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Summary

Finite element stereo digital image correlation (FE-SDIC) requires a crucial calibra-
tion phase in which the initial CAD needs to be updated to fit the actual shape of the
specimen. On the one hand, the use of a FE mesh facilitates the coupling of measure-
ments with simulation tools. On the other hand, it provides a unique, fine description
of both the geometry and the displacement, which often makes the shape measure-
ment problem highly ill-posed. As a remedy, we propose a hybrid isogeometric-FE
strategy that can measure a shape in terms of spline functions while considering as an
input and output the analysis-suitable FE mesh. Making use of the appealing spline
refinement procedures and of Bézier-based operators, multilevel smooth spline dis-
cretizations are built concurrently with the initial FE subspace and related to the
multi-scale images used for the initialization of the shape measurement. It results
in a geometrically sound regularization which provides a spline parametrization of
the optimal shape along with its FE twin. A non-invasive implementation from an
existing FE-SDIC code is also detailed. The performance of the proposed method is
assessed on real images and comparisons are made with other published techniques
to prove its efficiency.
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1 INTRODUCTION

The expanding use of finite elements (FE) meshes in digital image correlation (DIC) algorithms1,2,3,4,5,6,7,8,9,10 is explained by
their ability to be coupled with numerical models. The interaction of measurement and simulation becomes fast and friendly, as
both kinematic fields are defined at the nodes of the same mesh. This potent framework paves the way to a better integration of
models and experiments in solid mechanics11,12,13,14,15.
When the specimen geometry or mechanical loading is not planar, a stereo digital image correlation (SDIC) method is used

concurrently with, at least, two cameras, to access the three components of the displacement at the surface of the specimen. This
method, initially developed in the context of subset-DIC16,17, was recently extended to the context of global approaches11,18,13.
For instance, global SDIC was successfully used for the analysis of complex experiments such as structural tests19,14,20. Before
estimating the displacement measurement, SDIC requires a calibration phase aiming at determining the parameters of the cam-
eras and the actual shape of the specimen. In FE simulations (and thus in FE-SDIC), a unique interpolation subspace is generally
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used for both the approximation of the geometry and of the displacement (basic principle of isoparametric finite elements). The
approximation subspace is therefore entirely defined by the choice of a FE mesh.
However, the shape of the specimen is generally rather smooth and regular and it should require less degrees of freedom than

the displacement fieldwhichmay comprise important gradients. Another way of considering FE-SDICwould consist in a suitable
mix of an appropriate mesh for shape measurement and a different finer FE mesh that properly compute the displacement (i.e.,
an analysis-suitable mesh). Using standard finite elements, such an approach would require non-trivial projection procedures
between unstructured 3D surface meshes, which are often accompanied with a modification of the (generally curved) geometry.
To resolve this issue, the common practice consists in using a refined analysis-suitable FE mesh for both shape and displace-

ment measurements, which could make the shape measurement problem highly ill-posed. As a result, regularization techniques
based on the addition of specific terms19,13 are often used to avoid getting wiggly, irregular shapes. Such regularization is also
employed in a multi-scale initialization phase which consists in decreasingly filtering the images and modifying the size of the
apparent approximation subspace by acting on the regularization level (i.e., modifying the weight of the additional regularizing
terms).
From a mathematical and a numerical point of view, we notice that the mesh-based shape measurement problem coming from

the experimental mechanics community shares many similarities with the shape optimization problem encountered in structural
design. Indeed, structural shape optimization also aims at finding the optimal geometry of a structure and involves a FE mesh in
the process21,22. The difference only lies in the desired objective which is related to the fulfillment of a certain structural behavior
in shape optimization while it concerns the fitting with the real surface in shape measurement. Therefore, the purpose of this
work is to draw inspiration from the techniques developed in the area of shape optimization to improve the field of mesh-based
shape measurement.
One approach in shape optimization is actually very close to what is performed for shape measurement: it consists in using the

spatial location of the FE nodes as the design variables in combination with delicate mesh regularization techniques to prevent
the appearance of irregular, "unrealistic" shapes23,24. Meanwhile, another class of techniques, denoted by the computer-aided-
design (CAD)-based approach, has also emerged for shape optimization: the idea is to resort to the same spline-based functions
as in CAD software to describe the geometry25,26,27. The design variables are this time the spatial location of the control points
of the spline entities, which enables to get a light and smooth parametrization of the geometry and of its update28,29. The
difficulty in this second family of methods is then transferred to the connection of the (spline-based) geometric and (FE-based)
analysis models30,31. To answer this issue, one way to naturally proceed is to use the isogeometric analysis (IGA) framework32,33

which enables to discretize the structure with its intrinsic, spline-based, CAD geometric definition. Isogeometric (IG) shape
optimization has thus been successfully applied to a wide range of applications (see34,35,36,37,38 among others). More precisely, it
is based on a multilevel design concept offered by the spline technology in which one can refine the geometry without altering its
initial shape and regularity39. As a consequence, different refinement levels of the same spline-based geometry are considered
to define both design and analysis spaces. The coarser level is dedicated to the parametrization of the shape to get "realistic"
structures while the finer level defines the analysis model and is set to ensure good quality of the mechanical solution.
A first attempt in applying IGA to shape measurement has been recently performed in Dufour et al.40,18,19. In these pioneering

works, the authors considered a higher-order B-spline (monolevel) parametrization of the surface (thereby acting on a geomet-
rical object which is consistent with CAD) both for shape and displacement measurements. The authors also went towards the
identification of mechanical models by comparing the measured IG displacement field with a computed one using a dedicated
IG code12. However, besides the effort to implement spline functions in the SDIC framework, the problem is that the user ends
up with an experimental displacement field that is expressed on a spline basis, whereas most simulation tools are based on finite
elements. Splines clearly provide flexibility for shape and displacement measurements but make connection with most of today’s
numerical models more complex, which is the key advantage of global approaches in DIC.
In this paper, we build a hybrid IG-FE methodology for mesh-based shape measurement that draws up the best of each tech-

nology. On the one hand, we consider as an input and output the FE mesh that is fine enough to properly describe the underlying
mechanics. In a second step, the FE mesh will thus be suitable for displacement measurement using stereo-correlation and this
resulting kinematic field will be easily compared to a computed one obtained from existing, standard FE codes. On the other
hand, we undertake to use the splines along with the IG multilevel design concept (performed in shape optimization) for the
description of the geometry and of its update in the shape measurement process. The idea here is to couple the multilevel opti-
mization process with the multi-scale initialization of shape measurement to get different approximation spaces which naturally
follow, at each level, the resolution of the image. The regularization level is thus given by the refinement of the spline spaces
which is chosen in accordance with the coarsening of the images (no more need of additional regularization terms). Since it is
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based on functions coming from the geometric design community, the proposed regularization scheme has a strong geometrical
meaning, that is why we refer to geometric regularization to characterize the technique.
The additional ingredient of our approach is to make use of a recently developed global bridge between IGA and FE analysis

