
HAL Id: hal-02431973
https://hal.science/hal-02431973

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validated Enclosure of Uncertain Nonlinear Equations
Using SIVIA Monte Carlo

Nisha Rani Mahato, Luc Jaulin, S. Chakraverty, Jean Dezert

To cite this version:
Nisha Rani Mahato, Luc Jaulin, S. Chakraverty, Jean Dezert. Validated Enclosure of Uncertain
Nonlinear Equations Using SIVIA Monte Carlo. 8th National Conference on Wave Mechanics and
Vibrations, WMVC 2018, Jul 2018, Rourkela, India. pp.455-468, �10.1007/978-981-15-0287-3_32�.
�hal-02431973�

https://hal.science/hal-02431973
https://hal.archives-ouvertes.fr

Validated Enclosure of Uncertain

Nonlinear Equations Using SIVIA

Monte Carlo

Nisha Rani Mahato, Luc Jaulin , S. Chakraverty and Jean Dezert

Abstract The dynamical systems in various science and engineering problems are

often governed by nonlinear equations (differential equations). Due to insufficiency

and incompleteness of system information, the parameters in such equations may

have uncertainty. Interval analysis serves as an efficient tool for handling uncertainties

in terms of closed intervals. One of the major problems with interval analysis is

handling “dependency problems” for computation of the tightest range of solution

enclosure or exact enclosure. Such dependency problems are often observed while

dealing with complex nonlinear equations. In this regard, initially, two test problems

comprising interval nonlinear equations are considered. The Set Inversion via Interval

Analysis (SIVIA) along with the Monte Carlo approach is used to compute the exact

enclosure of the test problems. Further, the efficiency of the proposed approach has

also been verified for solving nonlinear differential equation (Van der Pol oscillator)

subject to interval initial conditions.

Keywords Uncertain nonlinear equations · Nonlinear oscillator · Dependency

problem · SIVIA Monte Carlo · Contractor

N. R. Mahato (B) · S. Chakraverty

Department of Mathematics, National Institute of Technology Rourkela, Rourkela 769008,

Odisha, India

e-mail: nisha.mahato1@gmail.com

S. Chakraverty

e-mail: sne_chak@yahoo.com

L. Jaulin

ENSTA-Bretagne, Lab-STICC, CNRS 6285, 2 rue François Verny, 29806 Brest, France

e-mail: lucjaulin@gmail.com

J. Dezert

The French Aerospace Lab, 91120 Palaiseau, France

e-mail: jean.dezert@onera.fr

1

1 Introduction

Various vibration problems in science and engineering disciplines, viz., structural

mechanics, control theory, seismology, physics, and biology may be expressed in

terms of nonlinear equations, system of nonlinear equations, and nonlinear differ-

ential equations. Generally, the parameters in such equations deal with precise vari-

ables. But, the insufficiency and incompleteness of the system information often

led to parameters or variables with imprecision or uncertainty. For instance, let us

consider a nonlinear damped spring–mass system as given in Fig. 1 governed by the

equation,

mẍ + cẋ + αẋ2 + kx + βx3 = f (t) (1)

where m, c, and k are respectively mass, damping, and stiffness of the nonlinear

system. Here, the external force applied on the system is f (t) with damping force

fd = cẋ + αẋ2 and spring force fs = kx + βx3.

The uncertainty of the material properties in Eq. (1) led to the uncertain nonlinear

differential equation. Such uncertainties may be modeled either using probabilistic

approach, interval computation or fuzzy set theory. In case of nonavailability of

sufficient experimental data, probabilistic methods may not be able to deliver reliable

results. Moreover, in fuzzy set theory, a fuzzy number is expressed in terms of closed

intervals through the α-cut approach. As such, interval analysis has emerged as a

powerful tool for various practical problems in handling the uncertainties.

In the early 1960s, the pioneer concept related to interval computations, functions,

matrices, integral, and differential equations has been started by Moore [12–14].

