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FAST CONVEX OPTIMIZATION VIA A THIRD-ORDER IN TIME

EVOLUTION EQUATION

HEDY ATTOUCH, ZAKI CHBANI, AND HASSAN RIAHI

Abstract. In a Hilbert space H, we develop fast convex optimization methods, which are based

on a third order in time evolution system. The function to minimize f : H → R is convex,

continuously differentiable, with argmin f 6= ∅, and enters the dynamic via its gradient. On the
basis of Lyapunov’s analysis and temporal scaling techniques, we show a convergence rate of the

values of the order 1/t3, and obtain the convergence of the trajectories towards optimal solutions.

When f is strongly convex, an exponential rate of convergence is obtained. We complete the study
of the continuous dynamic by introducing a damping term induced by the Hessian of f . This

allows the oscillations to be controlled and attenuated. Then, we analyze the convergence of the

proximal-based algorithms obtained by temporal discretization of this system, and obtain similar
convergence rates. The algorithmic results are valid for a general convex, lower semicontinuous,

and proper function f : H → R ∪ {+∞}.

1. Introduction: Inertial dynamics for optimization

Throughout the paper, H is a real Hilbert space, endowed with the scalar product 〈·, ·〉 and the
associated norm ‖ · ‖. Unless specified, f : H → R is a C1 convex function with argmin f 6= ∅. We
take t0 > 0 as the origin of time 1. We are going to study the convergence properties as t→ +∞ of
the trajectories of the following evolution system

(TOGES): Third Order Gradient Evolution System

...
x (t) + α

t ẍ(t) + 2α−6
t2 ẋ(t) +∇f(x(t) + tẋ(t)) = 0.

(TOGES) is a third order in time evolution system, where the function f to minimize enters via its
gradient ∇f , and α is a positive damping parameter. Then, we will study the convergence properties
of the proximal-based algorithms obtained by temporal discretization of this system. The system
(TOGES) has its roots in recent developments concerning inertial optimization methods and their
links with dynamic systems, which we briefly review.

1.1. From the Heavy Ball with Friction to the Asymptotic Vanishing Damping. B. Polyak
initiated the use of inertial dynamics to accelerate the gradient method in optimization. In [38], based
on the inertial system with a fixed viscous damping coefficient γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,
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1this is justified by the singularity at the origin of the damping coefficient γ(t) = α

t
which is used in the paper.
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he introduced the Heavy Ball with Friction method. For a strongly convex function f , (HBF) provides
convergence at exponential rate of f(x(t)) to infH f . For general convex functions, the asymptotic
convergence rate of (HBF) is O( 1

t ) (in the worst case). This is however not better than the steepest
descent. It turns out that in this model, the friction is important and neutralizes the inertial effect,
which prevents obtaining fast optimization methods for general convex functions. Indeed, considering
the non autonomous system

(IGS)γ(·) ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0,

where the damping parameter γ(t) tends to zero as t → +∞ (vanishing damping) is a key property
for obtaining fast optimization methods. A decisive step in this direction was obtained by Su-
Boyd-Candès [44], who showed that the Nesterov accelerated gradient method can be obtained as a
temporal discretization of the dynamic system (IGS)γ(·) with γ(t) = 3

t . Recently, Attouch-Chbani-

Peypouquet-Redont [9] and May [31] studied the convergence of the trajectories of the (IGS)γ(·)
system with γ(t) = α

t and α ≥ 3

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

As a specific feature, the viscous damping coefficient α
t vanishes (tends to zero) as time t goes to

infinity, hence the terminology Asymptotic Vanishing Damping with coefficient α, (AVD)α for short.
Let us briefly recall the convergence rates obtained for this system:

• For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic convergence rate of the

values f(x(t))− infH f = O
(
1/t2

)
, see [5], [9], [31], [44].

• The case α = 3, which corresponds to Nesterov’s historical algorithm, is critical. In the case
α = 3, the question of the convergence of the trajectories remains an open problem (except
in one dimension where convergence holds [10]).
• For α > 3, it has been shown in [9] that each trajectory converges weakly to a minimizer. The

corresponding algorithmic result has been obtained by Chambolle-Dossal [25]. In addition,
it is shown in [15] and [31] that the asymptotic convergence rate of the values is o(1/t2).
• The subcritical case α ≤ 3 has been examined by Apidopoulos-Aujol-Dossal [3] and Attouch-

Chbani-Riahi [10], with the convergence rate of the objective values O
(

1/t
2α
3

)
.

These rates are optimal, that is, they can be reached, or approached arbitrarily close. For further
results concerning the system (AVD)α one can consult [3, 5, 6, 7, 9, 10, 15, 17, 18, 31, 44].

1.2. Time rescaling. These results are based on Attouch-Chbani-Riahi [11]. Let us start from
(AVD)α. Suppose that α ≥ 3. Given a trajectory x(·) of (AVD)α, we know that (see [5], [9], [44])

(1) f(x(t))− inf
H
f = O

(
1

t2

)
as t→ +∞.

Let’s make the change of time variable t = τ(s) in (AVD)α , where τ(·) is a C2 strictly increasing
function from R to R, which satisfies lims→+∞ τ(s) = +∞. We have

(2) ẍ(τ(s)) +
α

τ(s)
ẋ(τ(s)) +∇f(x(τ(s))) = 0.

Set y(s) := x(τ(s)). By the derivation chain rule, we have

ẏ(s) = τ̇(s)ẋ(τ(s)), ÿ(s) = τ̈(s)ẋ(τ(s)) + τ̇(s)2ẍ(τ(s)).

Reformulating (2) in terms of y(·) and its derivatives, we obtain

1

τ̇(s)2

(
ÿ(s)− τ̈(s)

τ̇(s)
ẏ(s)

)
+

α

τ(s)

1

τ̇(s)
ẏ(s) +∇f(y(s)) = 0.
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Hence, y(·) is solution of the rescaled equation

(3) ÿ(s) +

(
α

τ(s)
τ̇(s)− τ̈(s)

τ̇(s)

)
ẏ(s) + τ̇(s)2∇f(y(s)) = 0.

The formula (1) becomes

(4) f(y(s))− inf
H
f = O

(
1

τ(s)2

)
as s→ +∞.

Hence, by making a fast time reparametrization, we can obtain arbitrarily fast convergence property
of the values. The damping coefficient of (3) is equal to

γ̃(s) =
α

τ(s)
τ̇(s)− τ̈(s)

τ̇(s)
=
ατ̇(s)2 − τ(s)τ̈(s)

τ(s)τ̇(s)
.

As a model example, take τ(s) = sp, where p is a positive parameter. Then γ̃(s) =
αp
s , where

αp = 1 + (α− 1)p, and (3) writes

(5) ÿ(s) +
αp
s
ẏ(s) + p2s2(p−1)∇f(y(s)) = 0.

a) Suppose that α ≥ 3. Given a trajectory x(·) of (AVD)α, we obtain the following convergence
rate of the values

(6) f(y(s))− inf
H
f = O

(
1

s2p

)
as s→ +∞.

For p > 1, we have αp > α, which gives damping features similar to (AVD)α. The only major

difference is the coefficient s2(p−1) in front of ∇f(y(s)) which explodes when s→ +∞.

b) A similar time rescaling as above gives, for α > 3

(7) f(y(s))− inf
H
f = o

(
1

s2p

)
as s→ +∞.

