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Abstract

Human information processing is inherently multimodal, and language is best un-
derstood in a situated context. In order to achieve human-like language processing
capabilities, machines should be able to jointly process multimodal data, and not
just text, images, or speech in isolation. Nevertheless, there are very few multi-
modal datasets to support such research, resulting in a limited interaction among
different research communities. In this paper, we introduce How2, a large-scale
dataset of instructional videos covering a wide variety of topics across 80,000 clips
(about 2,000 hours), with word-level time alignments to the ground-truth English
subtitles. In addition to being multimodal, How2 is multilingual: we crowdsourced
Portuguese translations of the subtitles. We present results for monomodal and
multimodal baselines on several language processing tasks with interesting insights
on the utility of different modalities. We hope that by making the How2 dataset
and baselines available we will encourage collaboration across language, speech
and vision communities.

1 Introduction

Multimodal sensory integration is an important aspect of human concept representation, language
processing and reasoning [1]. From a computational perspective, major breakthroughs in natural
language processing (NLP), computer vision (CV), and automatic speech recognition (ASR) have
resulted in improvements in a wide range of multimodal tasks, including visual question-answering [2],
multimodal machine translation [3], visual dialogue [4], and grounded ASR [5]. Despite these
advances, state-of-the-art computational models are nowhere near integrating multiple modalities
as effectively as humans. This can be partially attributed to a lack of resources that are pervasively
multimodal: existing datasets are typically focused on a single task, e.g. images and text for image
captioning [6], images and text for visual-question answering [2], or speech and text for ASR [7].
These datasets play a crucial role in the development of their fields, but their single-task nature limits
the collective ability to develop general purpose artificial intelligence.

We introduce How2, a dataset of instructional videos paired with spoken utterances, English subtitles
and their crowdsourced Portuguese translations, as well as English video summaries. The pervasive
multimodality of How2 makes it an ideal resource for developing new models for multimodal
understanding. In comparison to other multimodal resources, How2 is a naturally occurring dataset:
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I’m very close to the green but I didn’t get it on the green
so now I’m in this grass bunker.
Eu estou muito perto do green, mas eu não pus a bola no green,
então agora estou neste bunker de grama.

In golf, get the body low in order to get underneath the golf
ball when chipping out of thick grass from a side hill lie.

Figure 1: How2 contains a large variety of instructional videos with utterance-level English subtitles
(in bold), aligned Portuguese translations (in italics), and video-level English summaries (in the box).
Multimodality helps resolve ambiguities and improves understanding.

Table 1: Statistics of How2 dataset.

Videos Hours Clips/Sentences Per Clip Statistics

300h train 13,168 298.2 184,949 5.8 seconds & 20 words
val 150 3.2 2,022 5.8 seconds & 20 words
test 175 3.7 2,305 5.8 seconds & 20 words
held 169 3.0 2,021 5.4 seconds & 20 words

2000h train 73,993 1,766.6 -
val 2,965 71.3 -
test 2,156 51.7 -

neither the subtitles, nor the summaries have been crowdsourced. Furthermore, the visual content
is inherently related to the spoken utterances. Figure 1 shows an example in which the presenter is
explaining how to play a golf shot. If one only has access to the text, it is unclear whether the “green”
in the subtitles refers to the colour green (“verde” in Portuguese), or the surface type (“green” in
Portuguese). The textual context alone is not enough to disambiguate the meaning of the subtitles,
and at the time of writing, both Google Translate and Microsoft Translator incorrectly translate
“green” as “verde”. However, given additional visual context (green grass with a flag pole), or the
audio context (outside with the sound of chipping a golf ball), our multimodal models can correctly
interpret this utterance. See Appendix A.1 for more examples.

The value of additional modalities can also be demonstrated for ASR. Object and motion level
visual cues can filter out systematic noise that co-occurs with activities. Scene information from an
image can be used to learn a common auditory representational space for different environmental
characteristics such as indoor vs. outdoor settings [8]. Entities in an image can also be used to adapt
a language model towards a domain [9].