System of equations, algebraic eigenvalue problems, and second-order initial and

boundary value problems have been discussed by Alefeld and Herzberger [2]. Guar-

anteed interval computations with respect to set approximations, parameter, and state

estimation with applications in robust control and robotics are addressed by Jaulin

et al. [10]. While dealing with interval computations, one of the major obstacles is

to handle the “dependency problems” effectively such that the tightest enclosure of

solution bound may be obtained. Such dependency problems often occur in dealing

with systems governed by complex nonlinear equations which lead to overestima-

tion of solution bounds. The dependency problem due to overestimation (wrapping

effect) has been studied by Krämer [11] with respect to generalized interval arith-

metic proposed by Hansen [9]. The other approach for the reduction of overestima-

Fig. 1 Damped spring–mass

system

2

tion while handling dependency problem may be performed using contractors [10],

affine arithmetic [16], and/or parametric forms. As such, the present work proceeds

with the introduction section. The preliminaries of classical arithmetic of interval

analysis (IA) along with its application for two complex nonlinear equations com-

prising imprecise variables are considered in Sect. 2. The Set Inversion via Interval

Analysis (SIVIA) along with the Monte Carlo approach is then used to compute the

exact enclosure of the two test problems in Sect. 3. Further, the proposed approach

has also been verified for computing validated enclosure of nonlinear differential

equation (Van der Pol oscillator) subject to interval initial conditions in Sect. 4.

2 Classical Interval Computations

Interval analysis deals with interval computations on a set of closed intervals IR of

real line R, in order to obtain the tightest bound or enclosure for uncertain systems.

A closed interval [x] ∈ IR is denoted by [x] = [x, x] such that

[x] = [x, x] = {t | x ≤ t ≤ x, where x, x ∈ R}.

Here, x = inf[x] is the inifimum or lower bound of [x] and x = sup[x] is the supre-

mum or upper bound of [x]. The width and center of [x] may be referred to as

[x]w = x − x and [x]c =
x+x

2
, respectively.

Basic operations using classical interval arithmetic given in Moore et al. [14] are

illustrated as follows:

• Addition: [x] + [y] = [x + y, x + y]

• Subtraction: [x] − [y] = [x − y, x − y]

• Multiplication: [x] · [y] = [min{S· ([x], [y])}, max{S· ([x], [y])}],

where S· ([x], [y]) = {x y, x y, x y, x y}

• Division: [x]/[y] =

{

[

x, x
]

·
[

1
y
, 1

y

]

, 0 /∈ [y, y],

(−∞,∞) , 0 ∈ [y, y]

• Power:

– If n > 0 is an odd number, then [x]n =
[

xn, xn
]

– If n > 0 is an even number, then [x]n =

⎧

⎨

⎩

[

xn, xn
]

, [x] > 0
[

xn, xn
]

, [x] < 0

[0, max{xn, xn}], 0 ∈ [x]

Then, we have illustrated two test examples for the implementation of basic interval

arithmetic in Examples 1 and 2.

Example 1 Compute the bound [z1] satisfying constraint

z1 = x1 y1 + x1 y3 + x3 y1 (2)

3

such that x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1. Here, x1 ∈ [x1] = [0.2, 0.3], x2 ∈

[x2] = [0.1, 0.2], y1 ∈ [y1] = [0.4, 0.6], and y2 ∈ [y2] = [0.2, 0.3].

Using classical IA, the bounds [x3] and [y3] are initially estimated as

[x3] ∼ 1 − [x1] − [x2] = [0.5, 0.7] and [y3] ∼ 1 − [y1] − [y2] = [0.1, 0.4]

respectively with respect to the constraints x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1.

Then, the bound [z1] is obtained as

[z1]
IA ∼ [x1] · [y1] + [x1] · [y3] + [x3] · [y1] = [0.30, 0.72]. (3)

Further, we have considered a more complicated nonlinear constraint in Example 2,

related to problems of multi-criteria decision-making under imprecise scores given

in Dezert et al. [7].