(FEA)41 to be able to communicate between the different approximation subspaces for the geometry (multilevel spline-based
parametrizations) and for the displacement (analysis-suitable FE mesh). Based on the original idea behind Bézier extraction42

and on more recent Lagrange extraction43, this global transformation goes from Lagrange polynomials to (possibly rational)
spline basis, thus enabling to recover an IG operator without implementing IGA but simply by projecting an FE operator onto
the reduced, more regular, IG basis. As a result, besides its attractive regularizing features, the implementation of the proposed
strategy is non-invasive with respect to FE-SDIC.
The paper is organized as follows: after this introduction, Section 2 specifies the calibration phase occurring in FE-SDIC

with a particular emphasis on the shape measurement problem. Then, Section 3 is devoted to the development of the proposed
geometric regularization scheme while Section 4 assesses the performance of the methodology through the analysis of several
real images and comparisons with other published techniques. This brings us to Section 5 where concluding remarks are drawn.

2 MESH-BASED SHAPE MEASUREMENT

Let us assume that we have an existing description (say a CAD model) of the nominal geometry of the specimen, which, in
experimental mechanics, is generally the case. Let Ωs be a surface domain referred to as Region of Interest (ROI) and such
that Ωs ⊂ ℝ3 corresponds to the visible surface of the theoretical shape. This representation does not correspond exactly to the
actual shape of the specimen, because of surface roughness, manufacturing defects, pre-load or relaxation of residual stresses,
to name a few. In SDIC, the estimation of the real surface is of the utmost importance because it is an essential prerequisite
for 3D surface displacement measurement. It may also be used to update the model geometry in validation and/or identification
procedures, since kinematic fields may significantly depend on it.

2.1 Camera model
As classically done in SDIC44, each camera c is equipped with a camera model Pc that maps any 3D point X ∈ Ωs expressed
in the world reference systemw to the corresponding coordinates in pixels xc in the image frame and is written as:

Pc ∶ ℝ3 → ℝ2, X → xc = Pc(X,pc), ∀X ∈ Ωs, (1)

where pc is a vector collecting the model’s parameters. More precisely, camera models Pc can be either linear (in homogeneous
coordinates) or non-linear to take into account lens distortions. It depends on two sets of parameters: the intrinsic parameters
(focal length, image center, horizontal/vertical aspect ratio, skew and possible distortion parameters) and the extrinsic parameters
(3 rotations and 3 translations that map the reference frame of the specimenw to that of the imaging sensorc). The calibration
of these parameters must be done prior to any measurement. In this study, intrinsic parameters are calibrated using calibration
targets and a classic photogrammetric technique as described in45,46. In the remainder of this article, the instrinic parameters will
be assumed to be known and only the extrinsic parameters will be considered, such that for each camera c, the camera model
Pc will be entirely defined by pc ∈ ℝ6.

2.2 Coupled calibration and shape measurement problem
As depicted in Figure 1, the graylevel conservation assumption47 supposes that the graylevel value c(xc) of the projections xc
in each image c of any 3D point X should be equal: 0(x0) = 1(x1). Since both the actual shape and position of the specimen
(with respect to the stereo rig) are not known exactly, the graylevel conservation is not fulfilled. The calibration of the stereo rig
thus consists in a coupled problem aiming at finding the extrinsic parameters p = [p0,p1] in addition to a shape correction field
S(X),∀X ∈ Ωs, such that the advection of the nominal surfaceΩs by the correction field S(X) corresponds to the actual surface.
More precisely, shape correction and camera parameters minimize the graylevel mismatch:

S⋆,p⋆ = argmin
S∈L2(Ωs),p∈ℝ12

j(S(X),p) with j(S(X),p) = 1
2 ∫
ΩS

(

r
(

S(X),p
)

)2

dX, (2)
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FIGURE 1 Principle of the formulation of the SDIC problem in the reference frame of the FE model. A 3D point X and its
projections x0 and x1 onto the image planes.

and where the graylevel residual r(S(X),p) is defined ∀X ∈ Ωs as:

r
(

S(X),p
)

= 0
(

P0(X + S(X),p0)
)

− 1
(

P1(X + S(X),p1)
)

. (3)

Let us highlight, at this stage, that the graylevel residual is defined inΩs in the reference system of the model which differs from
subset based SDIC, where it is written in the image frames.
The unknown vector p gathering the extrinsic parameters is already discrete, but the shape correction field S lies in an infinite

space. To solve Problem (2) an approximation subspace for S must be defined. To be consistent with the description of the
geometry and displacements in FE simulations, S is searched for in an analysis-suitable FE subspace13:

S(X) =
nFE
∑

I=1
LI (X) qI = LT (X) q, (4)

where L is a (3nFE × 3) matrix gathering the nFE Lagrange shape functions LI and q is a vector that collects the 3nFE
corresponding degrees of freedom (DOF):

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L1 0 0
⋮ ⋮ ⋮

LnFE 0 0
0 L1 0
⋮ ⋮ ⋮

0 LnFE 0
0 0 L1
⋮ ⋮ ⋮

0 0 LnFE

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q11
⋮

q1nFE
q21
⋮

q2nFE
q31
⋮

q3nFE

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

In addition, note that qI in (4) is the subset of q gathering the three components {q1I , q
2
I , q

3
I} of the field S(X) associated to shape

function LI . Problem (2) is a non-linear least-square problem. Its resolution is based on a fixed point algorithm which consists
in alternatively minimizing the graylevel functional j with respect to p (calibration) and to q (shape measurement). Herein, it
may be mentioned that the alternating iterations are run until the stagnation of (p,q) is reached, whereas in the literature, only
one iteration of the alternating minimization is usually performed. As will be seen in section 4, several iterations between the
two minimization problems where necessary to properly measure a real shape far from the initial CAD.
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Minimization with respect to camera parameters. The shape correction field S(X) being fixed, the set of parameters p is
the solution of the calibration problem:

p⋆ = argmin
p∈ℝ12

j(S(X),p) (6)