Together with the dataset, we also release code to perform baseline experiments on several tasks
covering different subsets of How2. We find that action-level visual features improve automatic
speech recognition, video summarization and speech-to-text translation. These results demonstrate
the potential of the How2 dataset for future multimodal research.

2 How2 Dataset

The How2 dataset consists of 79,114 instructional videos (2,000 hours in total, with an average length
of 90 seconds) with English subtitles. The corpus can be (re-)created using the scripts and meta-
data we made available at https://github.com/srvk/how2-dataset. The website also
contains information on how to obtain pre-computed features for validation or saving computation,
and how to reproduce the experimental results we present using nmtpy [10].

Collection We downloaded the videos from YouTube, along with various types of metadata, includ-
ing ground-truth subtitles and summaries (referred to as “descriptions”) in English, written by the
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Figure 2: LDA topic distributions and segment duration for the 300h subset. The 2000h overall
corpus exhibits very similar characteristics.

video creators. Videos were scraped from the YouTube platform using a keyword based spider as
described in [11]. In order to produce a multilingual and multimodal dataset, the English subtitles
were first re-segmented into full sentences, which were then aligned to the speech at the word level.
The visual features were extracted from the video clips that correspond to these sentence-level
alignments. The distribution of the duration of segments can be seen in Figure 2b. See Appendix A.2
for more details on the alignment process.

To generate translations, we used the Figure Eight crowdsourcing platform. After conducting a
pilot experiment with a small set of languages, we chose Portuguese as target language because of the
availability of workers and the quality and reliability of the annotations performed by them. In order to
reduce the amount of time it would take to annotate the dataset, we posed translation as a post-editing
task: in another pilot experiment, we instructed crowd workers to “choose the best translation” from
English to Portuguese among candidate translations provided by three state-of-the-art online neural
machine translation systems. We then selected the system that was preferred most often, and had
crowdworkers post-edit the candidate translations. This process is still ongoing.

During annotation on Figure Eight, the worker population was restricted to those living in Portugal or
Brazil. Workers were paid US$ 0.05 to watch a short video and post-edit the automatically translated
Portuguese segment into correct Portuguese. Workers thus performed the annotation (and the pilots)
in a multimodal setting. To ascertain worker reliability, a content word of each 5 sentences of
the candidate translations was replaced by another random content word that was not part of the
translation. If the word inserted was still present in the final translation, the annotations from that
worker were discarded and the worker was banned from further contributing to the project.

At the time of writing, we had completed the collection of Portuguese translations for a 300h subset
of the entire dataset from 200 workers (each was limited to 5,000 segments to post-edit but none of
them reached this limit). We discarded and re-annotated 18% of the 300h. The total cost for data
collection thus far was US$ 8,771.

In a verification experiment, we determined found that training an English-Portuguese neural MT
system on 300h of machine generated training data degrades performance by about 1 BLEU point,
when compared to a system that has been trained on the post-edited translations, when evaluated
against expert-validated post-edited translations, showing that the approach is justified.

Topic distribution We clustered the English subtitles using Latent Dirichlet Allocation (LDA) [12].
Upon analyzing the clusters with top words in each topic, inter-topic and intra-topic distances, we
found that a good representation for the 300h subset consists of 22 topics. We hand-labeled these
topics based on top words in each cluster, as shown in Figure 2a.

Splits Table 1 presents summary statistics of the 2000h set and 300h subset: the val and test sets
can be used for early-stopping, model selection and evaluation; the held set is reserved for future
evaluations or challenges. The total set (i.e. 2000h) contains around 22.5M words. The tokenized
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Table 2: Results of the automatic speech recognition, machine translation, speech-to-text translation,
and summarization experiments on test set. The arrows indicate direction of improvement.

ASR (% WER ⇓) MT (BLEU ⇑) STT (BLEU ⇑) SUM (ROUGE-L ⇑)

Baseline 19.4 54.4 36.0 53.9
Multimodal 18.0 54.4 37.2 54.9

training set of 300h subset contains around 3.8M (43K unique) and 3.6M (60K unique) words for
English and Portuguese respectively.