Example 2 [7] Compute the bound [z2] satisfying constraint

z2 = z1 +
x2

1 y2

x1 + y2

+
y2

1 x2

y1 + x2

(4)

such that x1 ∈ [0.2, 0.3], x2 ∈ [0.1, 0.2], y1 ∈ [0.4, 0.6], and y2 ∈ [0.2, 0.3].

Here, the bound of [z2] is obtained as

[z2]
IA ∼ [z1]

IA +
[x1]

2[y2]

[x1] + [y2]
+

[y1]
2[x2]

[y1] + [x2]
= [0.3333, 0.9315]. (5)

The enclosures obtained in Eqs. (3) and (5) have been compared with enclosures

obtained using the Monte Carlo simulation in Table 1.

Here, the Monte Carlo simulation approach using uniformly distributed 100,000

independent random sample values of variables x1, x2, y1, and y2 have been con-

sidered, where x1 ∼ U ([x1]), x2 ∼ U ([x2]), y1 ∼ U ([y1]), and y2 ∼ U ([y2]). From

Table 1, it is worth mentioning that the bounds for i = 1, 2 satisfy

[zi]
MC ⊂ [zi]

IA.

In case of more sample values, the Monte Carlo simulation may yield better interval

enclosure with respect to the constraints (2) and (4), but such approach is inefficient

with respect to computational time. So, we may consider the problem in handling

Table 1 Interval bounds of

z1 and z2

i Interval bounds

[zi]
IA [zi]

MC

1 [0.30, 0.72] [0.3850, 0.5935]

2 [0.3333, 0.9315] [0.4617, 0.6825]

4

interval computations as to interpret the tightest or the exact enclosure [zi] of zi that

satisfies

[zi]
MC ⊂ [zi] ⊂ [zi]

IA (6)

such that

inf [zi]
IA ≤ inf [zi] ≤ inf [zi]

MC and sup [zi]
MC ≤ sup [zi] ≤ sup [zi]

IA (7)

or zIA
i

≤ z
i
≤ zMC

i
and zMC

i ≤ zi ≤ zIA
i . (8)

Although in the above computations, the interval arithmetic looks simple for basic

operations with intervals and seems appealing, the “dependency problem” is a major

obstacle when complicated expressions have to be computed in order to find the

tightest enclosure. In this regard, the dependency effect has been discussed in detail

in the next section.

2.1 Dependency Problem in IA

Variable or parameter dependency problem in IA is generally exhibited when we

have more than one occurrence of imprecise parameter in the governing constraint.

For instance, in case of the nonlinear constraint

z = x2 + y2 for x ∈ [0.1, 0.5] and y ∈ [−0.6, 0.1],

the occurrence of each imprecise variable x and y is once. The computation

of enclosure with respect to constraint z = x2 + y2 using classical IA results

in [z]IA = [0.01, 0.61] which is found equivalent to the Monte Carlo simulation

of x ∼ U ([0.1, 0.5]), y ∼ U ([−0.6, 0.1]) for 100,000 sample values that yields

[z]MC = [0.01, 0.61]. But, the complexity occurs while dealing with complex non-

linear constraints as given in Examples 1 and 2, where the dependency effect is

exhibited due to multiple occurrences of imprecise variables.

The dependency effect may be reduced by replacing the constraint given in Eq.

(2) with an equivalent simpler constraint having less (or none) redundant variables.