Such a non-linear least-square problem is solved using Gauss-Newton48 iterations until the stagnation of p, see13 for details.
Minimization with respect to shape correction field. The extrinsic camera parameters p being fixed, the DOF vector q is

the solution of the shape measurement problem:

q⋆ = argmin
q∈ℝ3nFE

j(LT (X) q,p) (7)

This non-linear least-square problem is also solved using a Gauss-Newton algorithm. At iteration k, the solution is sought as
qk = qk−1 + dkq , where the descent direction d

k
q is the solution of the following linear system

13:

Hk
FEd

k
q = bkFE with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hk
FE = ∫

Ωs

L (Jk0
T∇k0 − Jk1

T∇k1 ) (J
k
0
T∇k0 − Jk1

T∇k1 )
TLT dX

bkFE = −∫
Ωs

L (Jk0
T∇k0 − Jk1

T∇k1 ) r(L
T qk−1,p) dX

, (8)

∇kc = ∇c(Pc(X+LTqk−1)) with ∇c defining the gradient of the graylevel image c and Jkc = Jc(X+LTqk−1) with Jc being
the Jacobian of Projector Pc with respect to X, i.e. such that Jcij = )Pci∕)Xj . The so-called DIC operator Hk

FE is actually an
approximation of the Hessian of j (using first-order derivatives only) and −bkFE corresponds to its gradient with respect to q.
To evaluate the integrals numerically, and since the quantities being integrated are not regular, a classical quadrature technique
based on Riemann sums is used with approximately one integration point per pixel, see49,13. The Gauss-Newton loop is run until
the stagnation of q is reached.

Remark 1. Up to now, the shape correction field was defined as homogeneous to a displacement field, with one component along
each three dimension of space. But since a shape correction field tangent to the surface does not actually modify the geometry,
Problem (8) is solved in projection onto the normal of the nominal surface. The shape correction field becomes a scalar field.
The operator and right-hand side become ZTHk

FEZ and ZTbkFE respectively, with Z being a 3nFE × nFE operator representing
the normal.

Remark 2. During an experiment, change in illumination may occur, which may change locally the gray level values of images.
In DIC which is based on a comparison of gray level values, such modulations are taken into account by an affine correction in
gray levels12:

r̃(S,p) = � r(S,p) + �, (9)
where � and � are adjusted to account for contrast and brightness modulations respectively. These values, usually taken constant
in DIC, have to be considered as additional unknowns of the DIC problem. Shape and calibration rely on a measure of the
discrepancy between gray levels of images taken by different cameras from different view angles. The issue of brightness and
contrast modulation is much more acute. Choosing � and � as constants may be insufficient. In12, � and � are sought as low
order polynomials, but specular reflections may not be well described by low frequency corrections. In this paper, inspired from
subset DICmethods, an elementary brightness and contrast adjustment is performed, considering � and � as piecewise constants.
Images 0 and 1 are modified at each iteration such that their average is zero and their standard deviation is one, on each finite
element.

Remark 3. As any Newton type algorithm, the question of the initial guess of p and q is crucial. On the one hand, as stated above,
the theoretical shape is supposed to be a good approximation of the actual shape in experimental mechanics, therefore q = 0 is a
good initialization. On the other hand, the extrinsic parameters are not known. It is usually initialized by picking manually some
(at least 3) points on the mesh and on each image. However, even under these conditions, and particularly when the discrepancy
between theoretical and real shape is significant, a pyramidal multi-scale initialization technique may be relevant to improve
convergence. In FE-SDIC, the idea consists in filtering images and regularizing the shape simultaneously. Instead of filtering
images, pixel aggregation (to generate low-definition images) is probably the best idea because of computational speedup. More
precisely, starting with coarse images and a high level of regularization, the process consists in decreasingly filtering the images
while reducing the regularization level at each considered scale to reach the fine images. A classic way of regularizing is to
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resort to Tikhonov regularization technique, i.e. to complement system (8) as follows:

(Hk
FE + � A) dkq = bkFE − � A qk−1, (10)

where A is a linear operator such that A q expresses the gradient of S(X) and � is a penalization parameter whose value can be
interpreted as the filter cutoff frequency (see, e.g.,19,13 for more details). The larger �, the higher the regularization level.

3 GEOMETRIC REGULARIZATION BASED ON BÉZIER EXTRACTION

We now propose to geometrically regularize the FE mesh-based shape measurement problem (7) by projecting it onto more
regular spline-based subspaces. We notice that spline functions have already been successfully used in DIC given their high
degree of regularity (see, e.g.,50,51,52,53,54). In the context of shape measurement, their interest is expected to be even more
important since these functions are particularly adapted to optimize free-form surfaces36,37.

3.1 Splines: basics and shape modification
The spline technology which has become a standard over the years for geometric modelling in CAD and computer graphics relies
on the use of non-uniform rational B-spline (NURBS) functions25,26,27. Only the fundamentals are given in the following. For
further details, the interested reader is referred to the references cited therein. The NURBS functions lend themselves to an exact
representation of many shapes used in engineering, such as conical sections (circle, ellipse, etc). NURBS are a generalization of
B-splines: they can be viewed as rational projections of B-splines. Therefore, they possess many of the properties of B-splines,
the most interesting one being their increased smoothness, thus implying few degrees of freedom.
A general expression for a NURBS geometry with parameter � ∈ ℝd (d being the dimension of the space) is written as:

S(�) =
nIG
∑

I=1
RI (�)xI = RT (�)x, (11)

where R and x denote the matrix of the nIG NURBS basis functions and the vector collecting the location of the associated
control points, respectively. Note that the same convention as in (4) is used here for the notation. The multivariate NURBS basis
functions are obtained from the multivariate B-spline functionsNI as follows:

RI (�) =
wINI (�)
W (�)

with W (�) =
nIG
∑

k=1
wkNk(�), (12)

and where wI denotes the weight of the I th control point. Given Eq. (12) (and verifying that the B-spline functions satisfy the
partition of unity), it may be noticed that if all weights are equal, the NURBS entity turns out to be a B-spline entity. Then, all
one needs to do in order to define the multivariate B-spline function NI at control point xI is to perform the tensor product of
the univariate B-spline functions associated with this point in the different spatial directions. Finally, the nIG1 1D B-spline basis
functions are piecewise polynomials defined by their polynomial degree p and a set of non-decreasing parametric coordinates
�i ∈ ℝ collected into a knot-vector Ξ =

