M . In the first subsection we discuss compati-
bility conditions with the twist and with the lift of the holonomy (equivalently
the spin structure). In particular we restrict to rational Dehn fillings. In the
second subsection we discuss surgery formulas for the torsion.

Definition 3.1. A unitary twist χ : π1(M) → S1 ⊂ C is called rational if it
takes values in e2πiQ.

Assumption 3.2. In this section we assume that:

(a) χ is rational,
(b) χ restricted to each peripheral subgroup π1(T 2

j ) ⊂ π1(M) is nontrivial.

Assumption 3.2 (a) implies that χ induces a twist of certain Dehn fillings, as
we will explain in the next subsection. Assumption 3.2 (b) allows to simplify
the formulas when n is odd. The results in this section could be generalized
without Assumption (b) by considering bases in homology, but this simpler
version is sufficient for applying them in Section 6.

3.1. Compatible Dehn fillings. For each peripheral torus T 2
i we have an α-

longitude, namely an element li ∈ π1(T 2
i ) that generates the kernel of α|π1(T 2

i ),

by Assumption 1.2. We fix a basis for the fundamental group of the peripheral
group that contains this element: 〈mi, li〉 = π1(T 2

i ) ∼= Z2. As trace(ρ(li)) = −2
(Assumption 1.3), we may chose trace(ρ(mi)) = +2, after replacing mi by mili
if needed.

Once we have fixed the mi and li, given pairs of coprime integers pi, qi, the
Dehn filling with filling meridians pimi + qili is denoted by Mp1/q1,...,pl/ql . To
simplify notation we write

Mp/q := Mp1/q1,...,pl/ql .

The inclusion map is denoted by i : M → Mp/q, it induces an epimorphism
i∗ : π1(M) → π1(Mp/q). Another convention is that (p, q) → ∞ means that

p2
i + q2

i → +∞ for i = 1, . . . , l.
By Thurston’s hyperbolic Dehn filling theorem, when p2

i + q2
i is sufficiently

large for each i = 1. . . . , l, then Mp/q is hyperbolic. The (conjugacy class of
the) holonomy of Mp/q composed with i∗ converges to the (conjugacy class of
the) holonomy of M in the set of conjugacy classes of such representations
Hom(π1(M),PSL(2,C))/PSL(2,C).

As we work with representations in SL(2,C), we need to impose compatibility
conditions on the Dehn filling to get the same conclusion for the lifts. We shall
also impose conditions so that the rational twist χ factors through i∗ to a twist
of Mp/q.
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Definition 3.3. The Dehn filling Mp/q = Mp1/q1,...,p1/ql is called compatible
with χ and ρ if, for each i = 1, . . . , l:

(1) χ(mpi
i ) = 1, and

(2) qi ≡ 1 mod 2.

Since χ(li) = 1 by Assumption 1.2, Condition (1) in the definition amounts
to say that the twist of M factors through π1(Mp/q). As we assume χ rational,
this is achieved by taking pi ∈ order(χ(mi))Z. Condition (2) in the definition
is explained by the following lemma.

Lemma 3.4. For an infinite family of compatible Dehn fillings Mp/q such that

(p, q)→∞, there exists a lift of the holonomy ρp/q of Mp/q in SL(2,C) such
that

lim
(p,q)→∞

[ρp/q ◦ i∗] = [ρ]

in Hom(π1(M),SL(2,C))/ SL(2,C), where ρ is the lift of the holonomy of the
complete structure on M .

Proof. As we chose mi so that trace(ρ(mi)) = +2, Condition (2) in Defini-
tion 3.3 means trace(ρ(pimi + qili)) = −2. Using the natural bijection between
spin structures and lifts of the holonomy, this is precisely the condition required
for a spin structure on M to extend to Mp/q, see [29] for instance. In terms of
lifts of representations, this is the compatibility condition for the lifts of the de-
formation for the holonomy in Thurston’s hyperbolic Dehn filling theorem. �

We shall use the following notation:

ρp/qn := Symn−1 ◦ρp/q : π1(Mp/q)→ SLn(C),

%p/qn := ρp/qn ◦ i∗ : π1(M)→ SLn(C).

Thus for large p2
i + q2

i , i = 1, . . . , l, [%
p/q
n ] lies in a neighborhood of [ρn] in

Hom(π1(M),SLn(C))/ SLn(C).

3.2. Dehn filling formula. We shall only consider compatible Dehn fillings.
In particular χ factors through π1(Mp/q). Since Mp/q is closed, Corollary C.7

yields that H∗(Mp/q, χ ⊗ ρ
p/q
n ) vanishes. However H∗(M,χ ⊗ %

p/q
n ) does not

need to vanish, we have:

Lemma 3.5. If Assumption 3.2 holds for χ, then for sufficiently large p2
i + q2

i ,
i = 1, . . . , l, we have:

H∗(M,χ⊗ %p/qn ) = 0.

Proof. We first claim that the inclusion ∂M →M induces a monomorphism

(10) 0→ H∗(M,χ⊗ %p/qn )→ H∗(∂M,χ⊗ %p/qn ).

The proof of the claim is analogous to Theorem 2.3, but simpler, as we no not
need a theorem in L2-cohomology but Mayer-Vietoris exact sequence. More
precisely, we apply Mayer-Vietoris to the pair (M,V ), where V is the union of
the attached solid tori in the Dehn filling, so that V ∩M = ∂M and V ∪M =
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Mp/q. As H∗(Mp/q, χ⊗ρ
p/q
n ) = 0, Mayer-Vietoris long exact sequence yields an

isomorphism induced by inclusion maps:

(11) H∗(M ;χ⊗ %p/qn )⊕H∗(V ;χ⊗ %p/qn ) ∼= H∗(∂M ;χ⊗ %p/qn ),

which proves that (10) is a monomorphism. Using this, to prove the lemma
we show the vanishing of the cohomology of each peripheral 2-tori T 2

j . For this
purpose, we use that

H0(T 2
j , χ⊗ %p/qn ) ∼= (Cn)(χ⊗%p/qn )(π1(T 2

j ))

where (Cn)(χ⊗%p/qn )(π1(T 2
j )) denotes the subspace invariant by (χ⊗%p/qn )(π1(T 2

j )).
If γj denotes the soul of the j-th attached solid torus Vj , then, after conjugation,

(12) ρp/q(γj) =
(
eλ(γj)/2 0

0 e−λ(γj)/2

)
where λ(γj) is the complex length, λ(γj) = `(γj) + i θ(γj), and `(γj) > 0 is the
(real) length of the geodesic γj in Mp/q. Therefore, as we assume that χ is non
trivial on every peripheral subgroup:

(Cn)(χ⊗%p/qn )(π1(T 2
j )) = (Cn)χ(γj)ρ

p/q
n (γj) = 0.

As H0(T 2
j , χ ⊗ %

p/q
n ) = 0, from Poincaré duality and χ(T 2

j ) = 0 we deduce the

vanishing of the cohomology groups in every dimension, H∗(T 2
j , χ⊗ %

p/q
n ) = 0,

which concludes the lemma. �

By applying Milnor’s formula on the torsion of a Mayer-Vietoris sequence, we
have (further details on the proof can be found in [29, Lemmas 5.7 and 5.11]):

Proposition 3.6. Under Assumption 3.2 for χ:

tor(Mp/q, χ⊗ ρp/qn ) = tor(M,χ⊗ %p/qn )
l∏

j=1

n−1∏
k=0

(e
λ(γj)

2
(n−1−2k)χ(mj)− 1).

where the complex length λ(γj) is defined in (12).

We want to consider sequences of admissible Dehn fillings Mp/q such that

(p, q)→∞, hence by Lemma 3.4 %p/q → ρ. By naturality of the torsions:

Lemma 3.7. Under Assumption 3.2 for χ:

lim
(p,q)→∞

tor(M,χ⊗ %p/qn ) = tor(M,χ⊗ ρn).

As mentioned at the beginning of the section, if we did not assume non-
triviality of χ on each peripheral torus, a generalization of Proposition 3.6 and
Lemma 3.7 would also holds, but one would need to consider bases in homology.
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4. Ruelle zeta functions and Fried’s theorem

In this section we establish the analytic tools that will be used in Section 6
to prove our version (Theorem 6.1) of a result of Müller, relating the logarithm
of the Reidemeister torsion of a closed hyperbolic 3-manifold, its volume and
some geometric quantity expressed as a function on the lengths of the geodesics.
The new point in our Theorem 6.1 is the appearance of a unitary twist χ.

In this section we fix a closed hyperbolic 3-manifold N with fundamental
group π1(N) = Γ and a lift of its holonomy ρ : Γ → SL2(C). For any natural
integer n, we denote by ρn : Γ → SLn(C) the (n − 1)-th symmetric power of
the holonomy ρ. Finally, we fix a group homomorphism χ : Γ→ S1 (sometimes
called the twist).

The two statements we need to prove in this section are the following, the
definitions of the two different Ruelle zeta functions come right after in Subsec-
tion 4.1.

Proposition 4.1. For any integer k, the unitary Ruelle zeta function Rχ,k
extends meromorphically to the whole complex plane. Moreover, it satisfies the
functional equation:

|Rχ,k(s)| = e4 Vol(N)s/π|Rχ,−k(−s)|.

Theorem 4.2 (Fried’s Theorem). The Ruelle zeta function Rχ⊗ρn extends
meromorphically to C, it is holomorphic at s = 0 and

|Rχ⊗ρn(0)| = | tor(N,χ⊗ ρn)|2.

4.1. Ruelle zeta functions. In this paragraph we introduce two Ruelle zeta
functions Rχ⊗ρn and Rχ,k (we call the latter the unitary Ruelle zeta function).
Those functions are defined as in [35], except for the appearance of the twist χ.
Since the twist has modulus one, it does not modify the arguments from [35]
showing the convergence of the defining series, hence we will not discuss this
point. On the other hand, the unitary Ruelle zeta function, as well as Selberg
zeta functions with a twist that we do not define here, are extensively studied
in Bunke’s and Olbrich’s book [6]. The basics of the study of those functions
are due to Fried in his seminal article [12].