For instance, the equivalent constraint

z1 = (1 − x2)y2 + x3 y1 (9)

results in a better enclosure approximation [z1]
IA = [0.34, 0.66]. Here, the interval

bound [0.34, 0.66] is contained in the bound [0.30, 0.72] obtained using the equiv-

alent constraint given in Eq. (2). But, on the other hand, an equivalent constraint

z1 = (1 − y2)x1 + (1 − x2)y1 − x1 y1 (10)

5

results in an overestimated bound [z1]
IA = [0.28, 0.70]. Due to such dependency,

the interval bounds often yield overestimation of the tightest enclosure. Similar,

dependency effect is exhibited while computing [z2]
IA for constraints z2 = z1 +

(

1
x1 y2

+ 1

x2
1

)−1

+
y2

1 x2

y1+x2
and z2 = z1 +

x2
1 y2

x1+y2
+

(

1
y1x2

+ 1

y2
1

)−1

with respect to (4). As

such, identification of constraint yielding the tightest enclosure is cumbersome. In this

regard, the problem formulation for reduction of overestimation due to dependency

effect has been carried out in the next section.

2.1.1 Problem Formulation

The main aim in the present work is to compute the tightest enclosure
[

z
i
, zi

]

or

exact enclosure such that [zi]
MC ∼ [zi]

IA or

zIA
i

= z
i
= zMC

i
and zMC

i = zi = zIA
i . (11)

associated with some nonlinear constraint zi = f (x1, x2, y1, y2), where xi ∈ [xi] and

yi ∈ [yi] for i = 1, 2. In this regard, the SIVIA Monte Carlo approach based on the

set inversion using interval computations and the Monte Carlo simulation has been

proposed to estimate exact bounds in the next section.

3 SIVIA Monte Carlo Approach

Initially, the general procedure of SIVIA has been incorporated in Sect. 3.1 followed

by contractors in Sect. 3.2. Finally, the combination of SIVIA with the Monte Carlo

approach has been performed in Sect. 3.3.

3.1 SIVIA

Set inversion of a typical set X ⊂ R
m with respect to function f : R

m → R
n is

expressed as

X = f −1(Y) = {x ∈ R
m | f (x) ∈ Y}

where Y ⊂ R
n . In case of SIVIA [10], an initial search set [x0] is assumed containing

the required set X. Then, using sub-pavings as given in Fig. 2, the desired enclosure

of solution set X is obtained based on the inclusion properties:

1. Case I: [f]([x]) ⊂ Y =⇒ [x] ⊂ X, then [x] is a solution,

2. Case II: [f]([x]) ∩ Y = φ =⇒ [x] ∩ X = φ, then [x] is not a solution,

3. Case III: [f]([x]) ∩ Y
= φ and [f]([x])
⊂ Y then, [x] is an undetermined solu-

tion.

6

Fig. 2 Set Inversion via Interval Analysis

The detailed illustration of set computation using SIVIA based on regular sub-

pavings, bisections, etc., may be found in [10]. The sub-pavings in SIVIA may be

improved with the usage of contractors discussed in the next section.

3.2 Contractor

Contractor: [3, 10] A contractor C associated with a set X ⊂ R
n over domain D is

an operator

C : IR
n → IR

n

satisfying the following properties:

– Contraction: C([x]) ⊂ [x], ∀[x] ∈ IR
n ,

– Completeness: C([x]) ∩ X = [x] ∩ X, ∀[x] ∈ IR
n .

The pictorial representation of implementation of a contractor over the set X ⊂ R
2

is illustrated in Fig. 3.

There exist various types of contractors, viz., fixed-point, forward–backward,

Newton, and Gauss–Seidel contractors. Contractor based set inversion of leminscate

Fig. 3 Contraction of [x]

7

Fig. 4 SIVIA of leminscate

curve with width [2, 3]

curve (x2 + y2)2 + a2(x2 − y2) = 0 having width a ∈ [2, 3] has been obtained

based on the PyIbex library [6] and depicted in Fig. 4, where the initial search set is

[−4, 4] × [−4, 4].

In order to perform the SIVIA Monte Carlo approach, we have used forward–

backward and fixed-point contractors. Detailed implementation of forward–backward

and fixed-point contractors have been incorporated in the Appendix.