{

�1, �2, .., �nIG1+p+1
}

. From knot-vector Ξ, the B-spline basis functions are constructed
recursively using the Cox-de Boor recursion formula (see Cohen et al.25). The coordinates �i, referred to as knots, divide the
parametric space into elements, and the interval

[

�1, �nIG1+p+1
]

constitutes the patch. Unlike standard FE where each element
has its own parametrization, the parametric space of B-spline functions is localized onto the patch, that may be thought of as
a macro-element. Several patches can be assembled (similar procedures as for FE assembly) to model complex geometries.
As illustrations, Figures 2(a) and 3(a) show two quadratic B-spline curves. These ones result from a linear combination of the
univariate B-spline functions depicted at the bottom of Fig. 3(a) using, as coefficients, the control points marked with black
circles on each figure. Degree p = 2 and knot-vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} are considered for the construction of the B-spline
functions.
An interesting feature of splines is their high degree of regularity. If m is the multiplicity of a given knot, the functions are

Cp−m continuous at that location, which is in contrast with standard FE where only a C0 regularity is encountered on the element
boundaries. This property is very appealing from the design point of view since it allows to define smooth free-form shapes
using few degrees of freedom. Returning to Figs 2(a) and 3(a), it means that the regularity of the curve between the two elements
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regularity

Spline curve
Control mesh

1C

(a) Initial B-spline model (the control mesh is the
linear interpolation of the control points).

0 2 4 6 8 10
− 1

0

1

2

3

4

moving
control point

(b) Modification of the shape bymoving vertically the
third control point.

FIGURE 2 Spline generation and shape modification: example of a two-element quadratic C1 B-spline curve.

is C1. To modify the shape of the spline entities, one may thus simply need to move the control points, which results in a natural
smooth modification of the geometry (see Fig 2(b) for illustration).
Furthermore, spline functions present refinement procedures which allow to enhance the design space (used for updating

the shape) without changing the geometry. In particular, one may refine the spline mesh by inserting knots (knot-insertion
technique) while maintaining the initial smooth shape (see Fig 3(b) for illustration). As a result, starting with a coarse spline
model, the refinement of the design space can be chosen in accordance with the desired complexity of the final shape. Even
more importantly, the modification of the shape can be performed using a multilevel strategy as in IG shape optimization34,36:
one may begin with a coarse design model to fit the major tendencies of the surface and then refine the spline model to get the
sharper variations. Eventually, note that matrix representations of the spline refinement procedures are possible; that is, denoting
by Rc and Rf the matrices collecting, respectively, the ncIG coarse and nfIG fine spline functions, we can build the refinement
operator Cc,f

r such that:
Rc = Cc,f

r Rf (ncIG ≤ nfIG). (13)
Such a relation offers a simple way to build the refined spline mesh from the coarse one. Denoting by xc and xf the location of
the control points associated to the coarse and fine description, respectively, and asserting that the geometry (see Eq. (11)) is
not modified through the refinement, we can write the following equality:

(Rc(�))T xc =
(

Rf (�)
)T (Cc,f

r

)T xc , ∀� ; (14)

which simply leads to:
xf =

(

Cc,f
r

)T xc . (15)
For more details on refinement strategies of splines and their matrix representations, reference is made to26,39,55.

Remark 4. NURBS also offer the opportunity to apply shape variation by modifying the control point weights. Nevertheless,
unless a very coarse NURBS model is considered56,35, it appears from the IG shape optimization community that it is generally
sufficient for free-form surfaces to only use the control point coordinates (see, e.g., Kiendl et al.36). We perform similarly in this
work.

Remark 5. In a general context, additional attention may be required when updating the shape for a rather fine spline geometric
model. Indeed, if the control points are allowed to independently move in every spatial direction, fold-overs may appear. How-
ever, as noted in remark 1, only the normal component of the displacement is considered for the update of the geometry in this
study, which naturally circumvents the problem.

3.2 IG-FE bridge
Recalling that the desired input and output in our methodology is the fine (analysis-suitable) FE mesh, it is now required to
establish a link between this FE mesh and the different (multilevel) spline-based descriptions introduced in previous section.
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Element 1 Element 2

regularityC1

Nc

(a) Coarse B-spline model (p = 2, 2 elements,
4 control points, C1 regularity at � = 0.5).

regularityC1

Elements  1              2          3          4

Nf

(b) Refined B-spline model (insertion of knots
� = 0.25 and 0.75 so that: p = 2, 4 elements,
6 control points, C1 regularity at � = 0.25, 0.5
and 0.75).

Elements  1              2          3          4

regularityC0

L

(c) Finite element model (p = 2, 4 standard
C0 − C0 elements, 9 nodes)

FIGURE 3 Going from a coarse spline representation to a fine (analysis-suitable) FE mesh without modifying the initial
geometry.

3.2.1 Principle
The ultimate objective is to be able to build, in an explicit and non-invasive manner, the different Hessian and gradient operators,
associated to the different spline approximation subspaces, from their fine FE counterparts computed using our FE-SDIC code
(see Eqs. (8)). Since it is already possible to communicate between the different spline models (see Eqs. (13) and (15)), the goal
here is to relate a fine FE and a fine spline discretization (i.e., with same number of elements and same polynomial degree). In
order to do so, we make use of previous work41 in which a global algebraic bridge between IGA and FEA is constructed by
resorting to Bézier-based operators42,43. More precisely, an operator that maps a C0 FE basis onto a smooth spline basis can be
formulated. Details regarding the construction of this operator are given in forthcoming sections 3.2.2 and 3.2.3.
Considering that we have such an operator in hand and denoting it by CFE , we can write:

Rf = CFEL, (16)

(L being the standard nodal Lagrange basis functions of Eq. (4)). As a result, following a similar procedure as in Eq. (14), we
can build a FE mesh that fits with the spline geometric model by taking the location of the FE nodes xFE as follows:

xFE = CT
FEx

f . (17)

As an example, this treatment has been performed to obtain the FE model of Fig. 3(c) starting with the spline model of Fig. 3(b).
From the resulting FE mesh, we then have the opportunity to recover the refined spline Hessian and gradient operators without
implementing IGA but simply by projecting the related FE operators onto the reduced, spline basis. Indeed, from Eq. (8), we
can compute the associated spline operator Hf

IG such that (superscript k omitted):

Hf
IG = ∫

Ωs

Rf (J0T∇0 − J1T∇1) (J0T∇0 − J1T∇1)TRf T dX

= ∫
Ωs

CFEL (J0T∇0 − J1T∇1) (J0T∇0 − J1T∇1)TLTCT
FE dX (18)

= CFE HFE CT
FE .