Any closed geodesic φ in the manifold N corresponds uniquely to a conjugacy
class [γ] in the set [Γ] of conjugacy classes in the fundamental group of N . A
prime element in Γ is an element that cannot be written as a non-trivial power
of another one. We will use the notation PC(N) for the set of conjugacy classes
[γ] of prime elements γ of Γ (equivalently, the set of prime closed geodesics in
N). Any γ is mapped by the holonomy representation to a conjugate of the

matrix

(
eλ(γ)/2 0

0 e−λ(γ)/2

)
where λ(γ) = `(γ) + iθ(γ) is the complex length of

the geodesic φ represented by γ. In particular `(γ) > 0 denotes the length of γ
and the parameter θ(γ) is determined modulo 4πiZ (4π instead of 2π because
we take care of the spin structure, equivalently, the lift to SL(2,C)).
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Definition 4.3. For s ∈ C with Re(s) > 2, the Ruelle zeta function is

Rχ⊗ρn(s) =
∏

[γ]∈PC(N)

det
(

Id−χ(γ)ρn(γ)e−s`(γ)
)
.

The unitary Ruelle zeta function is

Rχ,k(s) =
∏

[γ]∈PC(N)

(1− χ(γ)e
k
2
iθ(γ)e−s`(γ)).

The term unitary comes from the unitary representation γ 7→ e
k
2
iθ(γ).

The relation between both functions is the following, whose proof is a term-
wise direct computation, see [35, (3.14)] for a proof.

Lemma 4.4. For s ∈ C with Re(s) > 2,

Rχ⊗ρn(s) =
n∏
k=0

Rχ,n−2k(s− (
n

2
− k)).

In particular meromorphic continuation of the former follows from meromor-
phic continuation of the latter, which is the content of the first statement of
Proposition 4.1.

The proof of Proposition 4.1 is exactly the same as [35, Proposition 3.2]:
one uses a similar functional equation for a Selberg zeta function Zχ,k proved
in [6, Section 3.3.2] (see also [35, Section 4], though there is no twist χ in the
latter reference). Then one expresses the unitary Ruelle zeta function Rχ,k as
a product of Selberg zeta functions, and the proposition follows from the study
of Selberg zeta functions carried out in [6].

4.2. Fried’s theorem. In this subsection we prove Theorem 4.2. Again, it
follows the lines of [35], which itself reproduces the proof contained in Wotzke’s
PhD thesis [46]. One needs some care to introduce our twist χ, and we will
describe the global picture of the proof, stressing out the points where the twist
plays a role.

4.2.1. Analytic torsion. The first step is to replace the Reidemeister torsion by
the analytic torsion: the representation χ ⊗ ρn, despite non-unitary, allows to
equip the flat bundle Eχ⊗ρn = Γ\(H3×Cn) with a canonical hermitian metric,
as we explain in Appendix C. Using the Hodge star on N and this hermitian
metric on Eχ⊗ρn , one defines the Hodge-Laplace operator ∆p

χ,n acting on the
space Ωp(N,Eχ⊗ρn) of p-forms on N with coefficients in Eχ⊗ρn .

Since N is compact, for any t > 0 the heat operator e−t∆
p
χ,n is of trace class.

The asymptotic behavior for small and large t of the heat trace Tr e−t∆
p
χ,n is

local in N , in the sense that they are properties of the Laplacian acting on the
universal cover H3 where the twist χ does not comes into play and it follows
from the usual arguments that the expression

log T (N,χ⊗ ρn) =
1

2

d

ds

 1

Γ(s)

∫ ∞
0

ts−1
3∑
p=1

(−1)ppTr(e−t∆
p
χ,n)dt

∣∣∣∣∣∣
s=0
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defines an invariant of (N,χ⊗ ρn) called the analytic torsion.
In the rest of the section, the following alternating sum of heat traces will be

denoted by

(13) Kχ,n(t) =
3∑
p=1

(−1)ppTr(e−t∆
p
χ,n).

The representation ρn has determinant one, and as χ has module one, χ⊗ρn is
unimodular, hence we can apply Cheeger-Müller theorem, in the version of [33]
(see also [4]):

Theorem 4.5 (Cheeger-Müller). For N closed, the combinatorial and analytic
torsions coincide, that is

|tor(N,χ⊗ ρn)| = T (N,Eχ⊗ρn).

Hence to prove our Theorem 4.2 we are led to relate the analytic torsion with
the evaluation at 0 of the Ruelle zeta function.

4.2.2. Selberg trace formula. The second ingredient is the Selberg trace formula.
Again [Γ] denotes the set of conjugacy classes in Γ = π1(N).

From the identification N = Γ\H3 it follows that forms in Ωp(N,Eχ⊗ρn)
are exactly the equivariant p-forms on H3 with value in Cn, and the Laplace

operator ∆p
χ,n can be seen as the restriction of the Laplace operator ∆̃p

n acting
on Cn-valued forms on H3.

Using invariance properties of the Laplace operator, and denotingG = SL2(C),
it follows that the heat trace can be decomposed as a series

(14) Tr e−t∆
p
χ,n =

∑
γ∈Γ

χ(γ)

∫
Γ\G

hpn(t, g−1γg)dg

where hpn(t, g) is the trace of the kernel of the heat operator e−t∆̃
p
n that we

compose with the regular representation R(g) to get an endomorphism of the
fiber of Eχ⊗ρn-valued p-forms at the class of the point g in H3 = SL2(C)/SU(2).

It turns out that one can compute the heat trace on the ground manifold
N with the heat trace on its universal cover, summing up on all translated
fundamental domains in a tiling of H3. A reference for a proof of (14) is [34,
(5.7)].

Inserting (14) in (13), one obtains

(15) Kχ,n(t) =
∑
γ∈Γ

χ(γ)

∫
Γ\G

kn(t, g−1γg)dg

where kn(t) =
∑3

p=1(−1)pp hpn(t).
In fact, one can regroup the summands by conjugacy classes and compute

explicitly the integrals in the right hand side of (15). This is performed in [35,
Section 7] and the result is [(7.10), loc. cit.], note that here the twist χ is just



ASYMPTOTICS OF TWISTED POLYNOMIALS 21

added in each summand:

(16) Kχ,n(t) = Vol(N)
∑
k∈Z

∫
R
Pk(iλ)Θk,λ(kn(t))dλ

+
∑
[γ] 6=1

χ(γ)`(γ)

2πD(γ)nΓ(γ)

∑
k∈Z

e−kθ(γ)/2

∫
R

Θk,λ(kn(t))e−`(γ)λdλ,

where

• `(γ) and θ(γ) are the real and the imaginary part of the complex length
λ(γ) of γ.

• Pk is the Plancherel polynomial Pk(z) = 1
4π2 (k

2

4 − z
2).

• Θk,λ is the character of the corresponding representation πk,λ of G called
the unitary principal series, see [35, Section 2.4].
• The integer nΓ(γ) is defined as being maximal for the property that

there exists γ0 ∈ Γ such that γ = γ
nΓ(γ)
0 .

• D(γ) is the Weyl denominator of γ:

D(γ) = (1− e−(`(γ)+iθ(γ)))(1− e−(`(γ)−iθ(γ))).

It turns out that the series indexed by k in (16) are indeed finite sums, since
there are only finitely many indices k such that Θk,λ(kn(t)) is not zero. Precisely,
there are exactly four indices kj , j = 1, . . . , 4, such that Θkj ,λ(kn(t)) 6= 0. They
are computed in [35, Section 7]:

k1 = n+ 1, k2 = −k1, k3 = −n− 3, k4 = −k3,

and one obtains (see [35, (7.17)]):

(17) Kn(t) =
4∑
j=1

(−1)je−tλ
2
j

×

Vol(N)

∫
R
e−tλ

2
Pkj (iλ)dλ+

∑
[γ] 6=1

χ(γ)`(γ)ekjθ(γ)/2

D(γ)nΓ(γ)

e−`(γ)2/(4t)

(4πt)1/2


where the corresponding λj are computed in [35, (3.31)]:

λ1 =
n+ 3

2
, λ2 = −λ1, λ3 = −n+ 1

2
, λ4 = −λ3 .

4.2.3. Auxiliary operators. At this stage it is not clear yet that the expan-
sion (17) of the sum of heat traces Kχ,n(t) that defines the analytic torsion can
be related with the evaluation at 0 of the Ruelle zeta function Rχ⊗ρn . The idea
of Müller and Wotzke is to use some auxiliary operators ∆χ,n(j), j = 1, . . . , 4,
and to show that each of the four summands in (17) can indeed be written as the
(super-)trace of one of this operator acting on sections of some graded vector
bundles. Those operators ∆χ,n(j) are defined in [35, (6.15)] as a combination of
some Casimir type operators studied in [6, Section 1.1.3]. Again, Müller does
not include the case of a non-trivial unitary twist χ that we need, but all the
basic work is done in [6] for those Casimir operators with a twist.
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Applying the same strategy that in Subsection 4.2.2 and expressing the trace
of those operators with the Selberg trace formula yields:

(18) Trs(e
−t∆χ,n(j)) =

1

2
e−tλ

2
j

×

Vol(N)

∫
R
e−tλ

2
Pkj (iλ)dλ+

∑
[γ] 6=1

χ(γ)`(γ)ekiθ(γ)/2

D(γ)nΓ(γ)

e−`(γ)2/(4t)

(4πt)1/2


so that inserting (18) in (17) gives

(19) Kχ,n(t) =
1

2

4∑
j=1

(−1)j Trs(e
−t∆χ,n(j)).

We need to check that those operators have trivial kernels, it is done without
a twist in [35, Lemma 7.2]:

Lemma 4.6. For any j = 1, . . . , 4, we have ∆χ,n(j) > 0.

Proof. We will show that it is a consequence of the vanishing of the kernel of
the Hodge Laplacians ∆p

χ,n, see Theorem C.1.
First, we can express the Hodge Laplacian as a direct sum of Bochner-Laplace

operators on H3 (see [36, (5.7)]) that are denoted with a tilde. (recall that Symn

is (n+ 1)-dimensional):

∆̃p
n+1 =

⊕
ν∈K̂

[νpn+1 : ν]6=0

∆̃ν + (Symn(Ω)− ν(ΩK)) Id .

Here K = SU(2), the representations ν of K in the sum are those that appear in
the decomposition into irreducible representations of the restriction νpn+1 to K

of the action of G on Cn+1-valued p-forms through Symn. The scalars Symn(Ω)
and ν(ΩK) are corresponding eigenvalues of the Casimir operator, the first one
is computed in [35, (6.16)].

