Nisha Rani Mahato
email: nisha.mahato1@gmail.com

Luc Jaulin
email: lucjaulin@gmail.com

S Chakraverty

Jean Dezert
email: jean.dezert@onera.fr

Validated Enclosure of Uncertain Nonlinear Equations Using SIVIA Monte Carlo

Keywords: Uncertain nonlinear equations, Nonlinear oscillator, Dependency problem, SIVIA Monte Carlo, Contractor

The dynamical systems in various science and engineering problems are often governed by nonlinear equations (differential equations). Due to insufficiency and incompleteness of system information, the parameters in such equations may have uncertainty. Interval analysis serves as an efficient tool for handling uncertainties in terms of closed intervals. One of the major problems with interval analysis is handling "dependency problems" for computation of the tightest range of solution enclosure or exact enclosure. Such dependency problems are often observed while dealing with complex nonlinear equations. In this regard, initially, two test problems comprising interval nonlinear equations are considered. The Set Inversion via Interval Analysis (SIVIA) along with the Monte Carlo approach is used to compute the exact enclosure of the test problems. Further, the efficiency of the proposed approach has also been verified for solving nonlinear differential equation (Van der Pol oscillator) subject to interval initial conditions.

Introduction

Various vibration problems in science and engineering disciplines, viz., structural mechanics, control theory, seismology, physics, and biology may be expressed in terms of nonlinear equations, system of nonlinear equations, and nonlinear differential equations. Generally, the parameters in such equations deal with precise variables. But, the insufficiency and incompleteness of the system information often led to parameters or variables with imprecision or uncertainty. For instance, let us consider a nonlinear damped spring-mass system as given in Fig. 1 governed by the equation,

m ẍ + c ẋ + α ẋ2 + kx + βx 3 = f (t) (1)
where m, c, and k are respectively mass, damping, and stiffness of the nonlinear system. Here, the external force applied on the system is f (t) with damping force f d = c ẋ + α ẋ2 and spring force f s = kx + βx 3 . The uncertainty of the material properties in Eq. (1) led to the uncertain nonlinear differential equation. Such uncertainties may be modeled either using probabilistic approach, interval computation or fuzzy set theory. In case of nonavailability of sufficient experimental data, probabilistic methods may not be able to deliver reliable results. Moreover, in fuzzy set theory, a fuzzy number is expressed in terms of closed intervals through the α-cut approach. As such, interval analysis has emerged as a powerful tool for various practical problems in handling the uncertainties.

In the early 1960s, the pioneer concept related to interval computations, functions, matrices, integral, and differential equations has been started by Moore [START_REF] Moore | Interval arithmetic and automatic error analysis in digital computing[END_REF][START_REF] Moore | Methods and applications of interval analysis[END_REF][14]. System of equations, algebraic eigenvalue problems, and second-order initial and boundary value problems have been discussed by Alefeld and Herzberger [START_REF] Alefeld | Introduction to interval computation[END_REF]. Guaranteed interval computations with respect to set approximations, parameter, and state estimation with applications in robust control and robotics are addressed by Jaulin et al. [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF]. While dealing with interval computations, one of the major obstacles is to handle the "dependency problems" effectively such that the tightest enclosure of solution bound may be obtained. Such dependency problems often occur in dealing with systems governed by complex nonlinear equations which lead to overestimation of solution bounds. The dependency problem due to overestimation (wrapping effect) has been studied by Krämer [11] with respect to generalized interval arithmetic proposed by Hansen [START_REF] Hansen | A generalized interval arithmetic[END_REF]. The other approach for the reduction of overestima-Fig. 1 Damped spring-mass system tion while handling dependency problem may be performed using contractors [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF], affine arithmetic [START_REF] Stolfi | An introduction to affine arithmetic[END_REF], and/or parametric forms. As such, the present work proceeds with the introduction section. The preliminaries of classical arithmetic of interval analysis (IA) along with its application for two complex nonlinear equations comprising imprecise variables are considered in Sect. 2. The Set Inversion via Interval Analysis (SIVIA) along with the Monte Carlo approach is then used to compute the exact enclosure of the two test problems in Sect. 3. Further, the proposed approach has also been verified for computing validated enclosure of nonlinear differential equation (Van der Pol oscillator) subject to interval initial conditions in Sect. 4.