2. From time rescaling to higher order in time evolution systems

Based on a rescaling approach, we introduce the system (TOGES) that supports our analysis.

2.1. Main result.

Theorem 2.1. Let x : [t0,+∞[→ H be a solution trajectory of (TOGES) i.e.

(8)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = 0.

(i) Suppose α ≥ 7. Then, there is a constant C > 0 such that, for all t ≥ t0

f(x(t) + tẋ(t))− inf
H
f ≤ C

t3
;

f(x(t))− inf
H
f ≤ 1

t

(
t0(f(x(t0))− inf

H
f) +

C

2t20

)
.

Moreover, we have an approximate descent method in the following sense:

a) The function t 7→ t(f(x(t))− infH f) + C
2t2 is nonincreasing on [t0,+∞[.

b) The function t 7→ f(x(t)) + C
3t3 is nonincreasing on [t0,+∞[.

(ii) Suppose α > 7. Then, as t→ +∞

a) f(x(t) + tẋ(t))− infH f = o

(
1

t3

)
.
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b) x(t) converges weakly in H, and its limit belongs to S = argminH f .

Proof. (i) Take p = 3
2 in the formulas (5) and (6) obtained in the temporal rescaling analysis developed

in section 1.2. We have αp = 1 + (α− 1)p = 1
2 (3α− 1). When α ≥ 3, we obtain that, for any solution

trajectory y(·) of

(9) ÿ(t) +
3α− 1

2t
ẏ(t) +

9

4
t∇f(y(t)) = 0,

we have

(10) f(y(t))− inf
H
f = O

(
1

t3

)
as t→ +∞.

In fact, this convergence rate remains unchanged when replacing f with a homothetic cf with c > 0.
So, for any solution trajectory y(·) of

(11) ÿ(t) +
3α− 1

2t
ẏ(t) + t∇f(y(t)) = 0,

we have that (10) is still verified. Set

y(t) := x(t) + tẋ(t) =
d

dt
(tx(t)) .

We have:
ẏ(t) = 2ẋ(t) + tẍ(t) and ÿ(t) = 3ẍ(t) + t

...
x (t).

Replacing these expressions in (11), we obtain

(12) t
...
x (t) + 3ẍ(t) +

3α− 1

2t
(2ẋ(t) + tẍ(t)) + t∇f(x(t) + tẋ(t)) = 0.

Equivalently,

(13) t
...
x (t) +

3α+ 5

2
ẍ(t) +

3α− 1

t
ẋ(t) + t∇f(x(t) + tẋ(t)) = 0.

After division by t ≥ t0 > 0, we obtain

(14)
...
x (t) +

3α+ 5

2t
ẍ(t) +

3α− 1

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = 0.

To simplify the formulation of the dynamic and of the results, let’s make the parameter change
3α+5

2 7→ α. That makes 3α− 1 becomes 2α− 6, and the condition α ≥ 3 becomes α ≥ 7. Finally, we
obtain that, under the condition α ≥ 7, for each solution trajectory x : [t0,+∞[→ H of

(15)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = 0,

we have

(16) f(x(t) + tẋ(t))− inf
H
f = O

(
1

t3

)
as t→ +∞.

That’s the first statement of item (i). Let’s now analyze the convergence rate of values for f(x(t))−
infH f . We start from (16), which can be equivalently written as follows

(17) f(y(t))− inf
H
f ≤ C

t3
as t→ +∞,

where C is a constant that can be made precise (we will return to its precise evaluation later). By
integrating the relation d

dt (tx(t)) = y(t) from t to t+ h (h is a positive parameter which is intended
to go to zero) we get

(t+ h)x(t+ h) = tx (t) +

∫ t+h

t

y(τ)dτ.
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Let us rewrite this relation in a barycentric form which is convenient to use a convexity argument:

x(t+ h) =

(
1− h

t+ h

)
x (t) +

h

t+ h

1

h

∫ t+h

t

y(τ)dτ.

According to the convexity of the function f − infH f , we obtain

f(x(t+ h))− inf
H
f ≤

(
1− h

t+ h

)
(f(x(t))− inf

H
f) +

h

t+ h
(f − inf

H
f)

(
1

h

∫ t+h

t

y(τ)dτ

)
.

Let us majorize the last expression above using Jensen’s inequality. We obtain

f(x(t+ h))− inf
H
f ≤

(
1− h

t+ h

)
(f(x(t))− inf

H
f) +

1

t+ h

∫ t+h

t

(f(y(τ))− inf
H
f)dτ.

According to the convergence rate of the values (17) which has been obtained for y, we obtain

f(x(t+ h))− inf
H
f ≤

(
1− h

t+ h

)
(f(x(t))− inf

H
f) +

1

t+ h

∫ t+h

t

C

τ3
dτ.

Computing this last integral, we get

(18) f(x(t+ h))− inf
H
f ≤

(
1− h

t+ h

)
(f(x(t))− inf

H
f) +

Ch(2t+ h)

2t2(t+ h)3
.

Set
F (t) := f(x(t))− inf

H
f.

We can rewrite in an equivalent way (18) as

F (t+ h)− F (t) +
h

t+ h
F (t) ≤ Ch(2t+ h)

2t2(t+ h)3
.

Note that F is a C1 function, as a composition of such functions. Therefore, dividing by h > 0, and
letting h→ 0+ in the above inequality, we get

(19) F ′(t) +
1

t
F (t) ≤ C

t4
.

Equivalently

(20)
d

dt
tF (t) = tF ′(t) + F (t) ≤ C

t3
= − d

dt

C

2t2
.

Therefore

(21)
d

dt

(
tF (t) +

C

2t2

)
≤ 0.

This gives that the function t 7→ tF (t) + C
2t2 is nonincreasing. In particular

tF (t) +
C

2t2
≤ t0F (t0) +

C

2t20
,

which gives

f(x(t))− inf
H
f ≤ 1

t

(
t0(f(x(t0))− inf

H
f) +

C

2t20

)
.

From (19), we also get F ′(t) ≤ C
t4 , which gives

d

dt

(
F (t) +

C

3t3

)
≤ 0.

This gives that the function t 7→ f(x(t)) + C
3t3 is nonincreasing.
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ii) Take now α > 3. We know that y(t) converges weakly to some y∞ ∈ S. The relation y(t) :=
x(t) + tẋ(t) writes equivalently

d

dt
(tx(t)) = y(t).

Therefore

tx(t) = t0x(t0) +

∫ t

t0

y(τ)dτ.

Equivalently

x(t) =
t0x(t0)

t
+

1

t

∫ t

t0

y(τ)dτ.

As a general rule, convergence implies ergodic convergence. Therefore, x(t) converges weakly to
y∞ ∈ S. Moreover we know that

(22) f(y(t))− inf
H
f = o

(
1

t3

)
as t→ +∞.

which gives

(23) f(x(t) + tẋ(t))− inf
H
f = o

(
1

t3

)
as t→ +∞.