From this equation and the fact that for any p, one has ∆p
χ,n+1 > 0, we

deduce that the operator Aχ,ν defined as Aχ,ν = ∆χ,ν − ν(ΩK) Id (see [35,
(4.7)] for the notations) is bounded below by −Symn(Ω) for any ν such that
[νpn+1 : ν] 6= 0. Inserting that in the definition of ∆χ,n(j) given in [35, (6.15)] it
follows that ∆χ,n(j) > 0, as claimed. �

Lemma 4.6 ensures that we can apply the Mellin transform to (19), one gets:

1

Γ(s)

∫ ∞
0

ts−1Kχ,n(t)dt =
1

2Γ(s)

∫ ∞
0

ts−1
4∑
j=1

(−1)j Trs(e
−t∆χ,n(j))dt

and taking the derivative at s = 0 gives

(20) T (N,Eχ⊗%n)4 =

4∏
j=1

detgr(∆χ,n(j))(−1)j+1
.



ASYMPTOTICS OF TWISTED POLYNOMIALS 23

4.2.4. A determinant formula. The relation between the right hand side of (20)
and the Ruelle zeta function is given by the following proposition:

Proposition 4.7. Denote by ρn : Γ→ SLn(C) the complex conjugate of ρn, we
have

Rχ⊗ρn(s)Rχ⊗ρn(s) = e−
4nVol(N)s

π

4∏
j=1

detgr(s
2 − 2λjs+ ∆χ,n(j))(−1)j+1

.

This proposition is stated and proved as [35, Proposition 6.2] without the
twist χ, nevertheless its proof relies on two facts that are known to be true
with the twist inserted:

• A determinant formula for the Selberg zeta function ([6, Theorem 3.19]).
• The expression of the Ruelle zeta function as a product of Selberg zeta

functions, whose proof [35, Proposition 3.5] works identically in our
situation.

With those two points, Müller’s proof generalizes verbatim to our statement.

Proof of Theorem 4.2. It follows from Lemma 4.6 that we can take the limit as
s goes to 0 in Proposition 4.7, we obtain

(21) Rχ⊗ρn(0)Rχ⊗ρn(0) =
4∏
j=1

detgr(∆χ,n(j))(−1)j+1

Note that in the product on [γ], the conjugacy classes of both γ and of γ−1

are taken into account. Since ρ(γ) is conjugated in SL2(C) to ρ(γ−1) and

using χ(γ−1) = χ(γ), one has det(1 − χ(γ)ρn(γ)) = det(1 − χ(γ−1)ρn(γ−1)).
Exchanging the role of γ and γ−1 in the product defining Rχ⊗ρn we obtain:

Rχ⊗ρn(0) = Rχ⊗ρn(0)

hence the left hand side of (21) is equal to |Rχ⊗ρn(0)|2. Inserting this in (20)
yields

T (N,Eχ⊗%n)2 = |Rχ⊗ρn(0)|
and Theorem 4.2 is proved. �

5. Approximation by Dehn fillings

In this section we describe the geometric convergence of Dehn fillings Mp/q

to M , focusing on the behavior of geodesics and their role in Ruelle functions.

5.1. Geometric convergence. For a sequence of compatible Dehn fillings
Mp/q such that (p, q) → ∞, not only we have convergence of representations

[%
p/q
n ]→ [ρn], but we have also pointed bi-Lipschitz convergence, see Thurston’s

notes [42] or [15] for an overview, and [2, Theorem E.5.1] for this precise state-
ment:

Theorem 5.1 (Thurston). Given ε > 0 and δ > 0, there exists C > 0 such
that, if p2

j + q2
j > C(ε, δ) for i = 1, . . . , l, then there is a (1 + ε)-bi-Lipschitz

homeomorphism of the δ-thick parts M [δ,+∞) →M
[δ,+∞)
p/q .
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The δ-thick part of N is defined as

N [δ,+∞) = {x ∈ N | inj(x) ≥ δ},

where inj(x) denotes the injectivity radius of x.

Let γ
p1/q1
1 , . . . , γ

pl/ql
l denote the souls of the filling solid tori of Mp/q, whose

length converges to zero as (p, q)→∞.

Proposition 5.2. Except for γ
p1/q1
1 , . . . , γ

pl/ql
l , all primitive closed geodesics of

Mp/q must intersect the δ-thick part, provided that 0 < δ < δ0 for a δ0 > 0
depending only on M .

Proof. By Margulis lemma, using the thin-thick decomposition (see [42] again)
and taking δ0 > 0 less than half the length of the shortest geodesic of M ,
M \M [δ,+∞) is the union of cusp neighborhoods. Therefore, by choosing δ0 even

less, by Theorem 5.1 Mp/q \M
[δ,+∞)
p/q is the union of Margulis tubes around the

geodesics γ
p1/q1
1 , . . . , γ

pl/ql
l . Then the proposition holds true because Margulis

tubes contain no closed geodesics other than their souls. �

As the diameter of M [δ,+∞) goes to infinity when δ → 0, by Proposition 5.2
and geometric convergence we have:

Proposition 5.3. For given L > 0 generic (so that L is not the length of any
geodesic in M) there exists a constant C(L) > 0 such that if p2

j + q2
j > C(L),

for i = 1 . . . , l, then the inclusion induces a bijection:

{[γ] ∈ PC(M) | `(γ) ≤ L} ←→ {[γ] ∈ PC(Mp/q) | `(γ) ≤ L, γ 6= (γ
pi/qi
i )±1}.

As the length of the γi converges to zero, the inclusion induces a bijection:

{[γ] ∈ PC(M) | `(γ) ≤ L} ←→ {[γ] ∈ PC(Mp/q) |
1

L
≤ `(γ) ≤ L}.

Furthermore, the length and the holonomy of each geodesic in PC(M) is the limit
of length and holonomy of the corresponding geodesic in Mp/q as (p, q)→∞.

See [29, Section 6.3 and 6.4] for a detailed proof, for instance. Another
consequence of bi-Lipschitz convergence is a uniform estimate on the growth of
geodesics. We next quote Lemma 6.3 from [29], based on [7]:

Lemma 5.4. Let X be a complete hyperbolic 3-manifold. For a compact domain
K ⊂ X,

#{[γ] ∈ PC(X) | γ ∩K 6= ∅, `(γ) ≤ L} ≤ Ce2L,

with C = π e8 diam(K)/ vol(K).

This is not the best estimate, for instance the estimate

#{[γ] ∈ PC(N) | `(γ) ≤ L} < Ce2L/2L.

due to Margulis [24] is better, see also [7], but Lemma 5.4 provides a uniform
bound for the family of Dehn fillings. From Proposition 5.2 and Theorem 5.1,

by taking K = M [δ,+∞) or K = M
[δ,+∞)
p/q , Lemma 5.4 yields:
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Lemma 5.5. There is a uniform C such that

#{[γ] ∈ PC(X) | `(γ) ≤ t} ≤ Ce2t,

for X = M and X = Mp/q.

5.2. Estimates for Ruelle functions. We want to apply the results of the
previous subsection to find uniform estimates on Ruelle functions for the Dehn
fillings. We start with two elementary inequalities:

For z ∈ C, |z| < 1,
∣∣ log |1− z|

∣∣ ≤ ∣∣ log(1− |z|)
∣∣.(22)

For z ∈ C, |z| < 1/2,
∣∣ log |1− z|

∣∣ ≤ 4|z|.(23)

To prove (22) apply logarithms to

1− |z| ≤ |1− z| ≤ 1 + |z| ≤ 1

1− |z|
and take into account that log(1− |z|) < 0. Inequality (23) is then straightfor-
ward.

The next lemma reformulates the key calculus required for analysis of Ruelle
functions, without using the formalism of measures of [29].

Lemma 5.6. For ε > 0 there exists C ′(ε) such that, if s > 2 + ε and L ≥ 1,
then ∑

[γ]∈PC(X)
`(γ)>L

∣∣ log |1− χ(γ)e−s `(γ)|
∣∣ ≤ C ′(ε) eL(2+ε−s)

for X = Mp/q or X = M , where C ′(ε) is uniform on X and the unitary twist χ.

Proof. We omit the subscript [γ] ∈ PC(X) from the sums, which is always
understood in the summations along the proof, and is combined with restrictions
on the length of the geodesics. First, by (23)∑

`(γ)>L

∣∣ log |1− χ(γ)e−s `(γ)|
∣∣ ≤ 4

∑
`(γ)>L

e−s `(γ).

We divide the set PC(X) according to lengths. Set

lj = (1 + j
2ε)L.

Then by using Lemma 5.5:

(24)
∑

`(γ)>L

e−s `(γ) ≤
∞∑
j=0

∑
lj<`(γ)≤lj+1

e−s `(γ) ≤
∞∑
j=0

C e2lj+1e−s lj

Since

2lj+1 − s lj = (2 + ε− s)L+ j(− s
2 + 1)ε L,

the bound in (24) can be explicitly computed:

∞∑
j=0

C e2lj+1e−s lj = C
eL(2+ε−s)

1− e(−s/2+1)ε L
≤ C

1− e−ε2/2

and we are done. �
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The following bound is used in the proof of the theorem on the asymptotic
behavior.

Lemma 5.7. For a closed hyperbolic three-manifold N there exists a constant
C(N) depending only on N such that

(25)

∞∑
k=5

∣∣ log |Rχ,−k(k/2)|
∣∣ ≤ C(N).

Proof. For each k ≥ 5 split log |Rχ,−k(k/2)| into two summations:∣∣ log |Rχ,−k(k/2)|
∣∣ ≤ ∑

[γ]∈PC(N)
`(γ)≤1

∣∣ log |1− χ(γ)e−kλ(γ)/2|
∣∣

+
∑

[γ]∈PC(N)
`(γ)>1

∣∣ log |1− χ(γ)e−kλ(γ)/2|
∣∣ .

We bound the contribution of the first summation. There exists k0 (depending
on the length of the shortest geodesic of N) such that for each k > k0 we have
for all [γ] ∈ PC(N):

|χ(γ)e−kλ(γ)/2| = |e−k`(γ)/2| < 1

2
.