3 Experiments

To demonstrate and explore the potential of the How2 dataset, we propose several tasks and developed
systems for them using a sequence-to-sequence (S2S) approach. Table 2 summarizes the baseline
results on the 300h training set for all tasks; only the summarization task uses the entire 2000h set.
More details can be found in the Appendix A.4.

1. Automatic speech recognition. We use an S2S model with a deep bi-directional LSTM
encoder [13]. For multimodal ASR, we apply visual adaptive training [5, 9] where we re-train
an ASR model by adding a linear adaptation layer which learns a video-specific bias to
additively shift the speech features. All parameters of the network all jointly trained in this
re-training step. The adaptation layer increases the model size by less than 1%.

2. Machine translation. We train an S2S MT model for English→Portuguese using a bidirec-
tional GRU [14]. For multimodal MT (MMT), we apply the same adaptive approach as we
did for ASR but the inputs to be shifted are now word embeddings instead of speech features.
The adaptation layer increases the model size by 8%.

3. Speech-to-text translation. We directly translate from English speech to Portuguese using
the same ASR architecture but with a different target vocabulary, which is similar to previous
approaches [15, 16]. For multimodal STT, we apply the same adaptive scheme as in ASR.

4. Summarization. The baseline is again the same S2S MT model. For multimodal summa-
rization, we follow the hierarchical attention approach [17, 18] to combine textual and visual
modalities by using a sequence of action-level features instead of an average-pooled one as in
the other experiments. This latter increases the model size by 14%.

4 Related work

Lying at the intersection of NLP and CV [39], image captioning (IC) is the multimodal task with the
largest number of datasets available. The most widely used datasets in this field are the ones with
human crowdsourced descriptions, such as Flickr8K [19], Flickr30K [40], MSCOCO [6] and their
extensions to other languages. A closely related task to IC is multimodal machine translation. So far,
MMT has been addressed using captioning datasets extended with translations in different languages
such as IAPR-TC12 [41] and Multi30K which is an extension of Flickr30K into German [23], French
[25], and Czech [26]. One major pitfall of these datasets is that they lack syntactic and semantic
diversity.

A similar task to IC is that of automatically describing videos (VD). The most popular datasets for VD
are MSR-VTT [29], LSMDC [28], and Microsoft Research Video Description (MSVD) corpus [27]
which is the only multilingual resource of this type providing 122K crowdsourced descriptions.
However, two-thirds of the descriptions are in English and the ones in other languages are not parallel.
How2 offers a larger amount of data, all of which is in two languages.

Lipreading can be seen as a form of multimodal ASR, albeit not fusing information at the semantic
level. Popular and large-scale datasets include Grid [30] and Lip Reading in The Wild [32]. How2
is the first dataset that allows to perform multimodal ASR, using images as acoustic and linguistic
context to improve accuracy. How2 is also a valuable resource for speech-to-text translation, which
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Table 3: Comparison with previous datasets: (IC) and (VD) stand for image and video captioning.
Language names are encoded in ISO-639-1.

Task Dataset Languages Audio Visual Size

IC Flickr8K [19] EN, TR [20], ZH [21] 7 3 (I) 8K
IC Flickr30K [22] 150K EN, DE [23] 7 3 (I) 30K
IC MSCOCO [6] 414K EN 7 3 (I) 82K
IC 820K JA [24] 7 3 (I) 164K

MMT Multi30K [23] EN, DE, FR [25], CZ [26] 7 3 (I) 30K

VD MSVD [27] 122K total in many 3 3 (V) 5.3 hours
VD LSMDC [28] EN 3 3 (V) 150 hours
VD MSRVTT [29] EN 3 3 (V) 41 hours

AV-ASR Grid [30] EN 3 3 (V) 50 hours
AV-ASR ViaVoice [31] EN 3 3 (V) 34.9 hours
AV-ASR LRW [32] EN 3 3 (V) 800 hours

STT Fisher [33] EN, ES 3 7 150 hours
STT Audiobooks [34] EN, FR 3 7 236 hours

SUM CNN/DMC [35, 36] EN 7 7 286,817 pairs
SUM DUC [37] EN 7 7 500 pairs
SUM [38] EN CZ 3 3(V) 492,402 pairs

is otherwise often performed using Fisher-Callhome [33] and Audiobooks [34]. How2 is the only
corpus for multimodal STT currently available.