�

Remark 2.2. Let us comment the ”quasi-descent” property verified by the variable x(t). For any
t0 ≤ s ≤ t we have

f(x(t)) +
C

3t3
≤ f(x(s)) +

C

3s3

and hence

f(x(t)) ≤ f(x(s)) +
C

3s3
− C

3t3
≤ f(x(s)) +

C

3s3
.

Thus, as soon as t ≥ s, f(x(t)) cannot exceed f(x(s)) by a quantity of order 1
s3 . It means very small

oscillations. Indeed, this results from the fact that x(t) can be obtained by averaging y(t), with the
result that the oscillations are almost eliminated.

3. A direct asymptotic convergence analysis via Lyapunov energy function.

For numerical reasons, it is important to have an accurate estimate of the constant C that enters
the convergence rate formula

f(x(t) + tẋ(t))− inf
H
f ≤ C

t3

obtained in Theorem 2.1. It could be obtained by going back to the estimate obtained in [11]
and do the same transformation as in the previous section. We prefer to establish them directly by
developing a Lyapunov analysis on the (TOGES) system defined in (8). This will be useful to develop
corresponding algorithmic results. It also makes the paper self-contained, and gives an other proof
of Theorem 2.1. Indeed, our convergence results are based on the decrease property of the function
t 7→ E(t) defined by

(24) E(t) := t3
(
f(x(t) + tẋ(t))− inf

H
f
)

+
1

2
‖t2ẍ(t) + (α− 2)tẋ(t) + (α− 4)(x(t)− z)‖2

with z ∈ argmin f .
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Theorem 3.1. Let x : [t0,+∞[→ H be a solution trajectory of the (TOGES) system i.e.

(25)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = 0.

(i) Suppose that the positive parameter α satisfies the following condition:

(H0) α ≥ 7.

Then, for all t ≥ t0, the first statements of Theorem 2.1 are valid, the constant C being equal to 2

E(t0) = t30{f(x(t0) + t0ẋ(t0))− inf
H
f}+

1

2
‖t20ẍ(t0) + (α− 2)t0ẋ(t0) + (α− 4)(x(t0)− z)‖2.

(ii) Suppose moreover that α > 7. Then,∫ ∞
t0

s2
(
f(x(t) + tẋ(t))− inf

H
f
)
dt ≤ 1

α− 7
E(t0).

Proof. Let us rewrite the energy function E(·) defined in (24) as follows:

(26) E(t) := t3(f(y(t))− inf
H
f) +

1

2
‖v(t)‖2,

where y(t) := x(t) + tẋ(t) and v(t) := t2ẍ(t) + (α− 2)tẋ(t) + (α− 4)(x(t)− z), with z ∈ argmin f .
First note that

v̇(t) = t2
...
x (t) + tαẍ(t) + (2α− 6)ẋ(t)

= −t2∇f(y(t)),

where the last inequality follows from the evolution equation (25) and the definition of y(·). According
to the above result and ẏ(t) = tẍ(t) + 2ẋ(t), we obtain

Ė(t) = 3t2(f(y(t))− inf
H
f) + t3〈∇f(y(t)), ẏ(t)〉

−t2〈∇f(y(t)), t2ẍ(t) + (α− 2)tẋ(t) + (α− 4)(x(t)− z)〉
= 3t2(f(y(t))− inf

H
f) + t3〈∇f(y(t)), ẏ(t)〉 − t3〈∇f(y(t)), tẍ(t) + 2ẋ(t)〉

−t2〈∇f(y(t)), (α− 4)(x(t) + tẋ(t)− z)〉.

Since ẏ(t) = tẍ(t) + 2ẋ(t), the expression above can be simplified to give

Ė(t)− 3t2(f(y(t))− inf
H
f) + (α− 4)t2〈∇f(y(t), y(t)− z〉 ≤ 0.

By convexity of f and definition of z, we have 〈∇f(y(t)), y(t)−z〉 ≥ f(y(t))−f(z) = f(y(t))− infH f .
So, we finally obtain

(27) Ė(t) + (α− 7)t2(f(y(t))− inf
H
f) ≤ 0.

According to the hypothesis (H0), we have α ≥ 7. Therefore, Ė(t) ≤ 0, which gives that E(·) is a
nonincreasing function. This implies that, for all t ≥ t0

t3
(
f(x(t) + tẋ(t))− inf

H
f
)
≤ E(t) ≤ E(t0),

which gives

(28) f (x(t) + tẋ(t))− inf
H
f ≤ E(t0)

t3
.

2The point z ∈ argmin f can be chosen arbitrarily.
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By integrating (27), we obtain

(α− 7)

∫ t

t0

s2(f(x(s) + sẋ(s))− inf
H
f)ds ≤ E(t0)− E(t) ≤ E(t0).

This being true for any t ≥ t0, we obtain, when α > 7∫ ∞
t0

s2
(
f(x(s) + sẋ(s))− inf

H
f
)
ds ≤ 1

α− 7
E(t0).

The corresponding convergence rates for the variable x(t) are obtained by following a similar argument
as in the proof of Theorem 2.1. �

3.1. Perturbations, errors. For numerical reasons, it is important to study the stability with
respect to perturbations of the evolution system (TOGES) which supports the related algorithms. In
our context, this leads to consider the system

(29)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = e(t)

where the second member e(·) takes account perturbations, errors. We use the same ingredients as
in the Lyapunov analysis of the unperturbed case, that is

E(t) := t3(f(y(t))− inf
H
f) +

1

2
‖v(t)‖2,

where y(t) := x(t) + tẋ(t) and v(t) := t2ẍ(t) + (α− 2)tẋ(t) + (α− 4)(x(t)− z), with z ∈ argmin f .
First note that

v̇(t) = t2
...
x (t) + tαẍ(t) + (2α− 6)ẋ(t)

= −t2∇f(y(t)) + t2e(t).(30)

Theorem 3.2. Let x : [t0,+∞[→ H be a solution trajectory of the perturbed (TOGES) system i.e.

(31)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = e(t).

(i) Suppose that the positive parameter α satisfies the following condition:

(H0) α ≥ 7,

and that the perturbations, errors satisfy the integrability property∫ +∞

t0

t2‖e(t)‖dt < +∞.

Then, for all t ≥ t0

f
(
x(t) + tẋ(t)

)
− inf
H
f ≤ C

t3
;

f(x(t))− inf
H
f ≤ 1

t

(
t0(f(x(t0))− inf

H
f) +

C

2t20

)
,

with

C = E(t0) +
(√

2E(t0) +

∫ +∞

t0

‖τ2e(τ)‖dτ
)∫ +∞

t0

‖τ2e(τ)‖dτ.
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Proof. According to (30), the derivation of E(·) gives

Ė(t) = 3t2(f(y(t))− inf
H
f) + t3〈∇f(y(t)), ẏ(t)〉+ 〈t2e(t)− t2∇f(y(t)), v(t)〉

= 3t2(f(y(t))− inf
H
f) + t3〈∇f(y(t)), ẏ(t)〉 − t3〈∇f(y(t)), tẍ(t) + 2ẋ(t)〉

−t2〈∇f(y(t)), (α− 4)(x(t) + tẋ(t)− z)〉+ 〈t2e(t), v(t)〉.

Since ẏ(t) = tẍ(t) + 2ẋ(t) the expression above can be simplified to give

Ė(t)− 3t2(f(y(t))− inf
H
f) + (α− 4)t2〈∇f(y(t), y(t)− z〉 = 〈t2e(t), v(t)〉.