3.3 SIVIA Monte Carlo

SIVIA Monte Carlo is a two-form iterative methodology that includes implementa-

tion of SIVIA using contractor programming and the Monte Carlo simulation till the

exact enclosure is obtained satisfying (11). In this regard, the iterative procedure is

incorporated in Algorithm 1 with respect to constraint z = f (x1, x2, . . . , xn) such

that each xi ∈ [xi] ∈ IR for i = 1, 2, . . . , n. Here, the initial search set containing

the exact enclosure is assumed as [z0].

Algorithm 1: Implementation of SIVIA Monte Carlo approach

Input: [xi] for i = 1, 2, . . . , n; Initial domain [x] = {[x1], [x2], . . . , [xn]} ∈ D;

Initial search set [z0]

Step 1: Compute enclosure using Monte Carlo

zMC = mcl([x]) and zMC = mcu([x])

Step 2: Compute enclosure using contractors

zIA = Ctcl([x], [z0]) and zIA = Ctcu([x], [z0])

Step 3: Improve lower and upper range of z

8

z ∈
[

zIA, zMC
]

and z ∈
[

zMC, zIA
]

Step 4: Compute improved lower [x] = [f]−1(
[

zIA, zMC
]

) and

upper [x] = [f]−1(
[

zMC, zIA
]

) domains using SIVIA

[x], [x]=SIVIA([x], [f], [z0], ǫ)

Step 5: Repeat steps 1 to 3 for domains [x] and [x]

Step 6: Repeat step 4 for different domains [x] and [x]

Step 7: Iterate steps 4 and 5 till z = zIA ∼ zMC and z = zMC ∼ zIA

Output: [z, z]

In Algorithm 1, mcl(·), mcu(·) are functions that compute the minimum and

maximum function values with respect to domain [x] ∈ D. Then, Ctcl(·), Ctcu(·)

uses forward–backward contractor along with fixed-point contractor for computing

interval enclosure based on classical IA. Further, SIVIA(·) computes the set inversion

for domain [x] ∈ D based on constraint function f with precision ǫ.

Let us again consider the Examples 1 and 2 in order to compute the exact enclosure

using the SIVIA Monte Carlo in Example 3.

Example 3 Compute the interval bounds for the constraints

z1 = x1 y1 + x1 y3 + x3 y1 and z2 = z1 +
x2

1 y2

x1 + y2

+
y2

1 x2

y1 + x2

using the SIVIA Monte Carlo such that x1 + x2 + x3 = 1 and y1 + y2 + y3 =

1. Again, x1 ∈ [x1] = [0.2, 0.3], x2 ∈ [x2] = [0.1, 0.2], y1 ∈ [y1] = [0.4, 0.6], and

y2 ∈ [y2] = [0.2, 0.3]. Using Algorithm 1 for SIVIA precision ǫ = 0.001 and differ-

ent sample values, viz., 100,000, 1000, 100, 10, the tightest enclosures with respect to

constraints z1 = x1 y1 + x1 y3 + x3 y1 and z2 = z1 +
x2

1 y2

x1+y2
+

y2
1 x2

y1+x2
for different sam-

ple values are obtained and incorporated in Tables 2 and 3, respectively.

It may be observed from Table 2 that the SIVIA Monte Carlo method iteratively

converges to the exact enclosure [0.38, 0.6] (up to two decimals) even for fewer

sample values, viz., 100 and 10. Also, it may be noted that the iterative enclosures

converge to exact bound though the computational time increases from 5.1388 to

9.511 s for different samples ranging from 100,000 to 10, respectively. From Table 2,

the proposed method seems appealing as even for fewer sample values the convergent

or exact solution bound is achieved. Many practical application problems do not yield

sufficient data and sometimes the availability of large data is cost effective, in such

cases, the proposed method may be used to obtain exact enclosure and the increase

in the computational time may be neglected.

Similar observations of exact enclosure convergence may be found in Table 3 with

respect to different sample values. Moreover, due to the complexity of the constraint

(4), the required computational time 24.847 s for [z2] is comparatively higher than

time 9.511 s required for [z1]. Further, a nonlinear differential equation with respect

to dynamic problems has been considered in the next section for verification and

effectiveness of the SIVIA Monte Carlo approach.