Classical Interval Computations

Interval analysis deals with interval computations on a set of closed intervals IR of real line R, in order to obtain the tightest bound or enclosure for uncertain systems.

A closed interval [x]∈IR is denoted by [x]=[x, x] such that [x]=[x, x]={t | x ≤ t ≤ x,
• Addition: [x]+[y]=[x + y, x + y] • Subtraction: [x]-[y]=[x -y, x -y] • Multiplication: [x]•[y]=[min{S • ([x], [y])}, max{S • ([x], [y])}],
where S • ([x], [y]) ={x y, x y, xy, x y}

• Division: [x]/[y]= x, x • 1 y , 1 y , 0 / ∈[y, y], (-∞, ∞) , 0 ∈[y, y] • Power: -I fn > 0 is an odd number, then [x] n = x n , x n -I fn > 0 is an even number, then [x] n = ⎧ ⎨ ⎩ x n , x n , [x] > 0 x n , x n , [x] < 0 [0, max{x n , x n }], 0 ∈[x]
Then, we have illustrated two test examples for the implementation of basic interval arithmetic in Examples 1 and 2.

Example 1 Compute the bound

[z 1] satisfying constraint z 1 = x 1 y 1 + x 1 y 3 + x 3 y 1 (2) such that x 1 + x 2 + x 3 = 1 and y 1 + y 2 + y 3 = 1. Here, x 1 ∈[x 1]=[0.2, 0.3], x 2 ∈ [x 2]=[0.1, 0.2], y 1 ∈[y 1]=[0.4, 0.6], and y 2 ∈[y 2]=[0.2, 0.3].
Using classical IA, the bounds [x 3] and [y 3] are initially estimated as

[x 3]∼1 -[x 1]-[x 2]=[0.5, 0.7] and [y 3]∼1 -[y 1]-[y 2]=[0.1, 0.4]
respectively with respect to the constraints

x 1 + x 2 + x 3 = 1 and y 1 + y 2 + y 3 = 1.
Then, the bound [z 1] is obtained as

[z 1] IA ∼[x 1]•[y 1]+[x 1]•[y 3]+[x 3]•[y 1]=[0.30, 0.72]. (3)
Further, we have considered a more complicated nonlinear constraint in Example 2, related to problems of multi-criteria decision-making under imprecise scores given in Dezert et al. [START_REF] Dezert | Multi-criteria decision-making with imprecise scores and BF-TOPSIS[END_REF].

Example 2 [START_REF] Dezert | Multi-criteria decision-making with imprecise scores and BF-TOPSIS[END_REF] Compute the bound [z 2] satisfying constraint

z 2 = z 1 + x 2 1 y 2 x 1 + y 2 + y 2 1 x 2 y 1 + x 2 (4) such that x 1 ∈[0.2, 0.3], x 2 ∈[0.1, 0.2], y 1 ∈[0.4, 0.6],
and

y 2 ∈[0.2, 0.3].
Here, the bound of [z 2] is obtained as

[z 2] IA ∼[z 1] IA + [x 1] 2 [y 2] [x 1]+[y 2] + [y 1] 2 [x 2] [y 1]+[x 2] =[0.3333, 0.9315]. (5)
The enclosures obtained in Eqs.

(3) and (5) have been compared with enclosures obtained using the Monte Carlo simulation in Table 1.

Here, the Monte Carlo simulation approach using uniformly distributed 100,000 independent random sample values of variables x 1 , x 2 , y 1 , and y 2 have been considered, where 1, it is worth mentioning that the bounds for i = 1, 2 satisfy

x 1 ∼ U ([x 1]), x 2 ∼ U ([x 2]), y 1 ∼ U ([y 1]), and y 2 ∼ U ([y 2]).From Table
[z i] MC ⊂[z i] IA .
In case of more sample values, the Monte Carlo simulation may yield better interval enclosure with respect to the constraints (2) and (4), but such approach is inefficient with respect to computational time. So, we may consider the problem in handling interval computations as to interpret the tightest or the exact enclosure

[z i] of z i that satisfies [z i] MC ⊂[z i]⊂[z i] IA (6) such that inf [z i] IA ≤ inf [z i]≤inf [z i] MC and sup [z i] MC ≤ sup [z i]≤sup [z i] IA (7)
or

z IA i ≤ z i ≤ z MC i and z MC i ≤ z i ≤ z IA i . (8)
Although in the above computations, the interval arithmetic looks simple for basic operations with intervals and seems appealing, the "dependency problem" is a major obstacle when complicated expressions have to be computed in order to find the tightest enclosure. In this regard, the dependency effect has been discussed in detail in the next section.