By convexity of f and definition of z, we have 〈∇f(y(t)), y(t)−z〉 ≥ f(y(t))−f(z) = f(y(t))− infH f .
So, we finally obtain

(32) Ė(t) + (α− 7)t2(f(y(t))− inf
H
f) ≤ 〈t2e(t), v(t)〉.

According to the hypothesis (H0), we have α ≥ 7. By Cauchy-Schwarz inequality, we deduce that

Ė(t) ≤ ‖t2e(t)‖‖v(t)‖,

which, by integration gives

(33) E(t) ≤ E(t0) +

∫ t

t0

‖τ2e(τ)‖‖v(τ)‖dτ.

By definition of E(·), we have E(t) ≥ 1
2‖v(t)‖2. Therefore,

1

2
‖v(t)‖2 ≤ E(t0) +

∫ t

t0

‖τ2e(τ)‖‖v(τ)‖dτ.

According to Gronwall lemma (see [23, Lemme A.5]), we deduce that

‖v(t)‖ ≤
√

2E(t0) +

∫ t

t0

‖τ2e(τ)‖dτ.

According to the integrability assumption on the error terms, we get

‖v(t)‖ ≤
√

2E(t0) +

∫ +∞

t0

‖τ2e(τ)‖dτ < +∞.

Returning to (33), we obtain

(34) E(t) ≤ E(t0) +
(√

2E(t0) +

∫ +∞

t0

‖τ2e(τ)‖dτ
)∫ +∞

t0

‖τ2e(τ)‖dτ,

which gives that E(·) is bounded from above. This implies that, for t ≥ t0

t3
(
f(x(t) + tẋ(t))− inf

H
f
)
≤ E(t0) +

(√
2E(t0) +

∫ +∞

t0

‖τ2e(τ)‖dτ
)∫ +∞

t0

‖τ2e(τ)‖dτ.

The end of the proof is similar to the unperturbed case. �
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4. Inertial dynamics for strongly convex functions

In this section, we assume that f is a strongly convex function. Recall that f : H → R is µ-strongly
convex for some µ > 0, if f − µ

2 ‖ · ‖
2 is convex. Let us show that a judicious choice of the damping

coefficients (adapted to µ) in our third order evolution system gives exponential convergence rate.
This is consistent with similar type results obtained in [43, Theorem 2.2], [47, Theorem 1] for second
order gradient based systems. Precisely, we consider the autonomous evolution system

(35)
...
x (t) + (1 + 2

√
µ)ẍ(t) + 2

√
µẋ(t) +∇f(x(t) + ẋ(t)) = 0.

We will develop a Lyapunov analysis based on the function t 7→ E(t) where, for all t ≥ t0

E(t) := f(x(t) + ẋ(t))− inf
H
f +

1

2
‖√µ(x(t) + ẋ(t)− x∗) + ẋ(t) + ẍ(t)‖2,

and x∗ is the unique minimizer of f . To condense the formulas, we write

F (t0) = f(x(t0))− inf
H
f and C = E(t0)e

√
µt0 .

Theorem 4.1. Suppose that f : H → R is µ-strongly convex for some µ > 0. Let x(·) be a solution
trajectory of (35). Then, the following properties hold:

(i) For all t ≥ t0
f(x(t) + ẋ(t))− inf

H
f ≤ E(t0)e−

√
µ(t−t0)(36)

for µ 6= 1 : f(x(t))− inf
H
f ≤ 2E(t0)e

√
µt0

1−√µ
e−
√
µt + e−t

(
et0F (t0)− 2E(t0)e

√
µt0

1−√µ
e(1−

√
µ)t0

)
(37)

for µ = 1 f(x(t))− inf
H
f ≤

(
Ct+ et0F (t0)− Ct0

)
e−t.(38)

(ii) For all t ≥ t0

(39) ‖x(t) + ẋ(t)− x∗‖2 ≤ e
√
µt0

√
µ

(√
µ‖y(t0)− x∗‖2 + 2E(t0)(t− t0)

)
e−
√
µt.

for µ 6= 1 : ‖x(t)− x∗‖2 ≤ 2

µ

(
2E(t0)e

√
µt0

1−√µ
e−
√
µt + e−t

(
et0F (t0)− 2E(t0)e

√
µt0

1−√µ
e(1−

√
µ)t0

))
(40)

for µ = 1 : ‖x(t)− x∗‖2 ≤ 2

µ

((
Ct+ et0F (t0)− Ct0

)
e−t
)
.(41)

Proof. Set y(t) = x(t) + ẋ(t). Note that (35) can be equivalently written

(42) ÿ(t) + 2
√
µẏ(t) +∇f(y(t)) = 0,

and that E : [t0,+∞[→ R+ writes

(43) E(t) := f(y(t))− inf
H
f +

1

2
‖√µ(y(t)− x∗) + ẏ(t)‖2.

Set v(t) =
√
µ(y(t)− x∗) + ẏ(t). Derivation of E(·) gives

d

dt
E(t) := 〈∇f(y(t)), ẏ(t)〉+ 〈v(t),

√
µẏ(t) + ÿ(t)〉.

According to (42), we obtain

d

dt
E(t) = 〈∇f(y(t)), ẏ(t)〉+ 〈√µ(y(t)− x∗) + ẏ(t),−√µẏ(t)−∇f(y(t))〉.
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After developing and simplification, we obtain

d

dt
E(t) +

√
µ〈∇f(y(t)), y(t)− x∗〉+ µ〈y(t)− x∗, ẏ(t)〉+

√
µ‖ẏ(t)‖2 = 0.

According to the strong convexity of f , we have

〈∇f(y(t)), y(t)− x∗〉 ≥ f(y(t))− f(x∗) +
µ

2
‖y(t)− x∗‖2.

By combining the two relations above, and using the formulation (43) of E(t), we obtain

d

dt
E(t) +

√
µ

(
E(t) +

1

2
‖ẏ‖2

)
≤ 0.

Therefore,
d

dt
E(t) +

√
µE(t) ≤ 0.

By integrating the differential inequality above, we obtain, for all t ≥ t0
E(t) ≤ E(t0)e−

√
µ(t−t0).

By definition of E(t) and y(t), we deduce that

(44) f(y(t))− inf
H
f = f(x(t) + ẋ(t))− inf

H
f ≤ E(t0)e−

√
µ(t−t0),

and

‖√µ(y(t)− x∗) + ẏ(t)‖2 = ‖√µ(x(t) + ẋ(t)− x∗) + ẋ(t) + ẍ(t)‖2 ≤ 2E(t0)e−
√
µ(t−t0).

(ii) Set C = E(t0)e
√
µt0 . Developing the expression above, we obtain

µ‖y(t)− x∗‖2 + ‖ẏ(t)‖2 + 〈ẏ(t), 2
√
µ(y(t)− x∗)〉 ≤ 2Ce−

√
µt.

Note that

〈ẏ(t), 2
√
µ(y(t)− x∗)〉 =

d

dt

(√
µ‖y(t)− x∗‖2

)
.