As well, the spline gradient operator bfIG can be obtained from its FE counterpart bFE (see Eq. (8)) as follows:

bfIG = CFE bFE . (19)

Furthermore, the same procedure can be applied to recover the coarse spline operators from the fine FE ones:
{

Hc
IG = Cc,f

r Hf
IG

(

Cc,f
r

)T = Cc,f
r CFE HFE CT

FE

(

Cc,f
r

)T

bcIG = Cc,f
r bfIG = Cc,f

r CFE bFE
. (20)
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Consequently, the IG regularized shape measurement systems of form Hc
IGdqc = bcIG and Hf

IGdqf = bfIG can be solved instead
of the ill-posed fine FE shape measurement systems (8). Finally, note that the resulting IG DOF vectors, denoted by qc or qf ,
can be back-converted in terms of nodal FE shape update q:

q = CT
FE

(

Cc,f
r

)T qc or q = CT
FEq

f , (21)

so that a unique basis is used for the representation of the surface at each multilevel step. An overview of the different
transformations is given in Figure 4.

mesh basis fun. Hessian op. gradient op. shape update

coarse spline: xc

x f

xFE

CT
FE

Rc

Rf

L

CFE

qc

qf

q

CT
FE

Hf

HFE

HFE

CFE CFE
Trefined spline:

fine FE:

bf

bFE

bFE

CFEH f =

Hc =

bf =

b
c
=

T
Cr
c,f

Cr
c,f

IG IG

T
Cr
c,f

IG Cr
c,f

IG IG Cr
c,f

IG
T

Cr
c,f

FIGURE 4 Overview of the different transformations enabling to communicate between the fine (analysis-suitable) FE mesh
and the different (multilevel) spline-based discretizations.

3.2.2 Construction: case of B-splines
In case of a B-spline geometric model, constructing CFE appears quite straightforward since both spline and FE discretizations
rely on polynomials. Indeed, since the space generated by the B-Spline functions (smooth polynomials) is included into the one
generated by the Lagrange functions (C0 polynomials), the process consists in extracting the smooth part of C0 functions.
In order to form a multivariate C0 mesh from a multivariate smooth B-spline mesh, the starting point consists in repeating all

the inside knots of the knot-vectors until they reach a p multiplicity. A specific knot-insertion process is thus performed which
enables to get the famous Bézier extraction operator whose interest to relate IGA and FEA has been intensely demonstrated
(see42,57,58,59,60 to name a few). More precisely, the Bézier extraction operator maps a Bernstein basis onto a B-Spline basis.
Bernstein and Lagrange polynomials generates the same approximation subspace. Therefore, the second step consists in moving
from the Lagrange basis to the Bernstein basis which can be easily performed by evaluating the Bernstein functions at the nodal
points associated to the Lagrange basis. The succession of these two steps leads to the construction of the Lagrange extraction
operator43 that we denote DLAG in the following. Consequently, we simply have CFE = DLAG in case of B-splines. For more
details regarding these transformations, the interested reader is advised to consult41,42,43.

Remark 6. Note that for better numerical efficiency, the Lagrange extraction operator can be directly computed from the B-spline
and Lagrange basis. Indeed, it merely requires to evaluate the B-spline basis functions at the nodal points of the Lagrange basis.

Remark 7. The present work is restricted to quadratic functions since almost all standard FE codes do not go beyond second-order
Lagrange finite elements (the famous 9-node quadrilateral element in 2D, or the 27-node cubic element in 3D). Nevertheless,
we emphasize that the proposed methodology could be directly applied to higher-order spline-based discretization, provided
that the corresponding higher-order FE are available in a FE-SDIC environment.

3.2.3 Construction: case of NURBS
As opposed to previous works on the subject that are restricted to B-splines40,18,19, we undertake to also consider NURBS here to
exactly represent conic sections. The Lagrange extraction can be extended to the case of NURBS but, it cannot directly go from
a Lagrange basis to a NURBS basis since the first one is based on polynomials while the other one relies on rational functions.
The NURBS version of the Lagrange extraction actually consists in mapping a rational Lagrange basis onto a NURBS basis, as
detailed in43. To truly start with Lagrange polynomials, the construction of an additional mapping going from polynomials to
rational functions is required. Such a transformation cannot be exact since this is the space of the rational functions that includes
the associated polynomials and not the other way around. A projection thus needs to be performed. In order to do so, we propose
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to proceed as in41; that is, we start with the NURBS version of the Lagrange extraction and then perform the projection at the
Lagrange level. This offers the opportunity to follow a pragmatic yet accurate strategy.
More precisely, using the B-spline version of the Lagrange extraction operator and returning to (12), we can write:

Rf (�) =
WfDLAGL(�)

W f (�)
, (22)

where Wf is the diagonal matrix collecting the weights of the refined NURBS discretization and W f (�) =
∑nfIG
k=1w

f
kN

f
k (�)

is the associated NURBS weight function. Omitting dependency on �, the NURBS weight function can be rewritten using the
Lagrange basis as:

W f =
nfIG
∑

k=1
wf
kN

f
k = (w

f )TNf = (wf )TDLAGL

= (DT
LAGw

f )TL = (wLAG)TL = W LAG,

(23)

where the weights associated to the rational Lagrange control points are:

wLAG = DT
LAGw

f . (24)

The rational Lagrange functions are then defined as follows:

RLAG = WLAGL
W LAG , (25)

where WLAG is the diagonal matrix of the Lagrange weights. The link between NURBS functions and rational Lagrange func-
tions is finally made using Eqs. (25) and (23) in Eq. (22). Consequently, a new extraction operator DW

LAG is created as described
below:

Rf =WfDLAG(WLAG)−1RLAG = DW
LAGR

LAG. (26)
Then, going from L to RLAG or, in other terms, from xLAG (the location of the rational Lagrange control points) to xFE , can be
achieved very simply. Indeed, noticing that the control points of the rational Lagrange discretization interpolates the geometry,
it appears possible to consider that the position of the FE nodes xFE is exactly the same as the position of the rational Lagrange
control points xLAG. Following this strategy, we end up with:

xFE ≈
(

DW
LAG

)T xf and Rf ≈ DW
LAGL, i.e. CFE = DW

LAG. (27)

The above approximations get more accurate with the refinement of the NURBS mesh, which is assumed to be the case here
since it is related to the last-level NURBS model. As demonstrated in41, this process provides sufficient accuracy with already
rather coarse NURBS meshes for typical engineering geometries.