Dependency Problem in IA

Variable or parameter dependency problem in IA is generally exhibited when we have more than one occurrence of imprecise parameter in the governing constraint. For instance, in case of the nonlinear constraint The dependency effect may be reduced by replacing the constraint given in Eq. (2) with an equivalent simpler constraint having less (or none) redundant variables. For instance, the equivalent constraint

z 1 = (1 -x 2)y 2 + x 3 y 1 (9)
results in a better enclosure approximation [z 1] IA =[0.34, 0.66]. Here, the interval bound [0.34, 0.66] is contained in the bound [0.30, 0.72] obtained using the equivalent constraint given in Eq. (2). But, on the other hand, an equivalent constraint

z 1 = (1 -y 2)x 1 + (1 -x 2)y 1 -x 1 y 1 (10
)
results in an overestimated bound [z 1] IA =[0.28, 0.70]. Due to such dependency, the interval bounds often yield overestimation of the tightest enclosure. Similar, dependency effect is exhibited while computing [z 2] IA for constraints z 2 = z 1 +

1 x 1 y 2 + 1 x 2 1 -1 + y 2 1 x 2 y 1 +x 2 and z 2 = z 1 + x 2 1 y 2 x 1 +y 2 + 1 y 1 x 2 + 1 y 2 1 -1
with respect to (4). As such, identification of constraint yielding the tightest enclosure is cumbersome. In this regard, the problem formulation for reduction of overestimation due to dependency effect has been carried out in the next section.

Problem Formulation

The main aim in the present work is to compute the tightest enclosure z i , z i or exact enclosure such that

[z i] MC ∼[z i] IA or z IA i = z i = z MC i and z MC i = z i = z IA i . (11)
associated with some nonlinear constraint z i = f (x 1 , x 2 , y 1 , y 2), where x i ∈[x i] and y i ∈[y i] for i = 1, 2. In this regard, the SIVIA Monte Carlo approach based on the set inversion using interval computations and the Monte Carlo simulation has been proposed to estimate exact bounds in the next section.

SIVIA Monte Carlo Approach

Initially, the general procedure of SIVIA has been incorporated in Sect. 3.1 followed by contractors in Sect. 3.2. Finally, the combination of SIVIA with the Monte Carlo approach has been performed in Sect. 3.3.

SIVIA

Set inversion of a typical set X ⊂ R m with respect to function f : R m → R n is expressed as

X = f -1 (Y) ={x ∈ R m | f (x) ∈ Y}
where Y ⊂ R n . In case of SIVIA [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF], an initial search set [x 0] is assumed containing the required set X. Then, using sub-pavings as given in Fig. 2, the desired enclosure of solution set X is obtained based on the inclusion properties:

1. Case I: [f]([x]) ⊂ Y =⇒ [x]⊂X, then [x] is a solution, 2. Case II: [f]([x]) ∩ Y = φ =⇒ [x]∩X = φ, then [x] is not a solution, 3. Case III: [f]([x]) ∩ Y = φ and [f]([x]) ⊂ Y then, [x]
is an undetermined solution.

Fig. 2 Set Inversion via Interval Analysis

The detailed illustration of set computation using SIVIA based on regular subpavings, bisections, etc., may be found in [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF]. The sub-pavings in SIVIA may be improved with the usage of contractors discussed in the next section.

Contractor

Contractor:[3, 10] A contractor C associated with a set X ⊂ R n over domain D is an operator

C : IR n → IR n
satisfying the following properties:

-Contraction: C([x]) ⊂[x], ∀[x]∈IR n , -Completeness: C([x]) ∩ X =[x]∩X, ∀[x]∈IR n .
The pictorial representation of implementation of a contractor over the set X ⊂ R 2 is illustrated in Fig. 3. There exist various types of contractors, viz., fixed-point, forward-backward, Newton, and Gauss-Seidel contractors. Contractor based set inversion of leminscate curve (x 2 + y 2) 2 + a 2 (x 2y 2) = 0 having width a ∈[2, 3] has been obtained based on the PyIbex library [6] and depicted in Fig. 4, where the initial search set is

[-4, 4]×[-4, 4].
In order to perform the SIVIA Monte Carlo approach, we have used forwardbackward and fixed-point contractors. Detailed implementation of forward-backward and fixed-point contractors have been incorporated in the Appendix.