Combining the above results, we obtain

√
µ
(√
µ‖y(t)− x∗‖2

)
+
d

dt

(√
µ‖y(t)− x∗‖2

)
≤ 2Ce−

√
µt.

Set Z(t) :=
√
µ‖y(t)− x∗‖2, then we have

d

dt

(
e
√
µtZ(t)− 2Ct

)
= e
√
µt d

dt
Z(t) +

√
µe
√
µtZ(t)− 2C ≤ 0.

By integrating this differential inequality, elementary computation gives

Z(t) ≤ e−
√
µ(t−t0)Z(t0) + 2C(t− t0)e−

√
µt.

Therefore

‖y(t)− x∗‖2 ≤ e
√
µt0

√
µ

(√
µ‖y(t0)− x∗‖2 + 2E(t0)(t− t0)

)
e−
√
µt.

(iii) Let’s now analyze the convergence rate of values for f(x(t)) − infH f . We start from (44),
which can be equivalently written as follows: for all t ≥ t0
(45) f(y(t))− inf

H
f ≤ Ce−

√
µt,
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where, we recall, C = E(t0)e
√
µt0 . By integrating the relation d

dt (e
tx(t)) = ety(t) from t to t+ h (h

is a positive parameter which is intended to go to zero), we get

et+hx(t+ h) = etx (t) +

∫ t+h

t

eτy(τ)dτ.

Equivalently,

x(t+ h) = e−hx (t) + e−(t+h)
∫ t+h

t

eτy(τ)dτ.

Let us rewrite this relation in a barycentric form, which is convenient to use a convexity argument:

x(t+ h) = e−hx (t) + e−(t+h)
et+h − et

et+h − et

∫ t+h

t

eτy(τ)dτ

= e−hx (t) + (1− e−h)
1

et+h − et

∫ t+h

t

eτy(τ)dτ.(46)

According to the convexity of the function f − infH f , we obtain

(47) f(x(t+ h))− inf
H
f ≤ e−h(f(x(t))− inf

H
f) + (1− e−h)(f − inf

H
f)

(
1

et+h − et

∫ t+h

t

eτy(τ)dτ

)
.

Let us apply the Jensen inequality to majorize the last above expression. We obtain

(48) f(x(t+ h))− inf
H
f ≤ e−h(f(x(t))− inf

H
f) +

1− e−h

et+h − et

∫ t+h

t

eτ (f(y(τ))− inf
H
f)dτ.

According to the convergence rate of the values (45) which has been obtained for y we obtain

(49) f(x(t+ h))− inf
H
f ≤ e−h(f(x(t))− inf

H
f) +

1− e−h

et+h − et

∫ t+h

t

eτCe−
√
µτdτ.

Set F (t) := f(x(t))− infH f. We can rewrite equivalently (49) as

F (t+ h)− F (t) + (1− e−h)F (t) ≤ Ce−t 1− e
−h

eh − 1

∫ t+h

t

e(1−
√
µ)τdτ.

Note that F is a C1 function, as a composition of such functions. Therefore, dividing by h > 0, and
letting h→ 0+ in the above inequality, we get by elementary calculation

(50) F ′(t) + F (t) ≤ Ce−te(1−
√
µ)t = Ce−

√
µt.

If µ 6= 1, equivalently, we have

(51)
d

dt

(
etF (t)

)
= et(F ′(t) + F (t)) ≤ Ce(1−

√
µ)t =

d

dt

(
C

1−√µ
e(1−

√
µ)t

)
.

Therefore

(52)
d

dt

(
etF (t)− C

1−√µ
e(1−

√
µ)t

)
≤ 0.

This gives that the function t 7→ etF (t)− C
1−√µe

(1−√µ)t is nonincreasing. In particular

etF (t)− C

1−√µ
e(1−

√
µ)t ≤ et0F (t0)− C

1−√µ
e(1−

√
µ)t0

which gives

f(x(t))− inf
H
f ≤ C

1−√µ
e−
√
µt + e−t

(
et0F (t0)− C

1−√µ
e(1−

√
µ)t0

)
.
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If µ = 1, we get from (50),

d

dt

(
etF (t)

)
= et(F ′(t) + F (t)) ≤ C =

d

dt
(Ct) ,

which gives
f(x(t))− inf

H
f ≤

(
Ct+ et0F (t0)− Ct0

)
e−t.

�

Remark 4.2. Let’s justify the choice of γ = 2
√
µ in theorem 4.1. Indeed, considering

ÿ(t) + 2γẏ(t) +∇f(y(t)) = 0,

a similar demonstration to that described above can be made on the basis of the Lyapunov function

E(t) := f(y(t))− inf
H
f +

1

2
‖γ(y(t)− x∗) + ẏ(t)‖2.

Under the conditions γ ≤ √µ we obtain the exponential convergence rate

f(y(t))− inf
H
f = O

(
e−γt

)
as t → +∞.

Taking γ =
√
µ gives the best convergence rate, and the result of theorem 4.1.

5. The third order dynamic with the Hessian driven damping

In this section, f is a convex function which is twice continuously differentiable. The Hessian of f
at x is denoted by ∇2f(x). It belongs to L(H,H), its action on ξ ∈ H is denoted by ∇2f(x)(ξ). The
introduction of the Hessian driven damping into the third order system (TOGES) leads to consider

(53)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) + β∇2f(x(t) + tẋ(t))(2ẋ(t) + tẍ(t)) +∇f(x(t) + tẋ(t)) = 0,

where α and β are positive parameters. The Hessian driven damping has proved to be an efficient tool
to control and attenuate the oscillations of inertial systems, which is a central issue for optimization
purposes, see [2], [8], [16], [22], [42]. Note that ∇2f(x(t) + tẋ(t))(2ẋ(t) + tẍ(t)) is exactly the time
derivative of ∇f(x(t) + tẋ(t)). This plays a key role in the following developments.

5.1. Convergence via Lyapunov analysis. Our convergence results are based on the decrease
property of the function t 7→ E(t) defined by

E(t) := (t3 − 2βt2)
(
f(x(t) + tẋ(t))−m

)
+

1

2
‖t2(ẍ(t) + β∇f(x(t) + tẋ(t))) + (α− 2)tẋ(t) + (α− 4)(x(t)− z)‖2(54)

with m = infH f and z ∈ argmin f . When β = 0, we recover the Lyapunov function used in the proof
of Theorem 3.1.

Theorem 5.1. Let x : [t0,+∞[→ H be a solution trajectory of the evolution equation (53).

(i) Suppose that the parameters satisfy the following condition:

α > 7 and β ≥ 0.

Then, for all t ≥ t1 := 2β(α−6)
α−7

f(x(t) + tẋ(t))− inf
H
f ≤ (α− 6)E(t1)

t3
;

f(x(t))− inf
H
f ≤ 1

t

(
t1(f(x(t1))− inf

H
f) +

(α− 6)E(t1)

2t21

)
,
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with

E(t1) = (t31 − 2βt21)
(
f(x(t1) + t1ẋ(t1))− inf

H
f
)

+
1

2
‖t21(ẍ(t1) + β∇f(x(t1) + t1ẋ(t1))) + (α− 2)t1ẋ(t1) + (α− 4)(x(t1)− z)‖2.