By (23) we obtain for all [γ] ∈ PC(N):∣∣ log |1− χ(γ)e−kλ(γ)/2|
∣∣ ≤ 4e−k`(γ)/2.

As the number of geodesics of length ≤ 1 is finite, the contribution of the
summation indexed by `(γ) ≤ 1 in the left-hand side of (25) is bounded (by
finitely many geometric series, starting from k0).

For the summation of geodesics [γ] with `(γ) > 1, we use Lemma 5.6 (that
we stated for Dehn fillings but applies to any closed hyperbolic manifold if we
do not require uniformity on the manifold). As k ≥ 5, this yields again a bound
by a geometric series. �

Remark 5.8. In Lemma 5.7 we do not have uniformity on the Dehn fillings
because of short geodesics (k0 depends on the length of the shortest geodesic
in N). We will get rid of short geodesics by Dehn filling formulas in the next
section (see Lemma 6.3). Notice that we do have uniformity on the twist χ.

6. Asymptotic behavior of torsions

I this section we prove Theorem 1.6 and Theorem 1.8 from the introduction.

6.1. Müller’s theorem for closed Dehn filling. We give first the proof of
Müller’s theorem for the Dehn fillings Mp/q. We follow [35], just with the minor
change of the rational unitary twist χ:
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Theorem 6.1 (Müller). For χ rational, Mp/q a compatible Dehn filling and
m ≥ 3:

log

∣∣∣∣tor(Mp/q, χ⊗ ρ2m)

tor(Mp/q, χ⊗ ρ4)

∣∣∣∣ =
m−1∑
k=2

log |Rχ,−2k−1(k + 1
2)| − 1

π
Vol(Mp/q)(m

2 − 4),

log

∣∣∣∣tor(Mp/q, χ⊗ ρ2m+1)

tor(Mp/q, χ⊗ ρ5)

∣∣∣∣ =
m∑
k=3

log |Rχ,−2k(k)| − 1

π
Vol(Mp/q)(m− 2)(m+ 3).

Proof. We prove the odd-dimensional case, the even dimensional case is similar.
Observe first that, by Lemma 4.4,

Rχ⊗ρ2m+1(s) =
2m∏
k=0

Rχ,2m−2k(s− (m− k))

= Rχ,0(s)
m∏
k=1

Rχ,2k(s− k)Rχ,−2k(s+ k)

= Rχ⊗ρ5(s)

m∏
k=3

Rχ,2k(s− k)Rχ,−2k(s+ k)(26)

Then, taking s = 0 in (26) and by Theorem 4.2:

(27) T (Mp/q, Eχ⊗ρ2m+1)2 = T (Mp/q, Eχ⊗ρ5)2
m∏
k=3

|Rχ,2k(−k)||Rχ,−2k(k)|.

Next recall from Proposition 4.1 that

|Rχ,2k(−k)| = |Rχ,−2k(k)|e−4kVol(Mp/q)/π,

then (27) becomes

log
T (Mp/q, Eχ⊗ρ2m+1)

T (Mp/q, Eχ⊗ρ5)
= − 2

π
Vol(N)

m∑
k=3

k +

m∑
k=3

log |Rχ,−2k(k)|

and the statement follows from Cheeger–Müller Theorem, Thm. 4.5. �

This theorem holds for any closed oriented hyperbolic 3-manifold, not only
for Dehn fillings. Combined with Lemma 5.7 it yields a twisted version of
Müller’s theorem:

Corollary 6.2 ([35]). Let N be a closed hyperbolic, oriented 3-manifold. Let
χ : π1(N)→ S1 be a homomorphism. Then:

lim
n→∞

log | tor(N,χ⊗ ρn)|
n2

= −Vol(N)

4π
.

Note that the corollary above is also a consequence of the more general work
of Bismut–Ma–Zhang in [3].
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6.2. Proof of the main theorem. Assume that the twist χ is rational and
that χ restricted to every peripheral subgroup ofM is nontrivial, until Lemma 6.7.
For an admissible Dehn filling Mp/q, let

A = {(γp1/q1)±1, . . . , (γpl/ql)
±1}

denote the set of oriented souls of the filling tori, namely the l short geodesics
added for the Dehn filling, with both orientations (hence A has cardinality 2l).
Define, for k ≥ 5,

B
p/q
χ,k =

∑
[γ]∈PC(Mp/q)−A

log |1− χ(γ)e−kλp/q(γ)/2|.

The convergence of this series follows from Margulis’ estimate ([24]), because
k/2 ≥ 5/2 > 2. We discuss below in Lemma 6.4 further properties of this series.

Recall that %
p/q
n = ρ

p/q
n ◦ i∗, where ρ

p/q
n is the symmetric power of the lift of

the holonomy of Mp/q and i∗ : π1(M)→ π1(Mp/q) is induced by inclusion.

Lemma 6.3. Given a rational twist χ of M that is nontrivial on each peripheral
torus, for any integer m ≥ 3:

log

∣∣∣∣∣tor(M,χ⊗ %p/q2m )

tor(M,χ⊗ %p/q4 )

∣∣∣∣∣ = −m
2 − 4

2

( l∑
i=1

`(γpi/qi) +
2

π
Vol(Mp/q)

)
+

m−1∑
k=2

B
p/q
χ,2k+1

and

log

∣∣∣∣∣tor(M,χ⊗ %p/q2m+1)

tor(M,χ⊗ %p/q5 )

∣∣∣∣∣ = − (m−2)(m−3)
2

( l∑
i=1

`(γpi/qi)+
2

π
Vol(Mp/q)

)
+

m∑
k=3

B
p/q
χ,2k

Proof. We discuss the even case, 2m, and assume for simplicity that there is
only one cusp, l = 1. Set λ = λ(γp1/q1) and ζ = χ(m1) the image by the twist
of any meridian of the boundary torus. By Proposition 3.6:

log

∣∣∣∣∣tor(Mp/q, χ⊗ ρ
p/q
2m )

tor(M,χ⊗ %p/q2m )

∣∣∣∣∣ =
2m−1∑
k=0

log |e(2m−1−2k)λ/2ζ − 1|

=
m−1∑
k=0

log |(e(k+ 1
2

)λζ − 1)(e−(k+ 1
2

)λζ − 1)|.

Thus

log

∣∣∣∣∣tor(Mp/q, χ⊗ ρ
p/q
2m )

tor(Mp/q, χ⊗ ρ
p/q
4 )

tor(M,χ⊗ %p/q4 )

tor(M,χ⊗ %p/q2m )

∣∣∣∣∣ =
m−1∑
k=2

log |(e(k+ 1
2

)λζ−1)(e−(k+ 1
2

)λζ−1)|.

With Theorem 6.1 it yields

(28)

log

∣∣∣∣∣tor(M,χ⊗ %p/q2m )

tor(M,χ⊗ %p/q4 )

∣∣∣∣∣ =

m−1∑
k=2

log |Rp/qχ,−2k−1(k +
1

2
)| − 1

π
Vol(Mp/q)(m

2 − 4)

−
m−1∑
k=2

log |(e(k+ 1
2

)λζ − 1)(e−(k+ 1
2

)λζ − 1)|,
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where R
p/q
χ,−2k−1 denotes the twisted Ruelle zeta function of Mp/q. By definition

of B
p/q
k :

(29) log |Rp/qχ,−2k−1(k+ 1
2)| = log |Bp/q

χ,2k+1|+log |(1−ζe−(k+ 1
2

)λ)(1−ζe−(k+ 1
2

)λ)|.

To combine (28) and (29), we use:

(30)

∣∣∣∣∣(1− ζe−(k+ 1
2

)λ)(1− ζe−(k+ 1
2

)λ)

(1− ζe−(k+ 1
2

)λ)(1− ζe(k+ 1
2

)λ)

∣∣∣∣∣ =

∣∣∣∣∣1− ζe−(k+ 1
2

)λ

1− ζe(k+ 1
2

)λ

∣∣∣∣∣
=
∣∣∣e−λ( 1

2
+k)
∣∣∣ ∣∣∣∣∣1− ζe−(k+ 1

2
)λ

ζe−(k+ 1
2

)λ − 1

∣∣∣∣∣ = e−`(λ)(k+ 1
2

).

The lemma follows from (28), (29) and (30). �

Define, for k ≥ 5, a unitary Ruelle function on the cusped manifold M :

Rχ,−k(k/2) =
∏

γ∈PC(M)

(1− χ(γ)e−kλ(γ)/2).

Lemma 6.4. For k ≥ 5:

(a) The series∑
γ∈PC(M)

log |1− χ(γ)e−kλ(γ)/2| and
∑

γ∈PC(M)

log |1− e−k`(γ)/2|

converge uniformly.
(b) There exists a constant C > 0, uniform in χ, such that

∞∑
k=3

∣∣ log |Rχ,−2k(k)|
∣∣ ≤ C, and

∞∑
k=3

∣∣ log |Rχ,−2k−1(k + 1
2)|
∣∣ ≤ C.

(c) The series B
p/q
χ,k also converges uniformly, uniformly on (p, q) and the twist

χ. In addition,

lim
(p,q)→∞

B
p/q
χ,k = Rχ,−k(k/2)

uniformly on the twist χ.

In the lemma, uniformity on (p, q) or on χ means that the series can be
bounded term-wise in absolute value by a convergent series, independently on
(p, q) or/and on χ.