SIVIA Monte Carlo

SIVIA Monte Carlo is a two-form iterative methodology that includes implementation of SIVIA using contractor programming and the Monte Carlo simulation till the exact enclosure is obtained satisfying (11). In this regard, the iterative procedure is incorporated in Algorithm 1 with respect to constraint z = f (x 1 , x 2 ,...,x n) such that each x i ∈[x i]∈IR for i = 1, 2,...,n. Here, the initial search set containing the exact enclosure is assumed as

[z 0]. Algorithm 1: Implementation of SIVIA Monte Carlo approach Input: [x i] for i = 1, 2,...,n; Initial domain [x]={[x 1], [x 2],...,[x n]} ∈ D; Initial search set [z 0]
Step 1: Compute enclosure using Monte Carlo Let us again consider the Examples 1 and 2 in order to compute the exact enclosure using the SIVIA Monte Carlo in Example 3.

z MC = mcl([x]) and z MC = mcu([x]) Step 2: Compute enclosure using contractors z IA = Ctcl([x], [z 0]) and z IA = Ctcu([x], [z 0]) Step 3: Improve lower and upper range of z z ∈ z IA , z MC and z ∈ z MC , z IA Step 4: Compute improved lower [x]=[f] -1 (z IA , z MC) and upper [x]=[f] -1 (z MC , z IA) domains using SIVIA [x], [x]=SIVIA([x], [f], [z 0],
Example 3 Compute the interval bounds for the constraints 2 and3, respectively. It may be observed from Table 2 that the SIVIA Monte Carlo method iteratively converges to the exact enclosure [0.38, 0.6] (up to two decimals) even for fewer sample values, viz., 100 and 10. Also, it may be noted that the iterative enclosures converge to exact bound though the computational time increases from 5.1388 to 9.511 s for different samples ranging from 100,000 to 10, respectively. From Table 2, the proposed method seems appealing as even for fewer sample values the convergent or exact solution bound is achieved. Many practical application problems do not yield sufficient data and sometimes the availability of large data is cost effective, in such cases, the proposed method may be used to obtain exact enclosure and the increase in the computational time may be neglected.

z 1 = x 1 y 1 + x 1 y 3 + x 3 y 1 and z 2 = z 1 + x 2 1 y 2 x 1 + y 2 + y 2 1 x 2 y 1 + x 2 using the SIVIA Monte Carlo such that x 1 + x 2 + x 3 = 1 and y 1 + y 2 + y 3 = 1. Again, x 1 ∈[x 1]=[0.2, 0.3], x 2 ∈[x 2]=[0.1, 0.
Similar observations of exact enclosure convergence may be found in Table 3 with respect to different sample values. Moreover, due to the complexity of the constraint (4), the required computational time 24.847 s for [z 2] is comparatively higher than time 9.511 s required for [z 1]. Further, a nonlinear differential equation with respect to dynamic problems has been considered in the next section for verification and effectiveness of the SIVIA Monte Carlo approach. Using Algorithm 1 with respect to constraints [START_REF] Moore | Methods and applications of interval analysis[END_REF], and (14), the validated enclosure of x(t)| t=T is obtained and incorporated in Table 4 and Fig. 5.

Conclusion

Generally, dynamical systems occurring in various science and engineering problems are governed by nonlinear equations or nonlinear differential equations. An iterative procedure based on SIVIA and the Monte Carlo method has been proposed for the computation of exact enclosure of nonlinear equations having imprecise or uncertain variables. The effectiveness of the SIVIA Monte Carlo method has also been verified based on the considered test problems that yield exact enclosures even with respect to very few sample values. So, the method may be well implemented in the computation of exact enclosures of various nonlinear equations irrespective of the dependency problem. Further, the method has also been implemented to compute validated enclosure in case of Van der Pol oscillator. Accordingly, the method may be applied to other practical problems governed by nonlinear system of equations or nonlinear differential equations involving uncertain parameters.