Moreover, we have an approximate descent method in the following sense:

a) The function t 7→ t(f(x(t))− infH f) + (α−6)E(t1)
2t2 is nonincreasing on [t1,+∞[.

b) The function t 7→ f(x(t)) + (α−6)E(t1)
3t3 is nonincreasing on [t1,+∞[.

(ii) In addition, for β > 0 ∫ ∞
t1

t4‖∇f(x(t) + tẋ(t))‖2dt ≤ (α− 6)E(t1)

β
.

Proof. Let us rewrite the energy function E(·) defined in (54) as follows:

(55) E(t) := tδ(t)(f(y(t))− inf
H
f) +

1

2
‖v(t)‖2,

where y(t) := x(t) + tẋ(t), v(t) := t2(ẍ(t) + β∇f(x(t) + tẋ(t))) + (α − 2)tẋ(t) + (α − 4)(x(t) − z),
with z ∈ argmin f , and δ(t) = t2

(
1− 2β

t

)
. We have

(56) Ė(t) := tδ(t)〈∇f(y(t)), ẏ(t)〉+ (δ(t) + tδ̇(t))(f(y(t))− inf
H
f) + 〈v(t), v̇(t)〉.

Let us compute v̇(t) with the help of the derivation chain rule.

v̇(t) = t2
(...
x (t) + β∇2f(x(t) + tẋ(t))(2ẋ(t) + tẍ(t)

)
+ 2t

(
ẍ(t) + β∇f(x(t) + tẋ(t))

)
+ (α− 2)

(
tẍ(t) + ẋ(t)

)
+ (α− 4)ẋ(t)

=
(
t2

...
x (t) + αtẍ(t) + (2α− 6)ẋ(t) + t2β∇2f(x+ tẋ)(2ẋ(t) + tẍ(t)

)
+ 2tβ∇f(x(t) + tẋ(t))

= −t2∇f(x(t)) + tẋ(t)) + 2tβ∇f(x(t) + tẋ(t))

= −δ(t)∇f(y(t))

where the two last inequalities follow from the equation (53) and the definition of y(·). Therefore

〈v̇(t), v(t)〉 = −δ(t)〈∇f(y(t)), t2(ẍ(t) + β∇f(y(t)) + (α− 2)tẋ(t) + (α− 4)(x(t)− z)〉
= −δ(t)〈∇f(y(t)), t2ẍ(t) + βt2∇f(y(t))) + (α− 4)(y(t)− z) + 2tẋ(t)〉
= −βt2δ(t)‖∇f(y(t))‖2 − tδ(t)〈∇f(y(t)), ẏ(t)〉 − (α− 4)δ(t)〈∇f(y(t)), y(t)− z〉
≤ −βt2δ(t)‖∇f(y(t))‖2 − tδ(t)〈∇f(y(t)), ẏ(t)〉+ (α− 4)δ(t)(f(z)− f(y(t))(57)

where the last inequality follows from the convexity of f and α ≥ 4.
Combining (56) with (57) we obtain

Ė(t) ≤ tδ(t)〈∇f(y(t)), ẏ(t)〉+ (δ(t) + tδ̇(t))(f(y(t))− inf
H
f)

− βt2δ(t)‖∇f(y(t))‖2 − tδ(t)〈∇f(y(t)), ẏ(t)〉+ (α− 4)δ(t)(f(z)− f(y(t)).(58)

After simplification we get

(59) Ė(t) + βt2δ(t)‖∇f(y(t))‖2 +
(

(α− 4)δ(t)− δ(t)− tδ̇(t)
)

(f(y(t))− inf
H
f) ≤ 0.
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According to the definition of δ(·)

(α− 4)δ(t)− δ(t)− tδ̇(t) = (α− 5)δ(t)−−tδ̇(t)
= (α− 5)(t2 − 2βt)− t(2t− 2β)

= (α− 7)t2 − 2βt(α− 6).

Therefore, for α > 7 and t ≥ t1 = 2β(α−6)
α−7 (i.e. t sufficiently large), we have Ė(t) ≤ 0. So, for all

t ≥ t1 we have E(t) ≤ E(t1), which by definition of E(·) gives

t3
(

1− 2β

t

)
(f(y(t))− inf

H
f) ≤ E(t1).

Note that for t ≥ t1 we have 1− 2β
t ≥

1
α−6 . Therefore, for t ≥ t1

f(x(t) + tẋ(t))− inf
H
f ≤ (α− 6)E(t1)

t3
.

Moreover by integrating (59) we get

β

∫ ∞
t1

t2δ(t)‖∇f(x(t) + tẋ(t))‖2dt ≤ E(t1).

which, by a similar argument as above, gives the claim. Finally, passing from the estimates on y(t)
to the estimates on x(t) is obtained as in Theorem 3.1. �

6. Convergence of an implicit discretization of the third order evolution

Let us analyze the fast convergence properties of the proximal algorithms that can be obtained by
temporal discretization of the third order evolution system (TOGES)

(60)
...
x (t) +

α

t
ẍ(t) +

2α− 6

t2
ẋ(t) +∇f(x(t) + tẋ(t)) = 0.

To introduce the algorithm, we first assume that f : H → R is continuously differentiable. Then,
when passing to the proximal algorithm, we will take a general convex lower semicontinuous function
f : H → R∪{+∞}. We consider the following implicit temporal discretization of equation (60), with
fixed step size h = 1,

(xk+2 − 3xk+1 + 3xk − xk−1) +
α

k − 1
(xk+2 − 2xk+1 + xk) +

2α− 6

k(k − 1)
(xk+2 − xk+1) +∇f(yk+1) = 0

where
yk = xk+1 + k(xk+1 − xk).

Note that
yk = (k + 1)xk+1 − kxk,

which makes convenient to introduce ak := kxk, and gives

yk = ak+1 − ak.
As a discrete version of the Lyapunov function considered in the continuous case

E(t) := t3
(
f(x(t) + tẋ(t))− inf

H
f
)

+
1

2
‖t2ẍ(t) + (α− 2)tẋ(t) + (α− 4)(x(t)− z)‖2

= t3
(
f(y(t))− inf

H
f
)

+
1

2
‖tẏ(t) + (α− 4)(y(t)− z)‖2

where z ∈ argmin f , we take

Ek := k(k − 1)(k + 1)(f(yk)− inf
H
f) +

1

2
‖vk‖2
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where

vk = (α− 4)(yk − z) + k(yk − yk−1).

Note that, after multiplication by k(k − 1), the algorithm can be equivalently formulated as

k(k − 1)(xk+2 − 3xk+1 + 3xk − xk−1) + αk(xk+2 − 2xk+1 + xk)

+(2α− 6)(xk+2 − xk+1) + k(k − 1)∇f(yk+1) = 0.(61)

Let’s first verify that the algorithm is well posed. This results from the basic formula that will be
established in the proof of following theorem

vk+1 − vk = −k(k − 1)∇f(yk+1).

According to the definition of vk, this gives

(α− 4)(yk+1 − yk) + (k + 1)(yk+1 − yk)− k(yk − yk−1) + k(k − 1)∇f(yk+1) = 0.

Equivalently,

yk+1 = prox k(k−1)
k+α−3 f

(
yk +

k

k + α− 3
(yk − yk−1)

)
.