Proof. Assertion (a) follows from Margulis bound on geodesic length growth,
using inequalities (22) and (23). Assertion (b) has the very same proof as
Lemma 5.7. For (c), we get uniformity on (p, q) from Lemma 5.5 and the
fact that the sum does not include any of the short geodesics of the set A =

{(γp/q1 )±1, . . . , (γ
p/q
n )±1}; hence there is a uniform lower bound away from zero

on the length of the geodesics that appear in the sum of B
p/q
χ,k , and from this,

with Proposition 5.3 and Lemma 5.5, we get uniformity. Finally, the limit
follows also from Proposition 5.3. �
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Proposition 6.5. For a rational twist that is nontrivial on each peripheral
torus, and m ≥ 3,

log

∣∣∣∣tor(M,χ⊗ ρ2m+1)

tor(M,χ⊗ ρ5)

∣∣∣∣ =
m∑
k=3

log |Rχ,−2k(k)| − 1

π
Vol(M)(m− 2)(m+ 3)

and

log

∣∣∣∣tor(M,χ⊗ ρ2m)

tor(M,χ⊗ ρ4)

∣∣∣∣ =

m∑
k=2

log |Rχ,−2k−1(k + 1
2)| − 1

π
Vol(M)(m− 2)(m+ 2)

Proof. We take limits on Lemma 6.3 when (p, q) → ∞. On the left hand
side of the formula in Lemma 6.3, we apply Lemma 3.7. On the right hand
side, we apply that Vol(Mp/q) → Vol(M), that `(γpi/qi) → 0 [42, 15], and
Lemma 6.4. �

Using Propositions 2.11 and 6.5, we get:

Corollary 6.6. Assume that ζ = (ζ1, . . . , ζr) ∈ (S1)r satisfies that ζj ∈ eπiQ,

for j = 1, . . . , r, and ζα(mk) 6= 1, for k = 1, . . . , l. Then:

(a) for 2m even:

log

∣∣∣∣∣∆α,2m
M (ζ)

∆α,4
M (ζ)

∣∣∣∣∣ =
1

π
Vol(M)(m− 2)(m+ 2)−

m∑
k=2

log |Rχ,−2k−1(k + 1
2)| ,

(b) for 2m+ 1 odd:

log

∣∣∣∣∣∆α,2m+1
M (ζ)

∆α,5
M (ζ)

∣∣∣∣∣ =
1

π
Vol(M)(m− 2)(m+ 3)−

m∑
k=3

log |Rχ,−2k(k)|.

The proof of Theorem 1.6 for χ rational and non trivial on peripheral sub-
groups follows from Corollary 6.6 and Lemma 6.4 (b). Next we remove the
hypothesis on the twist χ.

Lemma 6.7. Corollary 6.6 holds for any ζ = (ζ1, . . . , ζr) ∈ (S1)r, without any
assumption on rationality of ζ1, . . . , ζr.

Proof. The proof is a density argument, using continuity of the terms that
appear in Corollary 6.6, that we need to justify.

By Theorem 1.11, we know that ∆α,n
M (ζ) does not vanish, hence log |∆α,n

M (ζ)|
is continuous on ζ = (ζ1, . . . , ζr) ∈ S1, for n ≥ 2.

For the continuity of Rχ,−k(k/2), k ≥ 5, as in the proof of Lemma 5.7 we
split again the series log |Rχ,−k(k/2)| in two: a finite sum indexed by geodesics
of length < L and a series indexed by geodesics of length > L. The finite sum is
continuous on ζ, so we need to chose L so that the series indexed by geodesics
of length > L is arbitrarily small, uniformly on ζ. More precisely, by (22), for
each [γ] ∈ PC(M)

|1− χ(γ)e−kλ(γ)/2| ≤ |1− e−k`(γ)/2|.



ASYMPTOTICS OF TWISTED POLYNOMIALS 31

As the series
∑

[γ]∈PC(M)

∣∣ log |1 − e−k`(γ)/2|
∣∣ converges (Lemma 6.4), for every

ε > 0 there exists L = L(ε) > 0 such that∑
[γ]∈PC(M)
`(γ)>L

∣∣ log |1− χ(γ)e−kλ(γ)/2|
∣∣ < ε,

uniformly on χ. As PC(M) has finitely many elements of length ≤ L, continuity
of Rχ,−k(k/2) on χ is clear. �

Proof of Theorems 1.6 and 1.8. By Lemma 6.7, equations of Corollary 6.6 hold
true for any ζ. Moreover, the bound on the series in the right-hand side given
by Lemma 6.4 (b) is uniform in χ, so that we obtain Theorem 1.6 by dividing
by (2m)2 in case (a), or by (2m + 1)2 in case (b), and by letting m tend to
infinity. This proves Theorem 1.6, and Theorem 1.8 follows in the same way,
again using uniformity on ζ of the bound from Lemma 6.4. �

Appendix A. Some twisted Alexander polynomials for the
figure-eight knot

We computed the twisted Alexander polynomials ∆ρn
41

for the figure-eight
knot for n up to 10.

n ∆ρn

41
(t)

2 t2 − 4 t+ 1

3 t2 − 5 t+ 1

4
(
t2 − 4 t+ 1

)2
5 t4 − 9 t3 + 44 t2 − 9 t+ 1

6 t6 − 12 t5 + 156 t4 − 388 t3 + 156 t2 − 12 t+ 1

7
(
t2 − 6 t+ 1

) (
t4 − 7 t3 + 372 t2 − 7 t+ 1

)
8 t8 − 16 t7 + 1045 t6 − 15808 t5 + 39160 t4 − 15808 t3 + 1045 t2 − 16 t+ 1

9
(
t6 + 9 t5 + 2403 t4 − 15690 t3 + 2403 t2 + 9 t+ 1

) (
t2 − 26 t+ 1

)
10 t10 − 20 t9 + 3630 t8 − 350916 t7 + 5322645 t6 − 13176480 t5

+5322645 t4 − 350916 t3 + 3630 t2 − 20 t+ 1

Appendix B. Review on combinatorial torsion

The goal of this appendix is to review basic properties of combinatorial tor-
sion.

We restrict to compact orientable three-dimensional manifolds N , possibly
with boundary. To simplify notation, we write Γ = π1(N). We also fix a field
F of characteristic 0, and a representation ρ : Γ→ GLn(F).
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B.1. Twisted chain complexes. Fix a CW-complex structure K on N . The

complex of chains on the universal covering K̃ is the free Z-module on the

cells of K̃, equipped with the usual boundary operator, and it is denoted by

C∗(K̃,Z). It has an action of Γ = π1(N) that turns it into a left Z[Γ]-module.
The group Γ acts on Fn via ρ on the left, and for the tensor product Γ acts on
Fn on the right using inverses: any γ ∈ Γ maps v ∈ Fn to ρ(γ−1)(v). We write

ρFn and Fnρ to emphazise the left and right Z[Γ]-module structures, respectively.
The twisted chain and cochain complexes are defined as:

C∗(K, ρ) = Fnρ ⊗Γ C∗(K̃,Z),(31)

C∗(K, ρ) = HomΓ(C∗(K̃,Z),ρ Fn).(32)

Those are complexes and co-complexes of finite-dimensional vector spaces, and
the corresponding homology and cohomology groups are denoted by H∗(K, ρ)
and H∗(K, ρ).

B.2. Geometric bases. For a cell ẽ ∈ K̃, Z[Γ]ẽ denotes the free Z[Γ]-module
of rank one on its Γ-orbit (i.e. the free module on all lifts of a given cell e in
K).

Lemma B.1. We have natural isomorphisms of F-vector spaces:

HomΓ(Z[Γ]ẽ,Fn) → Fn

θ 7→ θ(ẽ)

Fn ⊗Γ Z[Γ]ẽ → Fn

v ⊗ ẽ 7→ v

The proof is straightforward.
Chose {v1, . . . , vn} a basis for Fn and let {ei1, . . . eiji} be the set of i-dimensional

cells of K. For each cell eij chose a lift ẽij to K̃. Then {vk ⊗ ẽij}i,j,k is an F-

basis for Ci(K, ρ). Similarly {(ẽij)∗ ⊗ vl}i,j,l is an F-basis for Ci(K, ρ) where(
(ẽij)

∗ ⊗ vl
)
(γẽik) = ρ(γ)vlδjk.

Definition B.2. We call this basis a geometric basis for C∗(K, ρ), respectively
for C∗(K, ρ).

B.3. Combinatorial torsion. Recall the definition of torsion of a complex of
finite dimensional F-vector spaces C∗ with bases {ci}i for the chain complexes
and bases {hi}i for the homology groups, following for instance [31]. For that
purpose we consider the space of boundaries Bi = im(∂ : Ci+1 → Ci), the space
of cycles Zi = ker(∂ : Ci → Ci−1) and the homology Hi = Zi/Bi. We chose bi

an F-basis for Bi. Using the exact sequences

0→ Bi → Zi → Hi → 0, 0→ Zi → Ci → Bi−1 → 0

we lift bi it to a subset b̃i of Ci+1, and hi to a subset h̃i of Ci, so that b̃i−1∪h̃i∪bi
is an F-basis for Ci. We denote [̃bi−1∪ h̃i∪ bi : ci] the determinant of the matrix

which takes ci to b̃i−1∪ h̃i∪ bi (in the colomns of the matrix are the coordinates

of b̃i−1 ∪ h̃i ∪ bi with respect to ci). Then we define

tor(C∗, {ci}i, {hi}i) =

3∏
i=0

[̃bi−1 ∪ h̃i ∪ bi : ci](−1)i ∈ F∗
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If we have defined a geometric basis {ci}i as in Definition B.2, then the torsion
is:

tor(N, ρ, {hi}i) = tor(C∗(K̃, ρ), {ci}i, {hi}i) ∈ F∗/± det
(
ρ(Γ)

)
.

It is straightforward to check that it is well defined (see [31] and [38]). Topo-
logical invariance follows from uniqueness of triangulations on three-manifolds.

B.4. Duality homology-cohomology. We aim to define the torsion from the
cohomological point of view. Let V be a finite dimensional F-vector space, and
let ρ : Γ → GL(V ) be a representation. The contravariant representation or
dual representation ρ∗ : Γ→ GL(V ∗) is defined by ρ∗(γ)(f) = f ◦ ρ(γ−1).

Lemma B.3. The representations ρ and ρ∗ are equivalent if and only if there
exists a non-degenerate bilinear form B : V ⊗ V → F which is Γ-invariant.

If we choose a basis in V and its dual basis in V ∗, we obtain matrix repre-
sentations ρ, ρ∗ : Γ→ GLn(F), and they are related by ρ∗(γ) = ρ(γ−1)t. Notice
that (ρ∗)∗ = ρ.

Example B.4. For any representation ρ : Γ→ SL2(F), the module V = F2 has
a skew-symmetric non-degenerate bilinear form defined by the determinant.
Namely, the vectors (x1, x2) and (y1, y2) ∈ F2 are mapped to

det

x1 y1

x2 y2

 .

In view of Lemma B.3, ρ∗ and ρ are equivalent. More concretely, for any matrix
A ∈ SL2(F) we have (

0 1
−1 0

)
A
(

0 −1
1 0

)
= (A−1)t .