3.3 Proposed methodology
We now have all the ingredients in hand to present the proposed methodology. The objective is to improve the mesh-based
shape measurement occurring in FE-SDIC by using, in a non-invasive manner, a geometrically sound regularization. In order
to do so, the main idea is to relate the multilevel spline parametrizations of the geometry (and of its update) with the multi-scale
images used for the initialization of the shape measurement (see remark 3). The principle is illustrated in Fig. 5. The different
approximation subspaces that describe the geometry are chosen in accordance with the resolution of the images so that the shape
measurement problem is regularized at each scale (number of DOF versus number of pixels). The coarse scales enable to fit
the major tendencies of the surface while the finer ones allow the representation of sharper variations. Moving from scale s to
finer scale s − 1, the spline design space is enhanced while keeping the same geometry, and the initial solution for the shape
measurement problem of scale s − 1 is taken as the final solution of scale s.

Remark 8. In practice, the method starts from a sufficiently coarse representation of the nominal geometry. So far, in experi-
mental mechanics, specimen’s shape is relatively smooth such that very compact spline representations with very few DOF are
generally sufficient. In a situation where the initial CAD representation should be too fine to effectively regularize the problem,
it would be possible to either reduce the number of scales or resort to additional Tikhonov-type regularization techniques. Note
that even in such a case, although insufficient a certain amount of geometric regularization is expected. Indeed, the level of
Tikhonov regularization should presumably be lower than the one which would be required with an analysis-suitable FE mesh.
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initial coarse spline model

optimized coarse spline model

refined spline model

updated refined spline model

    mesh 
refinement by
knot insertion

image filtering by
  coarse graining

        multilevel
spline discretizations

multi-scale
  images

s = 1

s = 0

FIGURE 5 Principle of the geometric regularization: the multilevel spline optimization process is coupled with the multi-scale
initialization of shape measurement.

More precisely, an overview of the proposed regularization scheme included in the calibration of the whole stereo rig is given
in Fig. 6. For simplicity, we denote by Cs the extraction operator that maps the fine FE space onto the spline discretization of
scale s, i.e. Cs is defined such that:

C0 = CFE and Cs =

( s−1
∏

i=0
C(s−i),(s−i−1)r

)

CFE , ∀s ∈
{

1, .., ns
}

, (28)

where ns is the number of scales and s = 0 corresponds to the finest scale while s = ns refers to the coarsest scale. As can
be observed, making use of the IG-FE bridge of previous section, the implementation is performed from standard FE-SDIC
routines with minimal effort. Summarizing, we proceed as follows for the regularization. From the initial CAD representation
of the theoretical surface, we build in the pre-processing step a fine analysis-suitable FE mesh and the different multilevel
spline discretizations through their corresponding extraction operators Cs. Then, entering into the shape measurement loop and
beginning with the coarsest scale, we project, at each iteration of the Gauss-Newton solver, the FE hessian and gradient onto
the first-level spline space and solve the associated regularized IG system. We thus end up with the IG shape update that can be
converted in terms of nodal FE shape update so that the FE hessian and gradient can be updated for the next iteration. Going to
the finest scale, we finally repeat the previous procedure with the different refined spline spaces to regularize at each scale. The
final shape can be given either in terms of splines (thereby directly compatible with CAD environments) or in terms of finite
elements (thus facilitating the communication with numerical simulations).
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STEREO CALIBRATION

REGULARIZED SHAPE MEASUREMENT

PRE-PROCESSFrom initial CAD      and fine images, build:
       -  FE mesh: 
       -  multilevel extraction operators:
       -  multi-scale images:  

Decreasing loop on (multi-scale loop)

Loop on (fixed point loop)

Calibration of cameras' parameters

(Gauss-Newton to solve problems of form (6))

Loop on

Compute          and           from         ,         and         

(Classic FE shape measurement routine)    

Solve IG regularized system:

Update IG shape:

Update FE shape:

end

end
end

POST-PROCESSBuild final optimal shape:

       -  IG description:

       -  FE description:

FIGURE 6 Overview of the proposed regularization scheme included in the calibration of a stereo rig.

4 EXAMPLES

In this section, the proposed regularization technique for mesh-based shape measurement is applied to a real experiment. A steel
open-hole tensile specimen of size 180 × 50 × 2 mm and hole diameter 28 mm was considered. A dedicated speckle pattern
was laser printed over a layer of uniform white paint. A pair of 5 Mpx CCD cameras and 50 mm lenses was used to capture the
8bit 2452x2052 digital images presented in Figure 1. The stereo-angle was set around 25◦ which represents a good compromise
between in-plane and out-of-plane uncertainties61. The intrinsic parameters of the nonlinear camera models (first order radial
distortions) were calibrated prior to the experiment using a series of digital images of a calibration target made of a grid of
12x9 dots with a step size of 3 mm. The obtained intrinsic parameters are considered fixed in the remainder of the study. More
precisely, two configurations were considered for the study:

• In a chronological order, the specimen was first clamped in the lower jaw of an electro-mechanical tensile testing machine.
The upper part of the specimen was left free. In this first configuration, a set of images was taken and is referred to as
the flat configuration, as the observed surface of the specimen was almost plane. This configuration is used to analyse the
robustness of the method to a reasonably complex shape.

• The specimen was then clamped in the upper jaw. Since the jaws are slightly misaligned, the hyper-static clamping gener-
ated a torsional moment and the specimen twisted. The misalignment was around 2 or 3◦ which should generate significant
waviness. The corresponding set of images is referred to as the twisted configuration. With this case study, it is possible
to analyze the method in a configuration where the difference between the theoretical (considered flat) and real (twisted)
shapes is significantly greater than in standard mechanical experiments.