Hence (yk) follows a proximal algorithm with large step size of order k. At this point, we now assume
that f : H → R ∪ {+∞} is a general convex lower semicontinuous function. Replacing the gradient
by the subdifferential, the relation (61) becomes

k(k − 1)(xk+2 − 3xk+1 + 3xk − xk−1) + αk(xk+2 − 2xk+1 + xk)

+(2α− 6)(xk+2 − xk+1) + k(k − 1)ξk = 0,(62)

with ξk ∈ ∂f(yk+1). The variable (xk) is obtained by averaging the variable (yk), as described below

xk =
1

k

(
x1 +

k−1∑
i=1

yi

)
.

The previous results have been summarized in the following table.

(TOPA): Third Order Proximal Algorithm

Initial data : y0 ∈ H, y1 ∈ H, x1 ∈ H

For k = 1, 2, ...
yk+1 = prox k(k − 1)

k + α− 3
f

(
yk + k

k+α−3 (yk − yk−1)
)

xk+1 = 1
k+1

(
x1 +

∑k
i=1 yi

)
.

Note that the sequence of iterates (yk) is governed by a large step proximal inertial algorithm,
while (xk) results from the average of (yk). We will successively study the convergence rate of the
values, then the convergence of the iterates.



ALGORITHMS ASSOCIATED WITH A THIRD-ORDER EVOLUTION EQUATION 17

6.1. Convergence rate of the values. The following result will follow from a Lyapunov analysis
which is based on the decreasing property of the sequence (Ek).

Theorem 6.1. Let f : H → R ∪ {+∞} be a convex lower semicontinuous proper function such that
argminH f 6= ∅. Let (xk) be a sequence generated by the algorithm (TOPA). Suppose that α > 7.
Then, as k → +∞

f
(

(k + 1)xk+1 − kxk
)
− inf
H
f = O

(
1

k3

)
,

and

f(xk)− inf
H
f = O

(
1

k

)
.

In addition, the sequence (xk) satisfies a quasi-descent property: there exists a positive constant C
such that for all k ≥ 1

f(xk+1) ≤ f(xk) +
C

k4
.

Proof. We first compute

vk+1 − vk = (α− 4)(yk+1 − yk) + (k + 1)(yk+1 − yk)− k(yk − yk−1)

= (α− 3)(yk+1 − yk) + k
(

(yk+1 − yk)− (yk − yk−1)
)

= (α− 3)(ak+2 − 2ak+1 + ak) + k(yk+1 − 2yk + yk−1)

= (α− 3)(ak+2 − 2ak+1 + ak) + k(ak+2 − 3ak+1 + 3ak − ak−1)

= (α− 3)
(

(k + 2)xk+2 − 2(k + 1)xk+1 + kxk

)
+ k

(
(k + 2)xk+2 − 3(k + 1)xk+1 + 3kxk − (k − 1)xk−1

)
= k2

(
xk+2 − 3xk+1 + 3xk − xk−1

)
+ k

(
(α− 3)(xk+2 − 2xk+1 + xk) + (2xk+2 − 3xk+1 + xk−1)

)
+ (α− 3)(2xk+2 − 2xk+1)

= k2
(
xk+2 − 3xk+1 + 3xk − xk−1

)
+ k

(
α(xk+2 − 2xk+1 + xk)− 3(xk+2 − 2xk+1 + xk) + (2xk+2 − 3xk+1 + xk−1)

)
+ (α− 3)(2xk+2 − 2xk+1)

= k2
(
xk+2 − 3xk+1 + 3xk − xk−1

)
+ k

(
α(xk+2 − 2xk+1 + xk)− (xk+2 − 3xk+1 + 3xk − xk−1)

)
+ (2α− 6)(xk+2 − xk+1)

= (k2 − k)
(
xk+2 − 3xk+1 + 3xk − xk−1

)
+ kα(xk+2 − 2xk+1 + xk)

+ (2α− 6)(xk+2 − xk+1)

= −k(k − 1)ξk.

From this we deduce that

〈vk+1 − vk, vk+1〉 = −k(k − 1) 〈ξk, (α− 4)(yk+1 − z) + (k + 1)(yk+1 − yk)〉
≤ +k(k − 1)(k + 1)(f(yk)− f(yk+1))− k(k − 1)(α− 4)(f(yk+1)− f(z)),(63)
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where the last inequality follows from the convexity of f , and ξk ∈ ∂f(yk+1).
By definition of Ek, we have

Ek+1 − Ek = k(k − 1)(k + 1)(f(yk+1 − f(yk)) + 3k(k + 1)(f(yk+1)− f(z)) +
1

2
‖vk+1‖2 −

1

2
‖vk‖2

≤ k(k − 1)(k + 1)(f(yk+1 − f(yk)) + 3k(k + 1)(f(yk+1)− f(z)) + 〈vk+1 − vk, vk+1〉
≤ k(k − 1)(k + 1)(f(yk+1 − f(yk)) + 3k(k + 1)(f(yk+1)− f(z))

+ k(k − 1)(k + 1)(f(yk)− f(yk+1))− k(k − 1)(α− 4)(f(yk+1)− f(z))

where the above inequality follows from (63). After simplification, we get

Ek+1 − Ek +
(

(α− 4)k(k − 1)− 3k(k + 1)
)

(f(yk+1)− inf
H
f) ≤ 0.

We have (α− 4)k(k − 1)− 3k(k + 1) = (α− 7)k2 − (α− 1)k. Therefore, for α > 7, and k ≥ α−1
α−7 , we

have Ek+1 ≤ Ek. So, for k ≥ k1 = 1 + [α−1α−7 ], we have

f(xk+1 + k(xk+1 − xk))− inf
H
f ≤ Ek1

k(k − 1)(k + 1)

which gives the claim. Let us now consider the sequence (xk). From

yk = (k + 1)xk+1 − kxk,

we get

xk+1 =
1

k + 1
yk +

k

k + 1
xk.

According to the convexity of f , we deduce that

f(xk+1)− inf
H
f ≤ 1

k + 1
(f(yk)− inf

H
f) +

k

k + 1
(f(xk)− inf

H
f).

Set Fk := f(xk)− infH f . We have

Fk+1 − Fk +
1

k + 1
Fk ≤

1

k + 1
(f(yk)− inf

H
f).

After multiplication by (k + 1) we get

(k + 1)Fk+1 − kFk ≤ f(yk)− inf
H
f.

According to the estimate obtained for (yk) we infer

(k + 1)Fk+1 − kFk ≤
C

k3
.

By summing the above inequalities, we obtain, supk kFk < +∞, that is

f(xk)− inf
H
f = O

(
1

k

)
.

In addition,

f(xk+1) ≤ f(xk) +
C

k4
,

which gives that a quasi-descent property for the sequence (xk). �
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6.2. Convergence of the iterates. As a key ingredient of the following convergence analysis, we
use that the sequence (yk) is governed by the proximal algorithm

(64) yk+1 = prox k(k − 1)

k + α− 3
f

(
yk +

k

k + α− 3
(yk − yk−1)

)
.