9

Table 2 Interval enclosure of z1

Iterations SIVIA (0.001 precision) and Monte Carlo samples

100,000 samples 1000 samples

z
1

∈ z1 ∈ z
1

∈ z1 ∈

1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.3850] [0.5935, 0.6007]

2 [0.3796, 0.3807] [0.5993, 0.6007] [0.3796, 0.3822] [0.5971, 0.6007]

3 [0.3796, 0.3801] [0.5999, 0.6006] [0.3796, 0.3808] [0.5987, 0.6008]

4 – – [0.3797, 0.3803] [0.5995, 0.6007]

[z1] [0.38, 0.6] [0.38, 0.6]

Time (s) 5.1388 5.5936

Iterations 100 samples 10 samples

z
1

∈ z1 ∈ z
1

∈ z1 ∈

1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.385] [0.5935, 0.6007]

2 [0.3796, 0.3833] [0.5965, 0.6007] [0.3796, 0.384] [0.5945, 0.6007]

3 [0.3797, 0.3817] [0.5982, 0.6007] [0.3796, 0.3836] [0.595, 0.6007]

4 [0.3797, 0.3814] [0.5989, 0.6007] [0.3797, 0.3829] [0.5971, 0.6007]

5 [0.3797, 0.3808] [0.5995, 0.6006] [0.3797, 0.3811] [0.5977, 0.6007]

6 [0.3797, 0.3805] [0.5996, 0.6006] [0.3797, 0.3808] [0.5978, 0.6006]

7 – – [0.3797, 0.3805] [0.5988, 0.6006]

[z1] [0.38, 0.6] [0.38, 0.6]

Time (s) 6.0616 9.511

4 Nonlinear Oscillator

Sometimes, dynamic problems are governed by mẍ + cẋ + kx = f (t) having non-

linear stiffness (k1x + k2x2 + · · ·) which result in nonlinear differential equations

(nonlinear oscillators). In case of uncertain nonlinear oscillators, the SIVIA Monte

Carlo method has been implemented using nonlinear equations obtained based on

the Runge–Kutta fourth-order method [4, 8]. As such, the enclosure obtained in the

present section yields a validated enclosure rather than the tightest bound. There

exist several validated interval methods and solvers in DynIbex [15] and CAPD [5]

libraries for obtaining validated bounds.

Example 4 Consider the Van der Pol equation (crisp or precise case given in Akbari

et al. [1]),

ẍ(t) + 0.15
(

1 − x2
)

ẋ + 1.44x = 0 (12)

subject to uncertain initial conditions x(0) ∈ [0.1, 0.3] and ẋ(0) = 0.

The system of the first-order differential equation corresponding to (12) is obtained

as

10

Table 3 Interval enclosure of z2

Iterations SIVIA (0.001 precision) and Monte Carlo samples

100,000 samples 1000 samples

z
2

∈ z2 ∈ z
2

∈ z2 ∈

1 [0.4565, 0.4617] [0.6825, 0.6889] [0.4565, 0.4617] [0.6825, 0.6889]

2 [0.4565, 0.4581] [0.6869, 0.6887] [0.4565, 0.4591] [0.6859, 0.6887]

3 [0.4566, 0.4575] [0.6872, 0.6886] [0.4565, 0.4579] [0.6864, 0.6887]

4 – – [0.4565, 0.4577] [0.6867, 0.6887]

5 – – [0.4565, 0.4575] [0.6869, 0.6887]

6 – – [0.4565, 0.4574] [0.687, 0.6889]

[z2] [0.46, 0.69] [0.46, 0.69]

Time (s) 6.7797 7.5464

Iterations 100 samples 10 samples

z
2

∈ z2 ∈ z
2

∈ z2 ∈

1 [0.4565, 0.4617] [0.6825, 0.6889] [0.3796, 0.385] [0.5935, 0.6007]