Multimodal neural abstractive summarization is an emerging field for which there are no well es-
tablished benchmarking datasets yet. Li et al. [38] collected a multimodal corpus of news articles
containing 500 videos of English news articles paired with human annotated summaries. UzZaman
et al. [42] collected a corpus of images, structured text and simplified compressed text for summa-
rization of complex sentences. More traditional text-based summarization is commonly based on
CNN/Daily Mail [35, 36], Gigaword [43] and the Document Understanding Conference challenge
data [37]. An older version and non-released version of How2 was used for experiments on learning
action examples in videos in [11].

5 Conclusions

We have introduced How2, a multimodal collection of instructional videos with English subtitles
and crowdsourced Portuguese translations. We have also presented sequence-to-sequence baselines
for machine translation, automatic speech recognition, spoken language translation, and multimodal
summarization. By making available data and code for several multimodal natural language tasks, we
hope to stimulate more research on these and similar challenges to obtain a deeper understanding of
multimodality in language processing.
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[17] Jindřich Libovický and Jindřich Helcl. Attention strategies for multi-source sequence-to-
sequence learning. In Proceedings Annual Meeting of the Association for Computational
Linguistics (ACL). ACL, 2017.

6
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Actually I use this beautiful moroccan oil and it’s really
wonderful on the hair.
Na verdade eu uso este belo óleo marroquino e é realmente
maravilhoso no cabelo.

Relaxed African-American hair should be moisturized and
washed to maintain good and healthy hair. Care for African-
American, biracial or ethnic hair with tips from a profes-
sional hairstylist in this free video on hair care.

Like said you can cook this pretty quickly with your family.
Como disse você pode cozinhar isso muito rapidamente com
sua família.

Learn how to cook and serve picadillo con arroz with expert
cooking tips in this free classic Cuban recipe video clip.

When your wide receivers get into their stance they want
to have one foot forward, they want to have good position
and be ready to fire off the line.
Quando seus receptores largos entram em sua posição eles
devem ter um pé para a frent,e eles devem ter uma boa posição
e estar pronto para disparar a linha.

Learn some great tips on how to line up as a receiver in this
free video clip on how to play football.

Figure 3: Examples of the How2 dataset that reflect its sample variability and modality correlation.
The image is a randomly selected frame from a concrete segment of the video, the text in bold
is the utterance pronounced during this segment, the Portuguese text in italic are the translations
corresponding to the utterance and finally, the summary of the whole video is placed inside the
rectangle.

A Appendix

A.1 How2 Examples

In Figure 3, we list three typical instances from the How2 dataset. In these examples, we can see
the correspondence between the content of the video frame, the summary, and the utterance. This
multimodal correspondence is what systems can exploit by using the How2 dataset. In the first
example, a hairdresser is explaining how to use a specific hair product. In that case, the visual
elements (i.e., hair product, hairdresser) and the scene, a hairdressing salon, are a rich source of
context. In the second example, a woman is cooking in a kitchen with many cooking devices. In the
third example, we can infer the acoustic environment (i.e., outdoors) by the scene.

A.2 Modality Alignment and Data Checks

To combine all modalities (i.e., speech, video, transcriptions, and translations) successfully, we need
to establish and validate their correspondence in time. While the audio transcription is generated from
subtitles, these do not always correspond to the actual audio. We thus decided to generate token-level
(e.g. word-level) time stamps that link text, audio, and video modality. From these, utterance-level
start and end times were also calculated.
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To align text and audio, we perform a Viterbi alignment between the transcriptions, which were
provided by the users who uploaded the videos, and the audio track of How2, using Kaldi’s [44] Wall
Street Journal (WSJ) GMM/ HMM acoustic model. This alignment process estimates the start and
end times of each sentence in the audio track. Finally, by using the estimated alignments, we can
segment the audio and video track according to the utterances.