For a clear understanding of the results, we choose in the following to start with the twisted configuration and then turn to the
flat configuration. The two pairs of digital images are analysed by (a) the proposed geometric, Bézier-based, regularized shape
measurement method, (b) a standard FE-based shape measurement possibly considering Tikhonov regularization and (c) a more
standard subset-based DIC method. It must be mentioned, at this stage, that the regions of interest of the FE-based and subset
DIC are not equal. Indeed, the FE (or IG) meshes do conform to the edges of the specimen, whereas subset DIC was not able
to perform shape measurement too close to the boundaries. This point should be kept in mind when comparing global and local
DIC solutions.
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4.1 Pre-processing: construction of the geometric model and FE mesh
The nominal geometry of the sample consists in a plate with a circular hole. As a result, its exact representation in CAD
requires the use of NURBS (rational B-splines). It is common to proceed as in Figure 7(a) for the building of the first
NURBS model of such a geometry. Given that the four vertices of the plate imply a C0 regularity of the geometry at
those points, the coarsest NURBS model necessarily involves 4 C0-C0 elements. More precisely, denoting by � the param-
eter describing the circumferential direction, we needed to start with degree p = 2 in that direction with knot-vector Ξ =
{0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} (for more details on NURBS constructions, see, e.g.,33). Along the other direc-
tion, even if degree 1 would be sufficient, we also took degree 2 so as to be consistent with the final FE-mesh that is made of
standard 9-node (i.e. bi-quadratic) elements. Starting with the NURBS model composed of 4 quadratic elements, we thus only
performed knot-insertion (inserting one knot at a time) to get the different (multilevel) NURBS parametrizations (see Figs 7(b)
and (c)). We finally further carried out knot-insertion and applied the IG-FE mapping of section 3.2 (see Eq. (17)) to obtain the
analysis-suitable FE-mesh (see Figure 7(d)).

FIGURE 7 Initial CAD parametrization, mutli-level NURBS meshes and final fine FE mesh. The C0 lines are orange. The final
FE mesh is composed of 1000 elements.

Remark 9. Let us recall here that although a NURBS parametrization is used to represent exactly the in-plane geometry, the
shape optimization with the proposed strategy only acts on the out-of-plane locations of the control points (see remark 4). As a
result, the modification of the shape should not be interpreted as a NURBSmodification but rather as some "spline" modification
with fixed weights. We believe that the measurement uncertainties must certainly be greater than the difference between NURBS
and B-Spline modifications. Now, given that the computational cost associated toDLAG andDW

LAG is similar (only two additional
diagonal-matrix/matrix products for DW

LAG, see Eq. (26)) and that we simply have a practical NURBS parametrization of the
nominal plate with a hole, we decided to use a NURBS instead of an approximate B-Spline parametrization for the nominal
geometry here.

4.2 Results : twisted configuration
Let us recall that, because of the misalignment of the jaws, in this clamped-clamped configuration, the specimen underwent a
significant twist. Note that theses images were not analysed for displacement measurement using FE-SDIC with respect to the
flat configuration images. They were used for shape measurement independently as if this configuration was the initial state of
the specimen.

4.2.1 Classic FE-based shape measurement without any regularization
A first classic FE shape measurement was performed using the FE mesh given in Figure 7(d) without any regularization. The
obtained shape is represented in Figure 8. In order to compare the shape measurements obtained with the different considered
techniques, we chose the color data to represent the distance to the best fitting plane (BFP) instead of directly plotting the shape
correction field S(X)which would not be available using the subset approach. The shape is typical of a twist test. The waviness is
around onemillimeter, which, at the scale of this specimen, is large. In addition, the resulting shape is relatively noisy. Even tough
the noise is one order of magnitude smaller than the artificially large shape correction field, it still seems large and unphysical.
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FIGURE 8 Twisted specimen: shape obtained with classic FE-SDIC without regularization (def. scale fact. x30).

4.2.2 Use of standard Tikhonov regularization
In order to regularize this noise, a classic Tikhonov regularization technique was first considered. The shape obtained for three
different regularization lengths is given in Figure 9. As expected, using Tikhonov regularization, the shape measurements

FIGURE 9 Twisted specimen: shape obtained using a classic FE-SDIC with Tikhonov regularization for different values of the
regularization length: decreasing values of the regularization length from (a) to (c) respectively (def. scale fact. x30).

appeared clearly smoother, especially for large values of the regularization length (see Figs. 9(a) and (b)). It can be seen that
such high levels of regularization may also affect the shape. Indeed, on Figure 9(d), the influence of the regularization length
on the shape is depicted, with the subset approach as the reference. Using a too large regularization length reduces the displace-
ment magnitudes and underestimates the shape waviness. Asymptotically, using very large values of regularization would lead
to an almost constant correction field, which would correspond to a rigid body translation of the observed surface with respect
to the theoretical CAD.
Conversely, for lower values of the regularization length, the solution looks more like the shape obtained without regulariza-

tion. For instance Shape 9(c) is less noisy than the one illustrated in Figure 8, but high frequency noise is still present, which
means that the regularization was still not sufficient. Even in this case, where the regularization level was insufficient to get
completely rid of noise, it can be observed on Figure 9(d) that the correction field at the top corner was already underestimated
because of the differential nature of the chosen regularization term. As shown in this example, choosing the correct regulariza-
tion length value may become a tricky trade-off. In other words, a satisfying value of the regularization length may not exist, as
it seems to be the case here.

4.2.3 Use of the proposed geometric regularization
Next, the proposed geometric regularization scheme was considered with the same image set. The multi-scale initialization
technique described in section 3.3 was applied with three scales using the three NURBS meshes of Figure 7. The corresponding
shapes obtained at each scale are given in Figure 10.
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FIGURE 10 Twisted specimen with the proposed geometric regularization (def. scale fact. x30).

First, it can be observed that the shapes obtained at the three scales are very smooth. Indeed, the very low-dimensional spline
approximation subspace acts as a very strong regularization technique. Each of the three shapes are very similar to each other
and also in good agreement with the shape provided by the subset DIC method. In addition, the reduction in the correction
field’s magnitude observed when using the Tikhonov regularization did not occur here. Even at the highest scale, where the
spline representation is particularly coarse, a very good approximation of the shape was already obtained. This property of the
geometric regularization is particularly interesting for the highest scales of the multi-scale approach, since they are associated
to high regularization levels.
Figure 11(left) presents the evolution of the standard deviation of the graylevel residual field in percent of the reference image

dynamics (later denoted relative residual) as a function of the iteration number. It compares the convergence of the problem

FIGURE 11 Convergence of the algorithm on the twisted use case: (left) convergence (vs iterations) of the relative residual with
(black) and without (blue) the fixed point iterations and (right) convergence speed (vs dimensionless time) for the monoscale
and multi-scale approaches.

with and without iterating between calibration of extrinsic parameters (∙ symbols) and shape correction problems (× symbols).
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It can be seen that, at least on this case, converging the fixed point algorithm (by alternating between calibration and shape
problems) is mandatory to converge towards an accurate solution. It is the case here because the actual shape is significantly
different from the initial CAD. On the (right) side of the same figure, the relative residual is plotted as a function of the CPU
time normalized by the CPU time taken by one iteration at scale 0, for the monoscale (only scale 0) and multi-scale approaches.
It can be seen that, although the number of iterations may increase, the computational time is clearly reduced (divided by 2
in this case), since the higher scales are associated to low definition images whose interpolation is far cheaper. Note also, that
when using the multi-scale approach, the value of the relative residual was lower than that of the monoscale alternative. Lower
relative residual emerges from the fact that the multiscale initialisation, in addition to convergence acceleration, was designed
to avoid local minima. In this example, the solutions seem to be similar, but the multi-scale approach, by avoiding local minima,
may allow to reduce significantly the relative residual and therefore improve the measurement accuracy.