2 [0.4565, 0.4609] [0.6826, 0.6887] [0.4565, 0.4609] [0.6854, 0.6887]

3 [0.4565, 0.4599] [0.6858, 0.6887] [0.4565, 0.4601] [0.6828, 0.6886]

4 [0.4566, 0.4578] [0.6863, 0.6885] [0.4565, 0.4589] [0.6836, 0.6886]

5 [0.4566, 0.4577] [0.6864, 0.6891] [0.4565, 0.4584] [0.6839, 0.6885]

6 [0.4566, 0.4576] [0.6866, 0.689] [0.4565, 0.4581] [0.685, 0.6885]

7 [0.4566, 0.4574] [0.6867, 0.689] [0.4565, 0.4577] [0.6856, 0.6885]

8 – – [0.4565, 0.4575] [0.686, 0.6885]

9 – – [0.4566, 0.4574] [0.6865, 0.6884]

[z2] [0.46, 0.69] [0.46, 0.69]

Time (s) 9.2454 24.847

u̇ = v = fu(t, u, v)

v̇ = 0.15(u2 − 1)v − 1.44u = fv(t, u, v)

subject to initial conditions u(0) ∈ [0.1, 0.3] and v(0) = 0. Using Runge–Kutta

fourth-order method, the nonlinear constraints involved in the computation of (12)

are

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4) (13)

vn+1 = vn +
h

6
(l1 + 2l2 + 2l3 + l4) (14)

where

k1 = h fu(tn, un, vn), l1 = h fv(tn, un, vn),

11

Table 4 Instantaneous solution enclosure of x(t)|t=T

T Enclosures

[x](T) = [u](T) [v](T)

0.1 [0.0993, 0.2979] [−0.0428, −0.0143]

0.2 [0.0972, 0.2915] [−0.0844,−0.0281]

0.3 [0.0937, 0.281] [−0.1242,−0.0413]

Fig. 5 Enclosure of x(t) for t ∈ [0, 1]

k2 = h fu

(

tn +
h

2
, un +

k1

2
, vn +

l1

2

)

, l2 = h fv

(

tn +
h

2
, un +

k1

2
, vn +

l1

2

)

,

k3 = h fu

(

tn +
h

2
, un +

k2

2
, vn +

l2

2

)

, l3 = h fv

(

tn +
h

2
, un +

k2

2
, vn +

l2

2

)

,

k4 = h fu (tn + h, un + k3, vn + l3) and l4 = h fv (tn + h, un + k3, vn + l3) .

Using Algorithm 1 with respect to constraints (13), and (14), the validated enclosure

of x(t)|t=T is obtained and incorporated in Table 4 and Fig. 5.

12

5 Conclusion

Generally, dynamical systems occurring in various science and engineering prob-

lems are governed by nonlinear equations or nonlinear differential equations. An

iterative procedure based on SIVIA and the Monte Carlo method has been proposed

for the computation of exact enclosure of nonlinear equations having imprecise or

uncertain variables. The effectiveness of the SIVIA Monte Carlo method has also

been verified based on the considered test problems that yield exact enclosures even

with respect to very few sample values. So, the method may be well implemented in

the computation of exact enclosures of various nonlinear equations irrespective of

the dependency problem. Further, the method has also been implemented to compute

validated enclosure in case of Van der Pol oscillator. Accordingly, the method may

be applied to other practical problems governed by nonlinear system of equations or

nonlinear differential equations involving uncertain parameters.

Appendix

Forward–backward contractor: The forward–backward contractor is based on

constraint f (x) = 0 where x ∈ [x] and [x] ∈ IR
n which is illustrated using an exam-

ple problem.

Example A1 Perform forward–backward contractor subject to constraintw = 2u +

v where [w] = [3, 20], [u] = [−10, 5], and [v] = [0, 4].