The pairing V ∗ ⊗ V → F induces a perfect pairing of complexes

〈 , 〉 : Ci(K, ρ)⊗ Ci(K, ρ∗)→ F,
defined by:

〈v ⊗ ẽ, θ〉 = θ(ẽ)(v),

where ẽ is a cell of K̃, v ∈ V and θ ∈ homΓ(C∗(K̃), V ∗). It is easy to check that
it is well defined, non-degenerate and that it is compatible with the boundaries
and coboundaries:

〈∂· , ·〉 = ±〈· , δ·〉
where the sign depends only on the dimension. Hence in its turn it induces a
non-degenerate Kronecker pairing between homology and cohomology

Hi(K, ρ)×H i(K, ρ∗)→ F .
Now we can relate the torsion in homology with the torsion in cohomology.
We denote by Bi, Zi and H i the coboundary, cocycle and cohomology spaces,

respectively. In addition, we take b̄i basis for Bi that we lift to ˜̄bi in Ci−1. We
define the torsion of a cocomplex with bases in cohomology hi as:

tor(C∗, {c̄i}i, {h̄i}i) =

3∏
i=0

[̃bi+1 ∪ ˜̄hi ∪ b̄i : c̄i](−1)i+1 ∈ F∗



34 LÉO BÉNARD, JÉRÔME DUBOIS, MICHAEL HEUSENER, AND JOAN PORTI

To relate torsion in homology and cohomology, notice that the geometric basis
ci of Ci(K, ρ) and c̄i of Ci(K, ρ∗) can be chosen to be dual. Then the matrices
of the boundary operators with respect to those basis are transpose to the
matrices of the respective coboundary operators. From this, we have:

Proposition B.5. If the basis hi for Hi(K, ρ) and the basis h̄i for H i(K, ρ∗)
are dual for each i, then

tor(Ci(K, ρ), {ci}, {hi}) = tor(Ci(K, ρ∗), {c̄i}, {h̄i}).

Remark B.6. We shall also use Poincaré duality with twisted coefficients, see
for instance [18, 38]. For N a compact orientable manifold:

H i(N ; ρ)∗ ∼= HdimN−i(N, ∂N ; ρ∗)

B.5. The representations we are interested in the paper. Here we list
the representations we use in the paper. We describe in which space they
are defined. Since the torsion lies by definition in F/ ± det ρ(Γ), we need to
understand det ρ(Γ). We start with a representation ρ : Γ → SL2(C), and we
put ρn := Symn−1 ◦ ρ.

(1) For the representation ρn : Γ→ SLn(C), the torsion is well defined up to
sign, as det ρ(Γ) = {1}. Recall that Cn has a non-degenerate Symn−1-
invariant bilinear form which is symmetric for n odd and antisymmetric
for n even. By irreducibility, the form is unique up to scalar. For n = 2
this form is the determinant (see Example B.4). For general n, it is the
symmetrization of this bilinear form on C2, an explicit formula is given
in Lemma 3.1.4 in [41]. Thus

ρ∗n
∼= ρn .

(2) For the representation α ⊗ ρn : Γ → GLn(C(t1, . . . , tr)), the torsion is
well defined up to sign and multiplication by monomials tm = tm1

1 · · · tmrr .
There is no Γ-invariant bilinear form on C(t1, . . . , tr)

n, and hence (α⊗
ρn)∗ and α⊗ ρn are not equivalent (for non-trivial α), nevertheless

(α⊗ ρn)∗ = α−1 ⊗ ρ∗n ∼= α−1 ⊗ ρn.
(3) In the case of the representation χ ⊗ ρn : Γ → GLn(C) for a character

χ : Γ→ S1 ⊂ C, only the modulus of the torsion is well defined. There
is no Γ-invariant bilinear form on Cn, and

(χ⊗ ρn)∗ = χ⊗ ρ∗n ∼= χ⊗ ρn.
By the classical duality theorems of Franz [11] and Milnor [30] we have

tor(N,α⊗ ρn) = ±tm tor(N,α−1 ⊗ ρn)

for some multiplicative factor ±tm, and

| tor(N,χ⊗ ρn)| = | tor(N, χ̄⊗ ρn)|.

Remark B.7. Let us recall some basic facts about the irreducible representa-
tion Symn−1 : SL2(C) → SLn(C). For details we refer to Springer’s book [41,
Section 3.1].

• The representation Symn−1 factors through PSL2(C) for n odd.
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• The space Cn has a non-degenerate Symn−1-invariant bilinear form,
that is symmetric for n odd and antisymmetric for n even. By irre-
ducibility, this form is unique up to scalar. An explicit formula is given
in Lemma 3.1.4 in [41] (for n = 2 see Example B.4). In higher dimen-
sions the Symn−1-invariant bilinear form is the symmetrization of the
determinant.
• The image of a non-trivial unipotent element in SL2(C) is a regular

unipotent element in SLn(C), i.e. it is conjugate to an upper-triangular
matrix which has only ones on the diagonal and a single block in the
Jordan-Hölder form.

It follows that the image of a parabolic element g ∈ SL2(C), with
trace εg2, for some εg = ±1 has a unique eigenspace, of dimension one
and with eigenvalue εn−1

g . Moreover, this 1-dimensional eigenspace is
an isotropic subspace of Cn.
• We also use Clebsch-Gordan formula:

(33) Ad ◦ Symn−1 ∼= Sym2(n−1) ⊕ Sym2(n−2) ⊕ · · · ⊕ Sym4 ⊕ Sym2

(see for instance [41, Exercise 3.2.4])

Appendix C. Vanishing of L2-cohomology

The goal of this appendix is to show that the classical vanishing theorems
in cohomology à la Matsushima-Murakami [25] apply to our situation with a
twist χ.

C.1. Review on L2-forms on hyperbolic manifolds. In this appendix
M is an oriented hyperbolic three-manifold (possibly of infinite volume) and
χ : π1(M) → S1 a unitary character, possibly trivial. In the rest of the paper
we assume that M has finite volume, but not in this appendix. Let

ρ : π1(M)→ SL2(C)

be a lift of the holonomy, and

Symn−1 : SL2(C)→ SLn(C)

be the n-dimensional holomorphic irreducible representation. The composition
is denoted by

ρn = Symn−1 ◦ρ : π1(M)→ SLn(C).

We consider the flat vector bundle Cn → Eχ⊗ρn →M with total space:

Eχ⊗ρn = Cn ×χ⊗ρn M̃.

We describe the hermitian metric on the bundle (i.e. on each fibre). View

the universal covering M̃ as the quotient SL(2,C)/SU(2), start with a hermit-
ian product on Cn invariant by the action of the compact group SU(2), and
translate it along SL(2,C)/SU(2) ∼= H3, via Symn−1. This hermitian product
is compatible with the action of ρn by construction, but also with the action of
χ, because hermitian products are invariant by multiplication by unit complex
numbers. Thus it induces a non-flat hermitian metric on the bundle Eχ⊗ρn .
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We consider Ωp(M,Eχ⊗ρn) the space of p-forms valued in Eχ⊗ρn , namely
smooth sections of the bundle Eχ⊗ρn ⊗ Ωp(M). The Riemannian metric on
TM and the hermitian metric on the fibres yield a Hodge star operator ∗, a
codifferential δ, and a Laplacian ∆p

χ,n on Ωp(M,Eχ⊗ρn). They also provide a
hermitian product on p-forms:

(φ, ψ) =

∫
M
φ ∧ ∗ψ ∀φ, ψ ∈ Ωp

c(M,Eχ⊗ρn),

where ∧ denotes the exterior product on forms in Ω∗(M) combined with the her-
mitian product on Eχ⊗ρn , and Ωp

c(M,Eχ⊗ρn) the space of compactly supported
forms in Ωp(M,Eχ⊗ρn)

Pointwise we use the Riemannian metric on M and the hermitian product
on the bundle to define a hermitian product on forms 〈φ, ψ〉x at any x ∈M , so
that

(φ ∧ ∗ψ)x = 〈φ, ψ〉x dvol for every x ∈M.

De Rham cohomology of the cocomplex (Ω∗(M,Eχ⊗ρn), d) is denoted by
H∗(M,Eχ⊗ρn); it is isomorphic to the simplicial cohomology H∗(M ;χ ⊗ ρn).
The aim of this appendix is to prove that every closed form with finite norm is
exact:

Theorem C.1. For any form ω ∈ Ω1(M,Eχ⊗ρn) satisfying (ω, ω) < ∞, if
dω = 0 then there exists η ∈ Ω0(M,Eχ⊗ρn) such that ω = dη.

Theorem C.1 is in fact a theorem on vanishing of L2-cohomology and it is a
version of a theorem of Garland [13]. This theorem is proved in Subsection C.2.

C.2. Proof of the theorem. The proof is based on the following theorem of
Andreotti-Vesentini [1] and Garland [13]: uniform ellipticity implies that closed
forms of finite norm are exact.

Theorem C.2 (Thm 3.22 in [13]). If there exists a constant c > 0 such that
for every form ω ∈ Ω1(M,Eχ⊗ρn) with compact support

(34) (dω, d ω) + (δ ω, δ ω) ≥ c(ω, ω),

then Theorem C.1 holds.

Inequality (34) is called uniform ellipticity because, for forms ω with compact
support, it is equivalent to

(∆1
χ,nω, ω) ≥ c(ω, ω).

In order to prove uniform ellipticity, we use the formalism of Matsushima and
Murakami [25], as in [13, 39, 17, 28, 40]. Since H3 ∼= SL(2,C)/SU(2), from the
decomposition sl(2,C) = su(2) ⊕ isu(2), orthogonal for the real Killing form,
there is a natural identification φx of the tangent space at each point TxH3 with
isu(2).

Let E = Cn×H3 be the trivial bundle, equipped with the natural flat connec-
tion, with covariant derivative ∇v and the standard differential d : Ωp(H3, E)→
Ωp+1(H3, E). Following [25] we define a new covariant derivative

∇̃v = ∇v − symn−1(φx(v)), ∀v ∈ TxH3,
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where symn−1 : sl2(C)→ sln(C) is the representation of the Lie algebra associ-
ated to Symn−1. The corresponding connection D : Ω0(H3, E) → Ω1(H3, E) is
given by

Ds(v) = d s(v)− symn−1(φx(v))(s)

for every section s ∈ Ω0(H3, E) and every tangent vector v ∈ TxH3. By con-
struction, D is a connection: D(f s) = fDs+ sd f for any function f and any
section s, and it can be checked that it is metric:

d〈s1, s2〉x = Ds1 ∧ s2 + s1 ∧Ds2,

where x 7→ 〈s1, s2〉x is a function on H3. The connection D is introduced in
[25] as induced from the natural connection associated to the principal bundle
on SLn(C)→ SL2(C), corresponding to the representation Symn−1.