This inertial proximal algorithm involves large proximal steps ( k(k−1)k+α−3 → +∞ as k → +∞). This
last property comes from the temporal rescaling technique which underlies the algorithm. This kind
of situation was first considered by Güler in [28]. Indeed, (64) is a particular case of the Inertial
Proximal algorithm

(IP)αk,βk yk+1 = proxβkf (yk + αk(yk − yk−1)),

with general parameters αk and βk. A systematic study of (IP)αk,βk was developed by the authors

in [13]. Let us recall the convergence result for (IP)αk,βk , obtained in [13, Theorem 7]. It makes use

of the sequence (tk) defined by

(65) αk =
tk − 1

tk+1
.

Theorem 6.2. Assume that

i) There exists m < 1, and k0 ∈ N such that

(K+
1,αk,βk

) t2k+1βk − t2kβk−1 ≤ mtk+1βk for every k ≥ k0.

ii) αk ∈ [0, 1] for every k ≥ 1;

iii) The sequence (βk) is non-decreasing;

iv)
∑∞
k=1 tkβk−1 = +∞.

Then, any sequence (yk) generated by the algorithm (IP)αk,βk converges weakly in H, and its limit
belongs to argmin f .

By particularizing this general result to our setting, we obtain the following theorem.

Theorem 6.3. Let f : H → R ∪ {+∞} be a convex lower semicontinuous proper function such that
argminH f 6= ∅. Let (xk) be a sequence generated by the algorithm (TOPA). Suppose that α > 7.
Then, as k → +∞, the sequence (xk) converge weakly in H, and its limit belongs to argminH f . In
addition, the sequence (yk) converges weakly to the same limit.

Proof. Let us verify that the conditions of Theorem 6.2 are satisfied. Specifically, (64) is obtained
from (IP)αk,βk by taking the extrapolation and the proximal parameters respectively equal to

αk =
k

k + α− 3
and βk =

k(k − 1)

k + α− 3
.

First, verify that

(66) tk =
k + α− 4

α− 4
.

This is a consequence of the fact that this expression for tk satisfies the relation (65), i.e.

tk − 1

tk+1
=

k

k + α− 3
.

From this, we can easily verify that the conditions ii), iii), iv) are satisfied. The only non-trivial
point to verify is the condition (K+

1,αk,βk
). Replacing tk and βk by their values, we have to show the
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existence of m < 1 such that (for k large enough)(
k + α− 3

α− 4

)2
k(k − 1)

k + α− 3
−
(
k + α− 4

α− 4

)2
(k − 1)(k − 2)

k + α− 4
≤ mk + α− 3

α− 4

k(k − 1)

k + α− 3
.

After simplification, we get

k + α− 3

(α− 4)2
k(k − 1)− k + α− 4

(α− 4)2
(k − 1)(k − 2) ≤ mk(k − 1)

α− 4
.

Equivalently

(k + α− 3)k − (k + α− 4)(k − 2) ≤ m(α− 4)k.

After development and simplification, we end up with

3k + 2(α− 4) ≤ m(α− 4)k,

which is clearly satisfied for some m < 1, and k large enough, when α > 7.
So, by Theorem 6.2 we obtain that the sequence (yk) converges weakly in H, and its limit belongs to
argminH f . To pass from the convergence of (yk) to the convergence of (xk), we use the second line
of algorithm (IP)αk,βk

xk+1 =
1

k + 1

(
x1 +

k∑
i=1

yi

)
.

According to the fact that convergence implies ergodic convergence to the same limit, we conclude
that the sequence (xk) converges weakly in H, and this limit belongs to argminH f . In addition, it
has the same limit as the sequence (yk). �

6.3. Convergence rate of velocities and accelerations towards zero. We will prove the fol-
lowing result.

Theorem 6.4. Let f : H → R ∪ {+∞} be a convex lower semicontinuous proper function such that
argminH f 6= ∅. Let (xk) be a sequence generated by the algorithm (TOPA). Suppose that α > 7.
Then, as k → +∞,

(i) ‖yk − yk−1‖ = o

(
1

k

)
, and

∑
k

k‖yk − yk−1‖2 < +∞;

(ii) ‖xk − xk−1‖ = O
(

1

k

)
;

(iii) ‖xk+1 − 2xk + xk−1‖ = O
(

1

k2

)
.

Proof. As in the proof of Theorem 6.3, we rely on the general results concerning the algorithm
(IP)αk,βk obtained by the authors in [13]. In [13, Theorems 5-6] (see also [11, Proposition 3.3]) it is
proved that, under the assumptions of Theorem 6.2,

‖yk − yk−1‖2 = o

(
1

t2k

)
, and

∑
k

tk‖yk − yk−1‖2 < +∞.

We already verified in the proof of Theorem 6.3 that, in our situation, the assumptions of Theorem 6.2
are satisfied. According to (66), the sequence (tk) is of order k. This gives the announced convergence



ALGORITHMS ASSOCIATED WITH A THIRD-ORDER EVOLUTION EQUATION 21

rate of velocities for (yk). According to the definition of xk in (IP)αk,βk , we have

xk − xk−1 =
1

k

(
x1 +

k−1∑
i=1

yi

)
− 1

k − 1

(
x1 +

k−2∑
i=1

yi

)

= − 1

k(k − 1)
x1 +

1

k

(
k−2∑
i=1

yi + yk−1

)
− 1

k − 1

k−2∑
i=1

yi

= − 1

k(k − 1)
x1 +

1

k
yk−1 −

1

k(k − 1)

k−2∑
i=1

yi.

Since the sequence (yk) converges weakly, it is bounded in H. The announced convergence rate
towards zero of ‖xk − xk−1‖ follows immediately from the inequality above.
Let us now analyze the convergence rate of the accelerations to zero. According to the estimate
obtained above in item (i), and yk = (k + 1)xk+1 − kxk, we obtain

‖
(

(k + 1)xk+1 − kxk
)
−
(
kxk − (k − 1)xk−1

)
‖ = o

(
1

k

)
.

Equivalently,

‖k
(
xk+1 − 2xk + xk−1

)
+
(

(xk+1 − xk) + (xk − xk−1)
)
‖ = o

(
1

k

)
.

By the triangle inequality, and according to the estimate obtained above in item (ii), we obtain

‖xk+1 − 2xk + xk−1‖ ≤ o

(
1

k2

)
+

1

k
‖xk+1 − xk‖+

1

k
‖xk − xk−1‖

≤ o

(
1

k2

)
+

1

k
O
(

1

k

)
≤ O

(
1

k2

)
,

which gives the announced convergence rate of the accelerations. �

7. Conclusion, perspectives

Based on time rescaling and change of variable techniques, we introduced the third-order in time
gradient-based evolution system (TOGES) with the convergence rate of the values of the order O

(
1
t3

)
.

Then, based on a direct Lyapunov analysis of this system, we retrieved these results and enriched them
by considering several related situations: the strongly convex case, the introduction of errors and/or
perturbations, the introduction of the Hessian damping. For a general convex lower semicontinuous
function with extended real values, we have obtained similar convergence rates for the associated
proximal algorithms. Many questions remain to be explored. It would be important to analyze the
convergence rate of the corresponding gradient algorithms, and of the proximal-gradient methods for
structured convex optimization. It would also be interesting to deepen the understanding of the effect
of average that governs the state of our dynamics, and its impact on the rate of convergence. Natural
extensions would consider similar issues for nonconvex optimization and monotone inclusions.
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