Here, the constraint w = 2u + v may be expressed in terms of function f as

f (u, v, w) = w − 2u − v. Further, the possible different forms of the constraint

that may be written are

u =
w − v

2

v = w − 2u

w = 2u + v

The forward–backward steps are then followed with respect to classical interval

computations mentioned in Sect. 2 as

[u] ∩

(

[w] − [v]

2

)

= [−10, 5] ∩

(

[3, 20] − [0, 4]

2

)

= [−0.5, 5]

[v] ∩ ([w] − 2[u]) = [0, 4] ∩ ([3, 20] − 2[−0.5, 5]) = [0, 4]

[w] ∩ (2[u] + [v]) = [3, 20] ∩ (2[−0.5, 5] + [0, 4]) = [3, 14]

13

As such, the new interval bounds are [w] = [3, 14], [u] = [−0.5, 5], and [v] = [0, 4].

Fixed-point contractor: A fixed-point contraction associated with ψ is implemented

with respect to the constraint f (x) = 0 as x = ψ([x]), where x ∈ [x] ∈ IR
n . The

fixed-point contractor with respect to constraint u2 + 2u + 1 = 0 is performed as

u ∈ [u] and u = ψ(u) =⇒ u ∈ [u] and u ∈ ψ([u])

=⇒ u ∈ [u] ∩ [ψ]([u])

In case of the implementation of forward–backward contractor along with fixed-

point contractor helps in the computation of the forward–backward contractor until

the fixed interval is reached.

References

1. Akbari M, Ganji D, Majidian A, Ahmadi A (2014) Solving nonlinear differential equations of

vanderpol, rayleigh and duffing by agm. Front Mech Eng 9(2):177–190

2. Alefeld G, Herzberger J (2012) Introduction to interval computation. Academic Press, London

3. Chabert G, Jaulin L (2009) Contractor programming. Artif Intell 173:1079–1100

4. Chakraverty S, Mahato NR, Karunakar P, Rao TD (2019) Advanced numerical and semi-

analytical methods for differential equations. Wiley, Hoboken

5. Computer assisted proofs in dynamics group (capd). http://capd.ii.uj.edu.pl/

6. Desrochers B, Pyibex. http://benensta.github.io/pyIbex/sphinx/index.html

7. Dezert J, Han D, Tacnet JM (2017) Multi-criteria decision-making with imprecise scores and

BF-TOPSIS. In: Information Fusion (Fusion), 2017 20th International Conference on. pp 1–8.

International Society of Information Fusion (ISIF)

8. Gerald CF (2004) Applied numerical analysis. Pearson Education India

9. Hansen ER (1975) A generalized interval arithmetic. In: Interval mathematics. Springer, pp

7–18

10. Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis: with examples in

parameter and state estimation, robust control and robotics, vol 1. Springer, London

11. Krämer W (2006) Generalized intervals and the dependency problem. In: PAMM: proceedings

in applied mathematics and mechanics, vol 6. Wiley Online Library, pp 683–684

12. Moore RE (1962) Interval arithmetic and automatic error analysis in digital computing. Ph.D.

Dissertation, Department of Mathematics, Stanford University

13. Moore RE (1979) Methods and applications of interval analysis, vol 2. Siam

14. Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM Publications,

Philadelphia, PA

15. Sandretto JAd, Chapoutot A, Mullier O, Dynibex. http://perso.ensta-paristech.fr/~chapoutot/

dynibex/

16. Stolfi J, De Figueiredo L (2003) An introduction to affine arithmetic. Trends Appl Comput

Math 4(3):297–312

14

	Validated Enclosure of Uncertain Nonlinear Equations Using SIVIA Monte Carlo
	1 Introduction
	2 Classical Interval Computations
	2.1 Dependency Problem in IA

	3 SIVIA Monte Carlo Approach
	3.1 SIVIA
	3.2 Contractor
	3.3 SIVIA Monte Carlo

	4 Nonlinear Oscillator
	5 Conclusion
	References