 where x, x ∈ R}. Here, x = inf[x] is the inifimum or lower bound of [x] and x = sup[x] is the supremum or upper bound of [x]. The width and center of [x] m a yb er e f e r r e dt oa s [x] w = xx and [x] c = x+x 2 , respectively. Basic operations using classical interval arithmetic given in Moore et al. [14]are illustrated as follows:

z = x 2 +

 2 y 2 for x ∈[0.1, 0.5] and y ∈[-0.6, 0.1], the occurrence of each imprecise variable x and y is once. The computation of enclosure with respect to constraint z = x 2 + y 2 using classical IA results in [z] IA =[0.01, 0.61] which is found equivalent to the Monte Carlo simulation of x ∼ U ([0.1, 0.5]), y ∼ U ([-0.6, 0.1]) for 100,000 sample values that yields [z] MC =[0.01, 0.61]. But, the complexity occurs while dealing with complex nonlinear constraints as given in Examples 1 and 2, where the dependency effect is exhibited due to multiple occurrences of imprecise variables.

Fig. 3

 3 Fig. 3 Contraction of [x]

Fig. 4

 4 Fig. 4 SIVIA of leminscate curve with width [2, 3]

 ǫ) Step 5: Repeat steps 1 to 3 for domains [x] and [x] Step 6: Repeat step 4 for different domains [x] and [x] Step 7: Iterate steps 4 and 5 till z = z IA ∼ z MC and z = z MC ∼ z IA Output: [z, z] In Algorithm 1, mcl(•), mcu(•) are functions that compute the minimum and maximum function values with respect to domain [x]∈D. Then, Ctcl(•), Ctcu(•) uses forward-backward contractor along with fixed-point contractor for computing interval enclosure based on classical IA. Further, SIVIA(•) computes the set inversion for domain [x]∈D based on constraint function f with precision ǫ.

2 1 y 2 x 1 +y 2 + y 2 1 x 2 y 1

 221 2], y 1 ∈[y 1]=[0.4, 0.6], and y 2 ∈[y 2]=[0.2, 0.3]. Using Algorithm 1 for SIVIA precision ǫ = 0.001 and different sample values, viz., 100,000, 1000, 100, 10, the tightest enclosures with respect to constraints z 1 = x 1 y 1 + x 1 y 3 + x 3 y 1 and z 2 = z 1 + x +x 2 for different sample values are obtained and incorporated in Tables

Table 1

 1 Interval bounds of z 1 and z 2

	i	Interval bounds
		[z i] IA	[z i] MC
	1	[0.30, 0.72]	[0.3850, 0.5935]
	2	[0.3333, 0.9315]	[0.4617, 0.6825]

Table 4

 4 Instantaneous solution enclosure of x(t)| t=T = hf u (t n + h, u n + k 3 ,v n + l 3) and l 4 = hf v (t n + h, u n + k 3 ,v n + l 3) .

	T		Enclosures
		[x](T) =[u](T)	[v](T)
	0.1	[0.0993, 0.2979]	[-0.0428, -0.0143]
	0.2	[0.0972, 0.2915]	[-0.0844, -0.0281]
	0.3	[0.0937, 0.281]	[-0.1242, -0.0413]

Fig. 5 Enclosure of x(t) for t ∈[0, 1]

k 2 = hf u t n + h 2 , u n + k 1 2 ,v n + l 1 2 , l 2 = hf v t n +

subject to uncertain initial conditions x(0) ∈[0.1, 0.3] and ẋ(0) = 0.

The system of the first-order differential equation corresponding to (12) is obtained as

subject to initial conditions u(0) ∈[0.1, 0.3] and v(0) = 0. Using Runge-Kutta fourth-order method, the nonlinear constraints involved in the computation of (12) are

where

Appendix

Forward-backward contractor: The forward-backward contractor is based on constraint f (x) = 0 where x ∈[x] and [x]∈IR n which is illustrated using an example problem. Here, the constraint w = 2u + v may be expressed in terms of function f as f (u,v,w) = w -2uv. Further, the possible different forms of the constraint that may be written are

Example A1

The forward-backward steps are then followed with respect to classical interval computations mentioned in Sect. 2 as In case of the implementation of forward-backward contractor along with fixedpoint contractor helps in the computation of the forward-backward contractor until the fixed interval is reached.