Now, for any frame {e1, e2, e3} of H3, let {ω1, ω2, ω3} denote its dual coframe.

As d =
∑3

j=1 ω
j ∧∇ej [47, (6.19)] we have:

Proposition C.3. [25] On Ω∗(H3, E) we have

d = D + T and δ = D∗ + T ∗,

where

D =
∑
j

ωj ∧ ∇̃ej , T =
∑
j

ωj ∧ symn−1(φx(ej)),(35)

D∗ = −
∑
j

i(ej)∇̃ej , T ∗ =
∑
j

i(ej) symn−1(φx(ej)).(36)

Up to now these operators are defined on the bundle E on H3, and we want to
descend them to the bundle on M twisted by χ⊗ρn. Notice that the operators
and Proposition C.3 are found in the literature without the twist, so we need
to justify why it works in our situation. We may view the definitions and
Proposition C.3 on the trivial bundle E = Cn ×H3 → H3 as being equivariant
for the action of π1(M) via the representation ρn. On the other hand, these
formulas are C-linear, so they are equivariant for the action via χ⊗ ρn:

Remark C.4. Proposition C.3 holds true on Ω∗(M,Eχ⊗ρ).

Proposition C.5. [25] There is a Weitzenböck formula:

∆ = dδ + δd = DD∗ +D∗D + T T ∗ + T ∗T = ∆D +H

where ∆D = DD∗ +D∗D and H = T T ∗ + T ∗T .
Moreover, for any form ω ∈ Ω1(M,Eχ⊗ρn) with compact support:

(37) (dω̃, dω̃) + (δω̃, δω̃) = (Dω̃,Dω̃) + (D∗ω̃,D∗ω̃) + (Hω̃, ω̃).

A proof of both propositions can be found in [25] and also in [17, 28, 40].
The Weitzenböck formula requires the identity

DT ∗ + T D∗ +D∗ T + T ∗D = 0

on forms with compact support. Identity (37) is proved from Stokes theorem,
cf. [17, Equation (5)]. On the other hand:
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Proposition C.6. [25] For any ω ∈ Ω1(M,Eχ⊗ρn), pointwise,

〈Hω,ω〉x ≥ cn〈ω, ω〉x, at every point x ∈M,

for a uniform constant cn that depends only on Symn−1.

See also [39, 28] for a proof. Thus uniform ellipticity holds for any form in
ω ∈ Ω1(M,Eχ⊗ρn) with compact support; so Theorem C.2 applies.

Next we assume that the orientable hyperbolic manifold M has finite topol-
ogy, that it has a compactification M that consists in adding surfaces, as it has
finitely many ends that are topologically products. Every element in the kernel
of H1(M ;χ⊗ ρn)→ H1(∂M ;χ⊗ ρn) is represented by a differential form with
compact support in M , in particular it has finite norm. Thus, by Theorem C.1:

Corollary C.7. We have an injection induced by inclusion:

H1(M ;χ⊗ ρn) ↪→ H1(∂M ;χ⊗ ρn).

Appendix D. Dynamics of pseudo-Anosov diffeomorphisms on the
variety of characters

Let Σ be a compact orientable surface, possibly with boundary, connected
and with negative Euler characteristic, and let

φ : Σ→ Σ

be a pseudo-Anosov diffeomorphism. Note that φ does not necessarily act by
the identity on ∂Σ, but it may permute the boundary components.

Consider the mapping torus of φ:

M(φ) = Σ× [0, 1]/(x, 1) ∼ (φ(x), 0).

Its fundamental group is a semi-direct product

(38) π1(M(φ)) ∼= π1(Σ) o Z ∼= 〈π1(Σ), τ | τγτ−1 = φ#(γ) for all γ ∈ π(Σ)〉 .

Here φ# : π1(Σ) → π1(Σ) denotes the isomorphism induced by φ. Notice that
a different choice of τ would yield the composition of φ# with an inner auto-
morphism.

According to Thurston’s hyperbolization theorem, M(φ) admits a finite vol-
ume and complete hyperbolic metric [37]. The holonomy of this hyperbolic
structure lifts to a representation π1(M(φ)) → SL2(C) and its restriction to
π1(Σ) yields a representation ρ2 : π1(Σ)→ SL2(C). The composition of ρ2 with
Symn−1 will be denoted by ρn := Symn−1 ◦ ρ2. Notice that, by (38), ρn and

φ∗(ρn) := ρn ◦ φ#

are conjugate by ρn(τ). This implies that the equivalence class [ρn] of ρn is a
fixed point of the action of φ∗ on the character variety

R
(
Σ, SLn(C)

)
:= Hom

(
π1(Σ), SLn(C)

)
� SLn(C) .

For definitions and more details see [20, Section 4.3] or [16].
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In the case of a closed surface (∂Σ = ∅) and n = 2, M. Kapovich proved in
[19] that [ρ] is a hyperbolic fixed point of φ∗ : R(Σ,SL2(C)) → R(Σ,SL2(C)),
namely the tangent map

(dφ∗)[ρ2] : T[ρ2]R(Σ, SL2(C))→ T[ρ2]R(Σ,SL2(C))

has no eigenvalues of modulus one.
In the case of a surface with boundary this assertion is no longer true, as the

trace functions of the peripheral elements are invariant under a power of φ∗.
This causes (dφ∗)[ρ2] to have 1 as an eigenvalue (see [38, Section 4.5] for n = 2
and a punctured torus).

In order to generalize Kapovich’s result, for surfaces with boundary we con-
sider the relative character variety. Let

∂Σ = ∂1 t · · · t ∂s
be the decomposition in connected components. The relative character variety
is

R
(
Σ, ∂Σ,SLn(C)

)
:= {[ρ] ∈ R(Σ,SLn(C)) | ρ(∂i) and ρn(∂i) are similar} ,

with the convention that R(Σ, ∅,SLn(C)) = R(Σ,SLn(C)) for closed surfaces.
The main result of this appendix is the following:

Theorem D.1. Let Σ be a compact orientable surface, possibly with boundary,
connected and with negative Euler characteristic, and let φ : Σ→ Σ be a pseudo-
Anosov diffeomorphism.

Then the character [ρn] is a hyperbolic fixed point of φ∗, i.e. the tangent map

(dφ∗)[ρn] : T[ρn]R(Σ, ∂Σ, SLn(C))→ T[ρn]R(Σ, ∂Σ,SLn(C))

has no eigenvalues of modulus one.

The proof is based on the cohomological interpretation of the tangent spaces
to varieties of characters. Recall that by a result of A. Weil [45] there is a
natural isomorphism

T[ρn]R(Σ,SLn(C)) ∼= H1(Σ,Ad ◦ρn)

and the tangent space of the relative character variety can be interpreted as a
kernel (see for instance [16, Proposition 18]):

T[ρn]R(Σ, ∂Σ,SLn(C)) ∼= ker(H1(Σ,Ad ◦ρn)→ H1(∂Σ,Ad ◦ρn)).

Moreover, the tangent map dφ∗[ρn] corresponds to the induced map φ∗ in coho-

mology.
There is a natural surjection

α : π1(M(φ)) � Z, α(τ) = 1, and α(γ) = 0 for γ ∈ π1(Σ),

induced by the fibration Σ→M(φ)→ S1.

Remark D.2. In Section 2.2 we have defined the twisted Alexander polynomial
for manifolds with cusps, but the same definition applies to closed manifolds,
without requiring any assumption on α (just non-triviality). Thus we can define
a one variable twisted Alexander polynomial ∆α,n

M(φ)(t) even for M(φ) closed.

The main results of the paper hold true and are simpler to prove in the closed
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case, without needing the approximation results of Sections 3 and 6, for in-
stance.

Proposition D.3. Up to multiplication by a factor ±tm:

det((dφ∗)[ρn] − t Id) =
n−1∏
k=1

∆α,2k+1
M(φ) (t).

Proof of Theorem D.1. Apply Proposition D.3 and Theorem 1.11. �

Remark D.4. There is a natural C-valued symplectic form onR(Σ, ∂Σ,SLn(C))
[22, 16]. By naturality, this symplectic form is φ∗-invariant, therefore:

det((dφ∗)−1
[ρn] − t Id) = det((dφ∗)[ρn] − t Id).

Proposition D.3 is based on the following lemma:

Lemma D.5. (a) When Σ is closed,

tor(M(φ), ᾱ⊗Ad ◦ρn) = det((dφ∗)[ρn] − t Id)−1.

(b) When ∂Σ 6= ∅, if σφ denotes the permutation matrix on the components of
∂Σ, then

tor(M(φ), ᾱ⊗Ad ◦ρn) = det((dφ∗)[ρn] − t Id)−1 det(σφ − t Id)1−n.

Remark D.6. As ∂Σ has s components, σφ is a permutation matrix of size
s × s, that decomposes into l cycles, where l is the number of components of
∂M(φ) = T 2

1 t· · ·tT 2
l . Furthermore, if ci is the order of the cycle corresponding

to T 2
i , the i-th component of ∂M(φ), then α(π1(T 2

i )) = ciZ, s = c1 + · · · + cl,
and

det(σφ − t Id) = (−1)s−l
l∏

i=1

(1− tci).

Proof of Lemma D.5. Let K be CW-complex with underlying space |K| =

M(φ). Consider its lift K to Σ×R and its lift K̃ to the universal covering. We
work with the following chain complexes:

C∗(K, ᾱ⊗Ad ◦ ρn) = homπ1(M(φ))(C∗(K̃,Z),C(t)⊗ sln(C)),

C∗(K, ᾱ⊗Ad ◦ ρn) = homπ1(Σ)(C∗(K̃,Z),C(t)⊗ sln(C)).