Remark 10. Note that the residual at scale s > 0 was estimated using the coarsened images and not with the full resolution
(scale 0) images, for efficiency. This explains why the estimated residual at scale s > 0 is sometimes a little smaller than the one
at scale 0 after convergence on Figure 11(right).

4.2.4 A note regarding brightness and contrast correction
Another interesting point with this test case is the analysis of the graylevel residual field r(S(X),p) at scale s = 0 before and
after convergence, with and without elementary brightness and contrast correction. First, the initial graylevel map, obtained
with the initial CAD (flat) shape and the initial set of extrinsic parameters, is depicted in Figure 12. Its value is about 70% of the

(a) (b) (c)

FIGURE 12 Graylevel residual r(S(X),p) in percent of the dynamic of the images with (a) the initial CAD shape and after
convergence (b) without and (c) with elementary brightness and contrast correction (def. scale fact. x30).

dynamic of the image which means that the graylevels do not correspond at all. After 8 iterations of the fixed point algorithm,
the graylevel residual dropped to less than 10% of the images dynamic. It means that the graylevel conservation was correctly
verified. It can be seen on Figure 12(b) that the residual map presents a band of higher value located around the hole when using a
global brightness/contrast correction. This localized bad verification of the graylevel conservation was attributed to the presence
of a specular reflection of the light which seems consistent with the twisting of the specimen. This phenomenon locally modifies
the brightness and contrast (B/C). As shown here, global B/C correction methods can not take this into account. The proposed
elementary B/C correction method (see remark 2) was applied and the resulting graylevel residual is depicted on Figure 12(c).
It presents a homogeneous value around 2% of the dynamic in all the region of interest. This elementary correction technique is
very simple but generic. It was shown that it can efficiently account for a complex local B/C variations which would be difficult
using a global descriptor.

4.3 Results : flat configuration
In this section, the so-called flat configuration where the specimen is clamped at the bottom end only is being analysed. Since
here the specimen is nearly flat, the shape correction field is expected to be of lower magnitude, but less regular than the twist
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of the previous section. Only the final shape measurements are plotted in this section to study the robustness of the geometric
regularization method with respect to a more complex shape with lower signal to noise ratio. Figure 13 presents the shape
measurement and distance to BFP when using (a) the FE-SDIC approach without regularization, (b) the local SDIC method and
(c) the geometric regularization technique. First it can be noticed that all the shapes are in good agreement with each other. Note

FIGURE 13 Flat specimen shapes with distance to best fitting plane (BFP) in mm: (a) measured by the FE-SDIC without
regularization, (b) measured using the subset based SDIC and measured using the proposed geometric regularization: (c) Spline
parametrization of the optimal shape and (d) corresponding measured finite element mesh (def. scale fact. x300).

that the waviness is one order of magnitude smaller than in the twist case. The FE and local SDIC measurements are clearly
affected by noise. The geometric regularization technique efficiently manages to extract a regular shape from the images. From
this measurement which provides the NURBS parametrization of the optimal shape, and using the IG-FE bridge of section 3.2,
it is possible to build directly the FE mesh (see Figure 8(d)) which exactly corresponds to the same shape. Such an output may
be convenient to be used for FE-SDIC displacement measurements in the context of validation/identification of FE models.

5 CONCLUSION

In this paper, we developed a hybrid IG-FE strategy for the regularization of the mesh-based shape measurement occurring in
FE-SDIC. From a regularization point of view, the proposed strategy draws inspiration from the techniques developed recently
in the isogeometric shape optimization community, especially with the multilevel design concept36,37,38. By making use of the
advanced spline refinement procedures and of adequate Bézier-based operators, the main idea here was to extract, from the
initial FE subspace, smoother multilevel spline parametrizations of the geometry and to relate them with the multi-scale images
used for the initialization of shape measurement. This treatment enabled to efficiently regularize, with a geometrical meaning,
the problem at each scale. From a practical point of view, the proposed approach consists of nothing more than projecting the
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ill-posed FE shape measurement problem onto more regular spline subspaces by using appropriate operators. But among the
possible reduced bases which may regularize the FE shape problem, the one presented here yields the IG Hessian operator that
has the great advantages to be geometrically sound and sparse. As a result, we ended up with a technique that draws up the best
of IG and FE technologies. On the one hand, we benefit from the increased smoothness of spline functions for the description
of the geometry and of its update. On the other hand, we can perform the resolution in a non-invasive manner from an existing
FE-SDIC code and, we are able to describe the final shape using the same fine FE mesh as the one which could be used for
displacement measurement and identification of mechanical models.
The performance of the developed methodology over existing strategies was demonstrated through the analysis of real images

coming from different experiments. For each experiment, multilevel NURBS parametrizations of the geometry were built in
accordance with the multi-scale images used for the initialization of the shape measurement. The method was implemented
from existing FE-SDIC routines with minimal efforts. Our results clearly indicated the superiority of the proposed geometric
regularization, especially as the real and the theoretical shapes are far from each other. We always managed to obtain a consistent
smooth final shape within a limited number of iterations, while the standard Tikhonov regularization appeared to fail when
rotations were expected. In addition, we outlined some other details of the mesh-based shape measurement process such as the
importance of converging the (calibration/shape) fixed point. A new local brightness and contrast correction technique was also
introduced herein.
Using recent progress in the field of Bézier extraction for local refinement59,60, the considered IG-FE bridge41 may be extended

to start with a locally refined NURBS or B-Spline mesh. This would allow to derive an adaptive refinement strategy for S-
DIC, similarly as what was performed in54 for 2D-DIC. We finally notice that the proposed implementation procedure based
on such IG-FE bridges for simply communicating between (possibly rational) spline spaces and a finer FE one may also be
interesting in other contexts. For instance, such treatment could be applied to CAD-based shape optimization to naturally relate
the (spline-based) design and (FE-based) analysis spaces62.
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