To make sure the data will be suitable for the proposed use, we validated two properties: First,
we verified that the word alignment is indeed accurate by manually inspecting randomly chosen
utterances. The 300 h sub-set was selected to give good alignment scores, and the WSJ model seemed
to perform best in that respect: “good” (according to the score) utterances were indeed accurately
aligned, when compared to alignments generated with other models, including those developed for
speech synthesis. Second, the “transcription” data has been generated from video subtitles, which
were not meant to be verbatim and highly accurate “transliterations” of the spoken content. Rather,
the “transcription” text is a somewhat canonical form of the spoken word, which is fine for our
proposed uses, although it may lead to slightly higher overall word error rates for the speech-to-text
tasks.

A.3 Feature Extraction and Processing

Speech Features We used Kaldi [44] to extract 40-dimensional filter bank features from 16kHz
raw speech using a time window of 25ms with 10ms frame shift and concatenated 3-dimensional
pitch features to obtain the final 43-dimensional speech features. A per-video Cepstral Mean and
Variance Normalization (CMVN) is further applied to account for speaker variability.

Visual Features A 2048-dimensional feature vector per 16 frames is extracted from the videos
using a CNN trained to recognize 400 different actions [45]. It should be noted that this results in a
sequence of feature vectors per video rather than a single/global one. In order to obtain the latter,
we average pooled the extracted features into a single 2048-dimensional feature vector which will
represent all sentences segmented out of a single video.

Text Features All texts are normalized, lowercased and filtered from punctuation. A SentencePiece
model [46] is learned separately for English and Portuguese resulting into vocabularies of 5K each
except for summarization which uses word-level tokens.

A.4 Architecture Details

Automatic Speech Recognition We use a 6-layer pyramidal encoder [47] (with interleaved tanh
projection layers) where the middle two layers skip every other input resulting into a subsampling
rate of 4. The decoder is a 2-layer conditional GRU (CGRU) decoder [48], a transitive decoder where
the hidden state of the second GRU is fed back to the first GRU. The first GRU is initialized with the
mean encoder hidden state transformed using a tanh layer. A feed-forward attention mechanism [49]
is used inside the decoder and the input and output embeddings are tied [50].

Multimodal Automatic Speech Recognition For multimodal ASR, we apply video adaptive train-
ing [5, 9] with a learned linear transformation of the visual feature vector v that will act as a visual
bias over a given speech feature xt at time t. The shifted speech feature x̂t is thus computed as
follows:

x̂t = xt +
(
WT v + b

)
To train this model, we first initialize the model parameters using a previously trained ASR and
jointly optimize all parameters including W and b above.

Machine Translation We train a sequence-to-sequence neural MT model with a 2-layer bidirec-
tional GRU [14] encoder and a 2-layer conditional GRU decoder[48]. A dropout [51] with 0.3
drop probability is used after source embeddings, source encodings and before the final softmax
operation.

Multimodal Summarization We follow the hierarchical attention approach [17] to combine textual
and visual modalities. Unlike previous multimodal ASR, MT and STT architectures, the visual
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features described in Section 2 are now used as-is, i.e. as a sequence of 2048-dimensional vectors
rather than being average pooled into a single vector.

A.5 Training Details

Unless otherwise specified, we use ADAM [52] as the optimizer with an initial learning rate of 0.0004.
The gradients are clipped to have unit norm [53]. The training is early stopped if the task performance
on validation set does not improve for 10 consecutive epochs. Task performance is assessed using
Word Error Rate (WER) for speech recognition, BLEU [54] for translation tasks and ROUGE-L
[55] for the summarization task. The learning rate is halved whenever the task performance does
not improve for two consecutive epochs. All systems are trained three times with different random
initializations. The hypotheses are decoded using beam search with a beam size of 10. We report the
average results of the three runs. We use nmtpytorch [10] to train the models.
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