Choosing τ , a representative in π1(M(φ)) of a generator of Z, it acts on
C∗(K, ᾱ⊗Ad ◦ ρ) by

θ 7→ α(τ)Adρn(τ) ◦ θ ◦ τ−1, ∀θ ∈ C∗(K, ᾱ⊗Ad ◦ ρn).

The action does not depend on the choice of the representative τ ∈ π1(M(φ))
of the generator of Z. We have then a short exact sequence of complexes:

0→ C∗(K, ᾱ⊗Ad ◦ ρn)→ C∗(K, ᾱ⊗Ad ◦ ρn)
(τ−1)−→ C∗(K, ᾱ⊗Ad ◦ ρn)→ 0.

It induces Wang’s exact sequence in cohomology. Hence, as H i(K, ᾱ⊗Ad◦ρn) ∼=
H i(Σ, ᾱ⊗Ad ◦ ρn) vanishes for every i 6= 1, by Milnor’s theorem on torsion of
exact sequences [31, Theorem 3.2]:

(39) tor(M(φ), ᾱ⊗Ad ◦ρn) = det(τ∗,1 − Id)−1,
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where τ∗,1 is the morphism on H1(Σ, ᾱ⊗Ad ◦ ρn) induced by τ . As α is trivial
on π1(Σ):

H1(Σ, ᾱ⊗Ad ◦ ρn) ∼= C(t)⊗H1(Σ,Ad ◦ ρn)

and τ∗,1 corresponds via this isomorphism to t ⊗ φ∗,1, where φ∗,1 is the action
that φ induces on H1(Σ,Ad ◦ ρn). Hence

(40) det(τ∗,1 − Id) = det(t φ∗,1 − Id) = tn det(φ∗,1 − t−1 Id).

From (39) and (40) we get

tor(M(φ), ᾱ⊗Ad ◦ρn) = det(φ∗,1 − t−1 Id)−1,

up to a factor ±tm. Next we look at the action of (φ∗,1)±1 to the exact sequence
coming from the cohomology of the pair (Σ, ∂Σ)

(41) 0→ ker(i∗)→ H1(Σ,Ad ◦ρn)
i∗→ H1(∂Σ,Ad ◦ρn))→ 0.

We claim that:

(1) The action of (φ∗,1)−1 on ker(i∗) corresponds to the action of dφ∗ by
the isomorphism ker(i∗) ∼= T[ρn]R(Σ, ∂Σ,SLn(C)).

(2) The action of (φ∗,1) on H1(∂Σ,Ad ◦ρn)) is equivalent to σφ×
(n−1)
· · · ×σφ.

The proof of these claims and the product formula of torsions applied to the
exact sequence (41) will complete the proof of Lemma D.5.

Proof of Claim (1). We consider the action on the variety of representations

ρ 7→ Adρn(τ−1) ◦ρ ◦ φ#

so that ρn is fixed and induces the previous action on the space of conjugacy
classes of representations. Next we recall Weil’s isomorphism between the tan-
gent space and group cohomology:

(42)
T[ρn]R(Σ,SLn(C)) ∼= H1(π1(Σ),Ad ◦ρn)

d
dtρt|t=0 7→

[
γ 7→ d

dtρt(γ)ρ0(γ−1)|t=0

]
where ρt is a path of representations, smooth on t ∈ (−ε, ε) and with ρ0 =
ρn. Here H1(π1(Σ),Ad ◦ρn) = Z1/B1 where Z1 is the space of cocycles or
crossed morphisms, i.e. maps θ : π1(Σ)→ sln(C) that satisfy θ(γ1γ2) = θ(γ1) +
Adρn(γ1)(θ(γ2)) ∀γ1, γ2 ∈ π1(Σ), and B1 is the space of inner cocycles, i.e. maps
γ 7→ a − Adρn(γ)(a) for some a ∈ sln(C). Using Weil’s isomorphism (42), the

action of dφ∗ on H1(π1(Σ),Ad ◦ρn) using classes of cocycles is

[θ] 7→ [Adρn(τ−1) ◦θ ◦ φ#] ∀θ ∈ Z1.

The claim follows using the isomorphism between group cohomology of π1(Σ)
and cohomology of the surface Σ, which is aspherical, and the naturality of
the actions induced by φ on each cohomology group. This establishes the first
claim.

Proof of Claim (2). We use the isomorphism:

(43) H1(∂Σ,Ad ◦ρn) =

r⊕
i=1

H1(∂i,Ad ◦ρn) ∼=
r⊕
i=1

H0(∂i,Ad ◦ρn).
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Namely, we decompose ∂Σ along connected components and use Poincaré du-
ality on each of the circles. Next, we use the canonical isomorphism

(44) H0(∂i,Ad ◦ρn) ∼= sln(C)Ad(ρn(∂i))
∼= Cn−1

where sln(C)Ad(ρn(∂i)) = sln(C) ⊗π1(∂i) Z denotes the space of coinvariants. It
is isomorphic to the quotient of sln(C) by the image of (Ad(ρn(∂i)) − Id) [5],
and its dimension n− 1 has been computed for instance in [28].

Next we aim to understand the action of τ on these spaces. We view the
chain complex for computing the homology of each ∂i as a subcomplex of

C∗(K,Ad ρn) = sln(C)⊗π1(Σ) C∗(K̃,Z),

the complex that computes the homology of Σ × R, where K, K and K̃ are
as in the beginning of the proof of the lemma. Here every γ ∈ π1(Σ) acts on

C∗(K̃,Z) by deck transformations and on sln(C) by Ad(ρn(γ−1)). The action

of τ maps the chain m⊗ c (for m ∈ sln(C) and c ∈ C∗(K̃,Z)) to

m⊗ c 7→ m · τ−1 ⊗ τ c = Ad(τ)(m)⊗ τ c
(see [38]).

Each component ∂i lifts to a union of lines in the universal covering Σ̃ whose
stabilizer by the action of π1(Σ) is precisely a representative of π1(∂i) in the

conjugacy class. Then choosing ẽ0 a 0-cell of K̃ that projects to ∂i, the canonical
isomorphism (44) is induced by the projection

sln(C)⊗ ẽ0 → sln(C)⊗π1(∂i) Z = sln(C)Ad(ρn(∂i)),

where the choice of π1(∂i) corresponds to the stabilizer of the line in K̃ that
contains ẽ0. A different choice of ẽ0 would be γ ẽ0 for γ ∈ π1(Σ), then the
subgroup π1(∂i) should be replaced by γπ1(∂i)γ

−1. This leads to the natural
isomorphism between coinvariant subspaces

sln(C)Ad(ρn(∂i))
∼= sln(C)Ad(ρn(γ∂iγ−1))

m 7→ Adρn(γ)(m)

Furthermore, the action of φ∗,1 on H1(Σ,Ad ◦ρn) corresponds via (43) and (44)
to

sln(C)Ad(ρn(∂i)) → sln(C)Ad(ρn(φ#(∂i)))

m 7→ Adρn(τ)(m)

If φ defines a cycle of order ci > 0 on the component ∂i (in particular φci(∂i) =
∂i), then, viewing ∂i as an element of the fundamental group, there exists
γ ∈ π1(Σ) that conjugates φci#(∂i) = τ ci∂iτ

−ci and ∂i. Namely γτ ci commutes

with ∂i in π1(M(φ)), in fact both γτ ci and ∂i belong to the same peripheral
subgroup π1(T 2

i ) of π1(M(φ)). Therefore

sln(C)Ad(ρn(∂i)) = sln(C)Ad(ρn(〈∂i,γτci 〉)) = sln(C)Ad(ρn(π1(T 2
i )))

and Ad(ρn(γτ ci)) acts as the identity on sln(C)Ad(ρn(∂i)), by Lemma D.7 below.

In other words, φci acts trivially on H1(∂i,Ad ◦ρn) ∼= Cn−1, and the second
claim follows. �
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Lemma D.7. For any peripheral torus T 2
i and for any nontrivial γ ∈ π1(T 2

i ),
Ad(ρn(γ)) acts trivially on the space of coinvariants sln(C)Ad(ρn(π1(T 2

i ))).

Proof. By construction, the action of Ad(ρn(γ)) on the space of invariants

sln(C)Ad(ρn(π1(T 2
i ))) = {m ∈ sln(C) | Adρn(g)(m) = m, ∀g ∈ π1(T 2

i )}
is trivial. As the C-valued Killing form on sln(C) is Ad-invariant, the space
of coinvariants is the quotient of sln(C) by the orthogonal of the invariants.
Namely(

sln(C)Ad(ρn(π1(T 2
i )))
)⊥

= {m−Adρn(g)(m) | m ∈ sln(C), ∀g ∈ π1(T 2
i )}

and

sln(C)Ad(ρn(π1(T 2
i ))) = sln(C)/

(
sln(C)Ad(ρn(π1(T 2

i )))
)⊥

.

Therefore, the Killing form induces a pairing

sln(C)Ad(ρn(π1(T 2
i ))) × sln(C)Ad(ρn(π1(T 2

i ))) → C.

As the Killing form is non-degenrate and Ad-invariant, this pairing is perfect
and Ad(ρn(γ))-invariant. In particular, as the action of Ad(ρn(γ)) is trivial on
the space of invariants, it is also trivial on the space of coinvariants. �

Proof of Proposition D.3. When ∂Σ = ∅ this is a direct consequence of the
Clebsch-Gordan formula (33) and of Lemma D.5.

When ∂Σ 6= ∅, first notice that α always satisfies Assumption 1.2. Further-
more, we do not need to care about Assumption 1.3 because Ad ◦ρn decomposes
by (33) in a sum of odd dimensional representations and no spin structure is
involved in the computation of the torsion in this case (however we could chose
a lift of the holonomy satisfying this assumption).

Finally, we need to discuss the term det(σφ−t Id)n−1. Following Remark D.6,
we decompose σφ into l disjoint cycles of order c1, . . . , cl, respectively, with
c1 + · · ·+ cl = s. Therefore

det(σφ − t Id) = ±
l∏

i=1

(tci − 1) .

On the other hand, each cycle corresponds to a peripheral torus T 2
i of M(φ) and

α(π1(T 2
i )) = ciZ, for i = 1, . . . , l. Thus the factor that appears in the definition

of ∆α,2k+1
M(φ) (t) (Definition 2.6) is also

∏l
i=1(tci − 1). Finally the exponent n− 1

is the number of factors in the Clebsch-Gordan formula. �
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